ejabberd Docs

ejabberd Community Server

Copyright © 2008 - 2024 ProcessOne

Table of contents

Table of contents

Overview 5
Getting started 5
Features 8
Frequently Asked Questions 10
ejabberd Use Cases 12
GNU GENERAL PUBLIC LICENSE 15
Security Policy 19
Glossary 20
Readme 23

Install 25
Installation 25
ejabberd Container Images 26
Binary Installers 42
Operating System Packages 44
Install ejabberd from Source Code 45
Install ejabberd on macOS 54
Installing ejabberd development environment on OSX 55
Next Steps 58

Configure 60
Configuring ejabberd 60
File format 61
Basic Configuration 67
Authentication 78
Database Configuration 83
LDAP Configuration 88
Listen Modules 98
Listen Options 107
Top-Level Options 113
Modules Options 141

Advanced 212
Advanced ejabberd Administration 212
Architecture 213
Clustering 215
Understanding ejabberd and its dependencies 218
Erlang Distribution 220

- 2/512 - Copyright © 2008 - 2024 ProcessOne

Managing an ejabberd server

Get More Modules

Securing ejabberd

Troubleshooting ejabberd

Upgrade Procedure for ejabberd

ejabberd and XMPP tutorials

Getting started with MIX

MQTT Support

MUC Hats

Setting vCards / Avatars for MUC rooms

Using ejabberd with MySQL
Development

ejabberd for Developers

ejabberd Developer Guide

PubSub overview

Roster versioning

ejabberd Stanza Routing

ejabberd SQL Database Schema

External authentication

Main contribution repository

ejabberd API libraries

Old / obsolete contributions

Contributing to ejabberd

Contributor Covenant Code of Conduct

Contributors

ejabberd Docs Source Code

ejabberd for Elixir Developers

The ejabberd Developer Livebook

Internationalization and Localization

ejabberd Modules Development

MucSub: Multi-User Chat Subscriptions

ejabberd Test Suites

Developing ejabberd with VSCode

Getting Started with XMPPFramework
API

ejabberd ReST API

API Reference

API Tags

- 3/512 -

Table of contents

223
229
231
232
234
237
239
243
247
251
254
259
259
260
275
286
287
289
296
296
296
296
297
300
302
303
306
313
317
318
321
328
330
333
334
334
337
436

Copyright © 2008 - 2024 ProcessOne

Table of contents

Simple ejabberd Rest API Configuration 445
API Permissions 449
OAuth Support 452
ejabberd commands 459
API Versioning 461
Archive 464
ChangeLog 464
Roadmap 503
ejabberd Roadmap 503

- 4/512 - Copyright © 2008 - 2024 ProcessOne

Overview

Overview

Getting started

Meet ejabberd, your superpowerful messaging framework

This web site is dedicated to help you use and develop for ejabberd XMPP messaging server.

ejabberd has been in development since 2002 and is used all over the world to power the largest XMPP deployments. This
project is so versatile that you can deploy it and customize it for very large scale, no matter what your use case is.

This incredible power comes with a price. You need to learn how to leverage it. Fortunately, the goal of this website is to get you
started on your path to mastery. Whether you are a sysadmin, an architect, a developer planning to extend it, or even a simple
XMPP user, we have something for you here.

Overview

ejabberd is the de facto XMPP server in the world. The fact that it is used to power the largest deployments in the world should
not intimidate you. ejabberd is equally suitable for small instances.

ejabberd has been designed from the ground-up, since 2002 for robust, enterprise deployment. The goal has always been to
shoot for the moon and this is what made it a long-lasting success.

ejabberd is specifically designed for enterprise purposes: it is fault-tolerant, can utilise the resources of multiple clustered
machines, and can easily scale when more capacity is required (by just adding a box/VM).

Designed at a moment when clients were mostly desktops that only supported a kind of HTTP polling call BOSH, the project
managed to adapt to recent changes by introducing support for WebSockets, BOSH improvements, and a solid mobile stack.

It was developed at a time when XMPP was still known as "Jabber", but quickly adopted an evolution process in order to support
the various versions of XMPP RFCs. It now encourages innovation and experimentation by supporting most, if not all, extensions
produced by the XSF.

ejabberd relies on a dynamic community all over the world. To get an idea of existing contributions, you can check ejabberd main
repository or the repository containing a great amount of contributed extensions.

This is possible thanks to a modular architecture based on a core router and an extremely powerful plugin mechanism that is
getting richer every day.

Welcome to the beginning of your journey of ejabberd mastery!

Options to use ejabberd

ejabberd can be used in different ways. The most common one is:
* ejabberd Community Server, the public Open Source version that everyone loves: highly scalable and flexible.

Fortunately, if you need more than just the ejabberd platform software, ProcessOne can help you with a commercial offering.
Commercial offering come in two type of packaging:

* ejabberd Business Edition including features for large companies (enhanced geodistributed companies and mobile support
to develop own, rich clients) and world-class support, that can please even the most demanding businesses, with 24/7 options.

» Fluux.io being a way to access and benefit of all the features of ejabberd Business Edition at an attractive and scalable price.
Fluux.io allows you to keep control of your data thanks to integration API you can implement on your backend to become a
data provider for ejabberd SaaS.

-5/512 - Copyright © 2008 - 2024 ProcessOne

https://github.com/processone/ejabberd
https://github.com/processone/ejabberd
https://github.com/processone/ejabberd-contrib
https://www.process-one.net/ejabberd/
https://www.process-one.net/ejabberd/
https://www.process-one.net/
https://www.process-one.net/ejabberd-features/
https://www.process-one.net/ejabberd-features/
https://fluux.io
https://fluux.io

Architecture of an ejabberd service

Whatever approach you choose, you can hardly make the wrong choice with ejabberd! In every case you can easily integrate
ejabberd with your existing application using:

e REST API and ejabberdctl command-line tool

* Mobile libraries for i0S: XMPPFramework, Jayme REST API

e Mobile libraries for Android: Smack, Retrofit

* Web library with WebSocket support and fallback to BOSH: Strophe

Architecture of an ejabberd service

ejabberd brings configurability, scalability and fault-tolerance to the core feature of XMPP - routing messages.
Its architecture is based on a set of pluggable modules that enable different features, including:

* One-to-one messaging

» Store-and-forward (offline messages)

* Contact list (roster) and presence

¢ Groupchat: MUC (Multi-User Chat)

* Messaging archiving with Message Archive Management (MAM)

» User presence extension: Personal Event Protocol (PEP) and typing indicator
 Privacy settings, through privacy list and simple blocking extensions
 User profile with vCards

 Full feature web support, with BOSH and websockets

* Stream management for message reliability on mobile (aka XEP-0198)
* Message Delivery Receipts (aka XEP-184)

» Last activity

* Metrics and full command-line administration

* and many many more.
The full list of supported protocol and extensions in the Specification & Reference Sheets page.
This modular architecture allows high customisability and easy access to the required features.

ejabberd enables authenticating users using external or internal databases (Mnesia, SQL), LDAP or external scripts. It also
allows connecting anonymous users, when required.

For storing persistent data, ejabberd uses Mnesia (the distributed internal Erlang database), but you can opt for SQL database
like MySQL or PostgreSQL

And of course, thanks to its API, ejabberd can be customised to work with a database chosen by the customer.

Deploying and managing an ejabberd service

ejabberd can be deployed for a number of scenarios fitting end-user / developer / customer needs. The default installation setup
consists of a single ejabberd node using Mnesia, so it does not require any additional configuration. This primary system is
sufficient for fast deployment and connecting XMPP clients. It should be good enough for most of the small deployments (and
even medium ones).

A more scalable solution would be deploying ejabberd with an external database for persistent data. As Mnesia is caching part of
its data in ejabberd memory (actually in Erlang VM node), this kind of setup make your system more scalable and typically easier
to integrate with your usual database. As a sysadmin, yes, you can use your standard backup process.

Those larger setup can run as a cluster of ejabberd nodes. This is a clustering mode where all nodes are active, so it can be use
for fault-tolerance, but also to increase the capacity of your ejabberd deployment.

-6/512 - Copyright © 2008 - 2024 ProcessOne

https://github.com/robbiehanson/XMPPFramework
https://github.com/inaka/Jayme
https://github.com/igniterealtime/Smack
https://github.com/square/retrofit
https://strophe.im/
https://www.process-one.net/ejabberd-features/

ejabberd is more than XMPP

With such a deployment you can load balance the traffic to your cluster node using one of the following solution:

« traditional TCP/IP load balancer (beware of the cost of your solution, typical XMPP connections are persistent).
* DNS load balancing.
e Custom approach that requires client cooperation.

If deployed on a 16 GB RAM machine with at least 4 cores, a single ejabberd node can typically handle 200-300 K online users.
This setup is suitable for systems with up to 10 nodes.

Note that your mileage may vary depending on your use case, the feature your are using and how clean the architecture design
and the client is developed. That's why, if you plan to reach huge volume, it is recommended to start asking advices from day 1 to
an ejabberd expert. Initial mistakes in the solution design are harder to fix once the project is in production.

If the service requires a cluster of more than 10 nodes, we recommend not relying on Mnesia clustering mode. Many solutions
are available, the easiest and more inexpensive being to rely on ejabberd Software-as-a-Service approach, see Advanced
Messaging Infrastructure & Services.

ejabberd also allows connecting different clusters as parts of larger systems. This is a standard XMPP feature call server-to-
server (aka s2s in XMPP lingo). It is used in geo-localised services handling massive traffic from all over the world. Special
extension are also available from ProcessOne to handle geodistribution in an even more robust way.

To manage the users, rosters, messages and general settings, we provide a command-line tool, ejabberdctl. That command-line
allows you to gather metrics from ejabberd to be able to monitor what is happening in your system, understand and even
anticipate issues.

The main benefit of ejabberd is the ability to reach a command-line to type Erlang commands. This allows you to fix and
troubleshoot most of the tricky situation and even update and reload code without stopping the service. This is a life saver for
your uptime.

Welcome to the benefit of Erlang hot-code swapping!

ejabberd is more than XMPP

Thanks to the modular architecture of ejabberd, the platform is becoming a core component for messaging applications.

Messaging applications require to transfer more than text messages. ejabberd has grow a full set of media related features that
makes ejabberd a great choice to support voice and video applications, but also to proxy various kind of media transfer (images,
audio and video files for example).

As such, ejabberd support:
* Jingle, XMPP based voice protocol
» SIP (Session Initiation Protocol): Yes, you can pass SIP calls using ejabberd :)
* ICE (Interactive Connectivity Establishment: A Protocol for Network Address Translator (NAT) Traversal)
* STUN
* TURN

* Proxy65 media relay

This makes ejabberd the best XMPP server to support SIP and WebRTC based communication tools.

Helping us in the development process

With thousands of more or less official forks, the core ejabberd team, supported by ProcessOne, is constantly monitoring and
reviewing improvements. We use our 15 years of experience to filter the best ideas or improvements to make sure ejabberd is
always your most solid choice in term of scalability, robustness and manageability.

The best way to start developing for ejabberd is to clone, watch and star the project, to get in touch on our developer chatroom
(ejabberd@conference.process-one.net) or to join ejabberd community on StackOverflow.

-7/512 - Copyright © 2008 - 2024 ProcessOne

https://www.process-one.net
https://www.process-one.net/advanced-messaging/
https://www.process-one.net/advanced-messaging/
https://github.com/processone/ejabberd
mailto:ejabberd@conference.process-one.net
https://stackoverflow.com/questions/tagged/ejabberd?sort=newest

Features

Features

ejabberd is a free and open source instant messaging server written in Erlang/0TP.

ejabberd is cross-platform, distributed, fault-tolerant, and based on open standards to achieve real-time communication.
ejabberd is designed to be a rock-solid and feature rich XMPP server.

ejabberd is suitable for small deployments, whether they need to be scalable or not, as well as extremely large deployments.

Check also the features in ejabberd.im, ejabberd at ProcessOne, and the list of supported protocols in ProcessOne and XMPP.org.

Key Features
ejabberd is:

* Cross-platform: ejabberd runs under Microsoft Windows and Unix-derived systems such as Linux, FreeBSD and NetBSD.

* Distributed: You can run ejabberd on a cluster of machines all serving the same Jabber domain(s). When you need more
capacity you can simply add a new cheap node to your cluster. Accordingly, you do not need to buy an expensive high-end
machine to support tens of thousands concurrent users.

» Fault-tolerant: You can deploy an ejabberd cluster so that all the information required for a properly working service will be
replicated permanently on all nodes. This means that if one of the nodes crashes, the others will continue working without
disruption. In addition, nodes can be added or replaced on the fly.

e Administrator Friendly: ejabberd is built on top of the Erlang programming language. As a result, if you wish, you can perform
self-contained deployments. You are not required to install an external database, an external web server, amongst others
because everything is already included, and ready to run out of the box. Other administrator benefits include:

e Comprehensive documentation.

e Straightforward installers for Linux, Mac OS X, and Windows.
* Web Administration.

e Shared Roster Groups.

* Command line administration tool.

* Can integrate with existing authentication mechanisms.

» Capability to send announce messages.

« Internationalized: ejabberd leads in internationalization and is well suited to build services available across the world. Related
features are:

» Translated to 25 languages.

e Support for IDNA.

* Open Standards: ejabberd is the first Open Source Jabber server staking a claiming to full complyiance to the XMPP standard.
» Fully XMPP compliant.

* XML-based protocol.

¢ Many protocols supported.

-8/512 - Copyright © 2008 - 2024 ProcessOne

https://www.erlang.org/
https://www.erlang.org/
https://www.ejabberd.im/
https://www.process-one.net/ejabberd/
https://www.process-one.net/ejabberd-features/
https://xmpp.org/software/servers/ejabberd/
https://tools.ietf.org/html/rfc3490
https://tools.ietf.org/html/rfc3490
https://www.ejabberd.im/protocols/

Additional Features

Additional Features
ejabberd also comes with a wide range of other state-of-the-art features:

* Modular

e Load only the modules you want.

* Extend ejabberd with your own custom modules.

* Security

* SASL and STARTTLS for c2s and s2s connections.

e STARTTLS and Dialback s2s connections.

* Web Admin accessible via HTTPS secure access.

» Databases

 Internal database for fast deployment (Mnesia).

* Native MySQL support.

» Native PostgreSQL support.

* ODBC data storage support.

* Microsoft SQL Server support.

* SQLite support.

* Authentication

* Internal Authentication.

* PAM, LDAP and SQL.

* External Authentication script.

* Others

e Support for virtual hosting.

e Compressing XML streams with Stream Compression (XxEr-0138).

* Statistics via Statistics Gathering (XEP-0039).

e IPv6 support both for c2s and s2s connections.

* Multi-User chat module with support for clustering and HTML logging.
» Users Directory based on users vCards.

* Publish-Subscribe component with support for personal Eventing via Pubsub .
e Support for web clients: Support for XMPP subprotocol for WebSocket and HTTP Binding (BOSH) services.
e SIP support.

* Component support: interface with networks such as AIM, ICQ, IRC and MSN installing special transports.

- 9/512 - Copyright © 2008 - 2024 ProcessOne

https://xmpp.org/extensions/xep-0138.html
https://xmpp.org/extensions/xep-0138.html
https://xmpp.org/extensions/xep-0039.html
https://xmpp.org/extensions/xep-0039.html
https://xmpp.org/extensions/xep-0045.html
https://xmpp.org/extensions/xep-0045.html
https://xmpp.org/extensions/xep-0060.html
https://xmpp.org/extensions/xep-0060.html
https://xmpp.org/extensions/xep-0163.html
https://xmpp.org/extensions/xep-0163.html
https://tools.ietf.org/html/rfc7395
https://xmpp.org/extensions/xep-0206.html
https://xmpp.org/extensions/xep-0206.html

Frequently Asked Questions

Frequently Asked Questions

Development process

Why is there a commercial version of ejabberd?

Different needs for different users. Corporations and large scale deployments are very different from smaller deployments and
community projects.

While we put a huge development effort to have a product that is on the edge of innovation with ejabberd community version, we
are requested to provide a stable version with long term commitment and high level of quality, testing, audit, etc.

Maintaining such a version in parallel to the community version, along with extremely strong commitment in terms of availability
and 24/7 support has a tangible cost. With ejabberd business edition we commit to a level of scalability and optimize the software
until it is performing to the level agreed with the customer.

Covering all those costs, along with all our Research and Development cost on ejabberd community in general is the real reason

we need a business edition.

The business edition is also a way for our customers to share the code between our customers only, thus retaining a huge
competitive edge for a limited time (See next section).

So, even if you are not using our business edition, this is a great benefit for you as a user of the community edition and the
reason you have seen so many improvements since 2002. Thanks to our business edition customers, ejabberd project itself is a
major contributor to Erlang and Elixir community.

Does ProcessOne voluntarily hold some code in ejabberd community to push toward the business edition?
No. We never do that and have no plan doing so with the code we produce and we own.

However, when the code is paid by customer, they retain the ownership of the code. Part of our agreement is that the code
produced for them will be limited to a restricted user base, ejabberd business edition until an agreed time expires, generally
between 6 months and 1 year.

This is extremely important for both the users of the commercial edition and the users of the community edition:

 For the business edition customers, this is a way to keep their business advantage. This is fair as they paid for the
development.

» This is also a great incentive for our customers as they benefit from development for other customers (I guess they agree for
the reciprocal sharing of their own code with customers).

 This is fair for the community as the community edition users know they will benefit from new extremely advanced features in
a relatively near future. For example, websocket module was contributed to ejabberd community as part of this process.

This is the model we have found to be fair to our broader user base and lets us produce an amazing code base that benefits all

our users.

This dual model is the core strength of our approach and our secret sauce to make sure everyone benefits.

-10/512 - Copyright © 2008 - 2024 ProcessOne

Performance

Performance

Is ejabberd the most scalable version?

Yes. Definitely. Despite claims that there is small change you can make to make it more scalable, we already performed the
changes during the past year, that make those claims unfunded:

* ejabberd reduced memory consumption in 2013 by switching to binary representation of string instead of list. This can reduce
given string by 8.

* We have improved the C code performance a lot, using new Erlang NIF. This provides better performance, removes
bottlenecks

* We have a different clustering mechanism available to make sure we can scale to large clusters

This is a common misconception, but our feedback for production service on various customer sites shows that ejabberd is the
most scalable version. Once it is properly configured, optimized and tuned, you can handle tens of millions of users on ejabberd
systems.

... And we are still improving :)

As a reference, you should read the following blog post: ejabberd Massive Scalability: 1 Node — 24 Million Concurrent Users

What are the tips to optimize performance?

Optimisation of XMPP servers performance, including ejabberd, is highly dependent on the use case. You really need to find your
bottleneck(s) by monitoring the process queues, finding out what is your limiting factor, tune that and then move to the next one.

The first step is to make sure you run the latest ejabberd. Each new release comes with a bunch of optimisations and a specific
bottleneck you are facing may have gone away in the latest version.

For perspective, ejabberd 15.07 is 2 to 3 times more efficient in memory, latency and CPU compared to ejabberd 2.1.
You should also make sure that you are using the latest Erlang version. Each release of Erlang comes with more optimisation

regarding locks, especially on SMP servers, and using the latest Erlang version can also help tremendously.

Erlang support

Is ejabberd conforming to the best Erlang practices?

Yes. Our build system is primarily based on rebar. However, as we are multiplatform and need to run in many various
environments, we rely on a toolchain that can detect required library dependencies using autotools.

This gives developers and admins the best of both worlds. A very flexible and very versatile build chain, that is very adequate to
make sure ejabberd can be used in most operating systems and even integrated in Linux distributions.

-11/512 - Copyright © 2008 - 2024 ProcessOne

https://www.process-one.net/blog/ejabberd-massive-scalability-1node-2-million-concurrent-users/

ejabberd Use Cases

ejabberd Use Cases

ejabberd is very versatile and is a solid choice to build messaging services across a large number of industries:

ejabberd

Mobile messaging

ejabberd's massive scalability makes it the most solid choice as the backbone for a very large number of mobile messaging

services.

This includes:

e Chaatz
¢ Libon
¢ Nokia OVI Chat

* Roo Kids : Safe & fun instant messaging app for kids with minimum yet critical parental controls.

¢ Swisscom IO
* Versapp
¢ Whatsapp

Gaming

* Electronic Arts

* FACEIT

» Kixeye

e Machine Zone (Game of War)
* Nokia nGage

* Riot Games (League of Legends)

Voice and video messaging

* Nimbuzz
* ooVoo

» Sipphone
* WowApp

Internet of Things

e AeroFS
e IMA Teleassistance

* Nabaztag (Violet, Mindscape, then Aldebaran Robotics)

Telecom | Hosting

¢ Fastmail
* GMX
¢ Mailfence

* Orange

-12/512 -

Copyright © 2008 - 2024 ProcessOne

https://www.process-one.net/blog/libon-2-0-by-orange-vallee-uses-processone-to-benefit-from-smart-chatting/
https://en.wikipedia.org/wiki/Ovi_(Nokia)
https://highscalability.com/the-whatsapp-architecture-facebook-bought-for-19-billion/
https://www.ea.com/
https://www.faceit.com/
https://www.kixeye.com/
https://www.mz.com
https://en.wikipedia.org/wiki/N-Gage_(service)
https://highscalability.com/how-league-of-legends-scaled-chat-to-70-million-players-it-t/
https://en.wikipedia.org/wiki/Nimbuzz
https://www.oovoo.com/
https://www.process-one.net/wp-content/uploads/resources/ProcessOne_SIP_Phone_Case_Study_v3.pdf
https://en.wikipedia.org/wiki/Nabaztag
https://www.fastmail.com/blog/new-xmppjabber-server/
https://blog.mailfence.com/mailfence-groups/

* SAPO - Portugal Telecom

Customer chat /| CRM

¢ CoBrowser.net: Coder Interview.
e iAdvize

* LiveHelpercChat: Blog post: Full XMPP chat support for ejabberd

Media

* AFP
* BBC

Social media

» Facebook

* Nasza Klasa (NKTalk messenger)
» StudivZ

* Sify

e Tuenti

Sport

¢ Major League of Baseball (MLB)

Education

e Apollo group

e Laureate

Push alerts

* Nokia push notifications

* Notify.me)

Dating

e Grindr

* Meetic

Community sites

 Jabber.at

e Talkr.im

XMPP Use Cases

XMPP Use Cases

XMPP is a very versatile protocol designed to address many use cases of modern real-time messaging needs. However, it is also a

very large protocol and it is difficult to understand at first sight all the use cases that XMPP adequately addresses.

This page is gathering XMPP specifications that make XMPP a good fit for a given use case of industry.

-13/512 -

Copyright © 2008 - 2024 ProcessOne

https://www.process-one.net/wp-content/uploads/resources/ProcessOne_SAPO_Case_Study_v7.pdf
https://www.process-one.net/blog/code-as-craft-interview-cobrowser-net/
https://livehelperchat.com
https://livehelperchat.com/full-xmpp-chat-support-for-ejabberd-423a.html
https://www.afp.com/en/
https://www.process-one.net/wp-content/uploads/resources/ProcessOne_BBC_Case_Study_v2.pdf
https://www.quora.com/Why-was-Erlang-chosen-for-use-in-Facebook-chat
https://en.wikipedia.org/wiki/StudiVZ
https://highscalability.com/sifycom-architecture-a-portal-at-3900-requests-per-second/
https://en.wikipedia.org/wiki/Tuenti
https://www.process-one.net/wp-content/uploads/resources/ProcessOne_ML_Baseball_Case_Study_v5.pdf
https://www.process-one.net/blog/sea-beyond-2011-talk-7-jukka-alakontiola-on-nokia-push-notifications/
https://highscalability.com/notifyme-architecture-synchronicity-kills/
https://www.meetic.com/
https://xmpp.org

XMPP Use Cases

Realtime web

XMPP was designed before the advent of realtime web. However, it managed to adapt thanks to the following specifications:

* XMPP PubSub is defined in XEP-0060. This is a very powerful mechanism that defines channel based communication on top of
the XMPP protocol itself. A server can handle millions of channels, called Pubsub nodes. Users interested in specific channels
can subscribe to nodes. When data needs to be send to a given channel, authorized publishers can send data to that node. The
XMPP server will then broadcast the content to all subscribers. This is very adequate for realtime web as it allows you to
broadcast relevant events to web pages.

* WebSocket: XMPP over WebSocket is defined in RFC 7395. It is more efficient and more scalable than XMPP for web's
previous specifications called BOSH. WebSocket being a true bidirectional channel, it allows lower latency messaging and is
very reliable. Note that BOSH can still be used transparently along with WebSocket to support old web browsers.

Use cases: News, interactive web page, web chat, web games.

Supported by ejabberd: Yes.

-14/512 - Copyright © 2008 - 2024 ProcessOne

https://xmpp.org/extensions/xep-0060.html
https://tools.ietf.org/html/rfc7395
https://xmpp.org/extensions/xep-0124.html

GNU GENERAL PUBLIC LICENSE

As a special exception, the authors give permission to link this program with the OpenSSL library and distribute the resulting
binary.

GNU GENERAL PUBLIC LICENSE

Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc.
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share and change it. By contrast, the GNU General
Public License is intended to guarantee your freedom to share and change free software--to make sure the software is free for all
its users. This General Public License applies to most of the Free Software Foundation's software and to any other program
whose authors commit to using it. (Some other Free Software Foundation software is covered by the GNU Lesser General Public
License instead.) You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are designed to make sure
that you have the freedom to distribute copies of free software (and charge for this service if you wish), that you receive source
code or can get it if you want it, that you can change the software or use pieces of it in new free programs; and that you know
you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these rights or to ask you to surrender the
rights. These restrictions translate to certain responsibilities for you if you distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must give the recipients all the rights
that you have. You must make sure that they, too, receive or can get the source code. And you must show them these terms so
they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this license which gives you legal permission
to copy, distribute and/or modify the software.

Also, for each author's protection and ours, we want to make certain that everyone understands that there is no warranty for this
free software. If the software is modified by someone else and passed on, we want its recipients to know that what they have is
not the original, so that any problems introduced by others will not reflect on the original authors' reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid the danger that redistributors of a free
program will individually obtain patent licenses, in effect making the program proprietary. To prevent this, we have made it clear
that any patent must be licensed for everyone's free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains a notice placed by the copyright holder saying it may be
distributed under the terms of this General Public License. The "Program", below, refers to any such program or work, and a
"work based on the Program" means either the Program or any derivative work under copyright law: that is to say, a work
containing the Program or a portion of it, either verbatim or with modifications and/or translated into another language.
(Hereinafter, translation is included without limitation in the term "modification".) Each licensee is addressed as "you".

Activities other than copying, distribution and modification are not covered by this License; they are outside its scope. The act of
running the Program is not restricted, and the output from the Program is covered only if its contents constitute a work based on
the Program (independent of having been made by running the Program). Whether that is true depends on what the Program
does.

-15/512 - Copyright © 2008 - 2024 ProcessOne

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

1. You may copy and distribute verbatim copies of the Program's source code as you receive it, in any medium, provided that you
conspicuously and appropriately publish on each copy an appropriate copyright notice and disclaimer of warranty; keep intact all
the notices that refer to this License and to the absence of any warranty; and give any other recipients of the Program a copy of
this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your option offer warranty protection in
exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming a work based on the Program, and copy
and distribute such modifications or work under the terms of Section 1 above, provided that you also meet all of these conditions:

a) You must cause the modified files to carry prominent notices stating that you changed the files and the date of any change.

b) You must cause any work that you distribute or publish, that in whole or in part contains or is derived from the Program or
any part thereof, to be licensed as a whole at no charge to all third parties under the terms of this License.

c) If the modified program normally reads commands interactively when run, you must cause it, when started running for such
interactive use in the most ordinary way, to print or display an announcement including an appropriate copyright notice and a
notice that there is no warranty (or else, saying that you provide a warranty) and that users may redistribute the program under
these conditions, and telling the user how to view a copy of this License. (Exception: if the Program itself is interactive but does
not normally print such an announcement, your work based on the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections of that work are not derived from the Program,
and can be reasonably considered independent and separate works in themselves, then this License, and its terms, do not apply
to those sections when you distribute them as separate works. But when you distribute the same sections as part of a whole
which is a work based on the Program, the distribution of the whole must be on the terms of this License, whose permissions for
other licensees extend to the entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely by you; rather, the intent is
to exercise the right to control the distribution of derivative or collective works based on the Program.

In addition, mere aggregation of another work not based on the Program with the Program (or with a work based on the
Program) on a volume of a storage or distribution medium does not bring the other work under the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under Section 2) in object code or executable form under the
terms of Sections 1 and 2 above provided that you also do one of the following:

a) Accompany it with the complete corresponding machine-readable source code, which must be distributed under the terms of
Sections 1 and 2 above on a medium customarily used for software interchange; or,

b) Accompany it with a written offer, valid for at least three years, to give any third party, for a charge no more than your cost of
physically performing source distribution, a complete machine-readable copy of the corresponding source code, to be distributed
under the terms of Sections 1 and 2 above on a medium customarily used for software interchange; or,

c¢) Accompany it with the information you received as to the offer to distribute corresponding source code. (This alternative is
allowed only for noncommercial distribution and only if you received the program in object code or executable form with such an
offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modifications to it. For an executable work,
complete source code means all the source code for all modules it contains, plus any associated interface definition files, plus the
scripts used to control compilation and installation of the executable. However, as a special exception, the source code
distributed need not include anything that is normally distributed (in either source or binary form) with the major components
(compiler, kernel, and so on) of the operating system on which the executable runs, unless that component itself accompanies the
executable.

If distribution of executable or object code is made by offering access to copy from a designated place, then offering equivalent
access to copy the source code from the same place counts as distribution of the source code, even though third parties are not
compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly provided under this License. Any attempt
otherwise to copy, modify, sublicense or distribute the Program is void, and will automatically terminate your rights under this

-16/512 - Copyright © 2008 - 2024 ProcessOne

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

License. However, parties who have received copies, or rights, from you under this License will not have their licenses
terminated so long as such parties remain in full compliance.

5. You are not required to accept this License, since you have not signed it. However, nothing else grants you permission to
modify or distribute the Program or its derivative works. These actions are prohibited by law if you do not accept this License.
Therefore, by modifying or distributing the Program (or any work based on the Program), you indicate your acceptance of this
License to do so, and all its terms and conditions for copying, distributing or modifying the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the Program), the recipient automatically receives a license
from the original licensor to copy, distribute or modify the Program subject to these terms and conditions. You may not impose
any further restrictions on the recipients' exercise of the rights granted herein. You are not responsible for enforcing compliance
by third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringement or for any other reason (not limited to patent
issues), conditions are imposed on you (whether by court order, agreement or otherwise) that contradict the conditions of this
License, they do not excuse you from the conditions of this License. If you cannot distribute so as to satisfy simultaneously your
obligations under this License and any other pertinent obligations, then as a consequence you may not distribute the Program at
all. For example, if a patent license would not permit royalty-free redistribution of the Program by all those who receive copies
directly or indirectly through you, then the only way you could satisfy both it and this License would be to refrain entirely from
distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular circumstance, the balance of the section is
intended to apply and the section as a whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property right claims or to contest validity of
any such claims; this section has the sole purpose of protecting the integrity of the free software distribution system, which is
implemented by public license practices. Many people have made generous contributions to the wide range of software
distributed through that system in reliance on consistent application of that system; it is up to the author/donor to decide if he or
she is willing to distribute software through any other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the rest of this License.

8. If the distribution and/or use of the Program is restricted in certain countries either by patents or by copyrighted interfaces,
the original copyright holder who places the Program under this License may add an explicit geographical distribution limitation
excluding those countries, so that distribution is permitted only in or among countries not thus excluded. In such case, this
License incorporates the limitation as if written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the General Public License from time to time. Such
new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a version number of this License which applies to
it and "any later version", you have the option of following the terms and conditions either of that version or of any later version
published by the Free Software Foundation. If the Program does not specify a version number of this License, you may choose
any version ever published by the Free Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs whose distribution conditions are different, write to
the author to ask for permission. For software which is copyrighted by the Free Software Foundation, write to the Free Software
Foundation; we sometimes make exceptions for this. Our decision will be guided by the two goals of preserving the free status of
all derivatives of our free software and of promoting the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR THE PROGRAM, TO THE
EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS
AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU.
SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR
CORRECTION.

-17/512 - Copyright © 2008 - 2024 ProcessOne

How to Apply These Terms to Your New Programs

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER,
OR ANY OTHER PARTY WHO MAY MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO
YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF
THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING
RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO
OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public, the best way to achieve this is to
make it free software which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the start of each source file to most effectively
convey the exclusion of warranty; and each file should have at least the "copyright" line and a pointer to where the full notice is
found.

one line to give the program's name and an idea of what it does.
Copyright (C) yyyy name of author

This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License

as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.

Also add information on how to contact you by electronic and paper mail.
If the program is interactive, make it output a short notice like this when it starts in an interactive mode:

Gnomovision version 69, Copyright (C) year name of author

Gnomovision comes with ABSOLUTELY NO WARRANTY; for details
type “show w'. This is free software, and you are welcome
to redistribute it under certain conditions; type “show c'
for details.

The hypothetical commands “show w' and “show c' should show the appropriate parts of the General Public License. Of course,
the commands you use may be called something other than "show w' and "show c'; they could even be mouse-clicks or menu
items--whatever suits your program.

You should also get your employer (if you work as a programmer) or your school, if any, to sign a "copyright disclaimer" for the
program, if necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright
interest in the program “Gnomovision'

(which makes passes at compilers) written

by James Hacker.

signature of Ty Coon, 1 April 1989

Ty Coon, President of Vice

This General Public License does not permit incorporating your program into proprietary programs. If your program is a
subroutine library, you may consider it more useful to permit linking proprietary applications with the library. If this is what you
want to do, use the GNU Lesser General Public License instead of this License.

- 18/512 - Copyright © 2008 - 2024 ProcessOne

https://www.gnu.org/licenses/lgpl-3.0.html

Security Policy

Security Policy

Supported Versions

We recommend that all users always use the latest version of ejabberd.

To ensure the best experience and security, upgrade to the latest version available on this repo.

Reporting a Vulnerability

Private Reporting

Preferred Method: Use GitHub's private vulnerability reporting system by clicking the "Report a Vulnerability" button in the
Security tab of this repository. This ensures your report is securely transmitted and tracked.

Alternative: If you cannot use the GitHub system, send an email to contact@process-one.net with the following details:

* A clear description of the vulnerability.
* Steps to reproduce the issue.

* Any potential impact or exploitation scenarios.

Response Time

We aim to acknowledge receipt of your report within 72 hours. You can expect regular updates on the status of your report.

Resolution

If the vulnerability is confirmed, we will work on a patch or mitigation strategy.
We will notify you once the issue is resolved and coordinate a public disclosure if needed.

Acknowledgements

We value and appreciate the contributions of security researchers and community members.
If you wish, we are happy to acknowledge your efforts publicly by listing your name (or alias) below in this document.
Please let us know if you would like to be recognized when reporting the vulnerability.

Public Discussion

For general inquiries or discussions about the project’s security, feel free to chat with us here:

* XMPP room: ejabberd@conference.process-one.net

¢ GitHub Discussions

However, please note that if the issue is critical or potentially exploitable, do not share it publicly. Instead, we strongly
recommend you contact the maintainers directly via the private reporting methods outlined above to ensure a secure and timely

response.

Thank you for helping us improve the security of ejabberd!

-19/512 - Copyright © 2008 - 2024 ProcessOne

https://github.com/processone/ejabberd
https://github.com/processone/ejabberd/security
https://github.com/processone/ejabberd/discussions

Glossary

Glossary

ad-hoc command

admin account

api command

bosh

° c2s

command

convert

cookie
* eBE
e eCS

ejabberdctl

epmd

erlang

erlang node
. lq
. jid

mnesia

* muc

node

omemo

e otp

presence

pubsub

roster

* 525

stanza

update

upgrade

vCard

vhost

osh

Bidirectional-streams Over Synchronous HTTP: an extension for XMPP defined in XEP-0124 that allows long lived connections for
XMPP over HTTP. See mod bosh.

-20/512 - Copyright © 2008 - 2024 ProcessOne

https://xmpp.org/about/technology-overview/#bosh
https://xmpp.org/extensions/xep-0124.html

Glossary

lnmand

May refer to:

¢ ad-hoc command
¢ API command

¢ shell command

ejabberd Business Edition. See Options to use ejabberd

ejabberd Community Server, see Options to use ejabberd

-ang

Erlang is a programming language used to build massively scalable soft real-time systems with requirements on high availability. Some
of its uses are in telecoms, banking, e-commerce, computer telephony and instant messaging. Erlang's runtime system has built-in
support for concurrency, distribution and fault tolerance.

Stanza that provides a structured request-response mechanism.

Jabber ID is a unique identifier for an entity in the XMPP network (like a server, a service, an account, a chat room, ...). It consists of
three parts: a local part, a domain part, and an optional resource part, formatted as localpart@domain/resource .

!esia

Mnesia is a distributed database specifically designed for industrial-grade telecommunications applications written in Erlang. It is used
by default in ejabberd as it requires no initial configuration. However, for large volumes of data, it is recommended to setup a SQL
database.

M.

Multi-User Chat, an extension for XMPP defined in XEP-0045 for multi-party information exchange whereby multiple users can
exchange messages in the context of a chat room. See mod muc.

-21/512 - Copyright © 2008 - 2024 ProcessOne

https://www.erlang.org/
https://xmpp.org/rfcs/rfc6122.html
https://www.erlang.org/doc/apps/mnesia/mnesia_chap1.html
https://xmpp.org/about/technology-overview/#muc
https://xmpp.org/extensions/xep-0045.html

Glossary

W

May refer to:

¢ disco node, see mod disco

 erlang node

* pubsub node, see mod pubsub

Weoo

OMEMO is an extension for XMPP defined in XEP-0384 that allows end-to-end encryption between clients.

Open Telecom Platform is a set of Erlang libraries and design principles providing middle-ware to develop these systems. It includes its
own distributed database, applications to interface towards other languages, debugging and release handling tools.

-ysence

Stanza that provides information about network availability of an account (online, away, offline, ...).

!JSllb

Publish-Subscribe, an extension for XMPP defined in XEP-0060 for for generic publish-subscribe functionality. See mod pubsub.

uter

A list of contacts of an account, which is stored on the server, used to manage presence.

.

XMPP packet of type message, presence or I1Q.

.nd

Virtual Card, an extension for XMPP defined in XEP-0054 that allows to publish contact information like name, email, phone number,
address, etc. See mod vcard.

W

Virtual Host, a domain name served by ejabberd that corresponds to a XMPP Domain.

lpp

Extensible Messaging and Presence Protocol: an open protocol based in XML for real-time communications.

-22/512 - Copyright © 2008 - 2024 ProcessOne

https://xmpp.org/extensions/xep-0384.html
https://www.erlang.org/
https://xmpp.org/about/technology-overview/#pubsub
https://xmpp.org/extensions/xep-0060.html
https://xmpp.org/extensions/xep-0054.html
https://xmpp.org/about/technology-overview/

Readme

Readme

(é) ProcessOne

eJabbrd

Community Server
open-source, robust, scalable and extensible real-time platform
HMPP server + MOTT broker + SIP service

@v26.02 hex v26.1.0 | homebrew v26.01 ecs v26.02 ejabberd v26.02
Cl [passing | coverage 34% | translated 61% | docs v26.02

ejabberd is an open-source, robust, scalable and extensible realtime platform built using Erlang/OTP, that includes XMPP Server,
MQTT Broker and SIP Service.

Check the features in ejabberd.im, ejabberd Docs, ejabberd at ProcessOne, and the list of supported protocols in ProcessOne and
XMPP.org.

Installation

There are several ways to install ejabberd:

* Source code: compile yourself, see COMPILE

* Installers:

* ProcessOne Download Page or GitHub Releases for releases.

e GitHub Actions for master branch (run/deb/rpm for x64 and arme4)

* Docker Containers:

* ecs container image: Docker Hub and Github Packages, see ecs README (for x64)

* ejabberd container image: Github Packages for releases and master branch, see CONTAINER (for x64 and arme4)
» Using your Operating System package

» Using the Homebrew package manager

More info can be found in the installation part of ejabberd Docs.

Documentation
Please check the ejabberd Docs website.

When compiling from source code, you can get some help with:

./configure --help
make help

Once ejabberd is installed, try:

ejabberdctl help
man ejabberd.yml

-23/512 - Copyright © 2008 - 2024 ProcessOne

https://github.com/processone/ejabberd/tags
https://github.com/processone/ejabberd/tags
https://hex.pm/packages/ejabberd
https://hex.pm/packages/ejabberd
https://formulae.brew.sh/formula/ejabberd
https://formulae.brew.sh/formula/ejabberd
https://hub.docker.com/r/ejabberd/ecs/
https://hub.docker.com/r/ejabberd/ecs/
https://github.com/processone/ejabberd/pkgs/container/ejabberd
https://github.com/processone/ejabberd/pkgs/container/ejabberd
https://github.com/processone/ejabberd/actions/workflows/ci.yml
https://github.com/processone/ejabberd/actions/workflows/ci.yml
https://coveralls.io/github/processone/ejabberd?branch=master
https://coveralls.io/github/processone/ejabberd?branch=master
https://hosted.weblate.org/projects/ejabberd/ejabberd-po/
https://hosted.weblate.org/projects/ejabberd/ejabberd-po/
https://docs.ejabberd.im/
https://docs.ejabberd.im/
https://www.ejabberd.im/
https://www.erlang.org/
https://xmpp.org/
https://mqtt.org/
https://en.wikipedia.org/wiki/Session_Initiation_Protocol
https://www.ejabberd.im/
https://docs.ejabberd.im/admin/introduction/
https://www.process-one.net/ejabberd/
https://www.process-one.net/ejabberd-features/
https://xmpp.org/software/servers/ejabberd/
https://www.process-one.net/download/ejabberd/
https://github.com/processone/ejabberd/releases
https://github.com/processone/ejabberd/actions/workflows/installers.yml
https://hub.docker.com/r/ejabberd/ecs/
https://github.com/processone/docker-ejabberd/pkgs/container/ecs
https://github.com/processone/docker-ejabberd/tree/master/ecs#readme
https://github.com/processone/ejabberd/pkgs/container/ejabberd
https://docs.ejabberd.im/admin/install/os-package/
https://docs.ejabberd.im/admin/install/homebrew/
https://docs.ejabberd.im/admin/install/
https://docs.ejabberd.im

Development

Development

Bug reports and features are tracked using GitHub Issues, please check CONTRIBUTING for details.
Translations can be improved online using Weblate or in your local machine as explained in Localization.
Documentation for developers is available in ejabberd docs: Developers.

There are nightly builds of ejabberd, both for master branch and for Pull Requests:

* Installers: go to GitHub Actions: Installers, open the most recent commit, on the bottom of that commit page, download the
ejabberd-packages.zip artifact.

* ejabberd container image: go to ejabberd Github Packages

Security reports or concerns should preferably be reported privately, please send an email to the address: contact at process-one
dot net or some other method from ProcessOne Contact.

For commercial offering and support, including ejabberd Business Edition and Fluux (ejabberd in the Cloud), please check
ProcessOne ejabberd page.

Security

For information on how to report security vulnerabilities, please refer to the SECURITY.md file. It contains guidelines on how to
report vulnerabilities privately and securely, ensuring that any issues are addressed in a timely and confidential manner.

Community

There are several places to get in touch with other ejabberd developers and administrators:
* ejabberd XMPP chatroom: ejabberd@conference.process-one.net

* GitHub Discussions

» Stack Overflow

License

* ejabberd is released under the GNU General Public License v2 (see COPYING)

* ejabberd translations under MIT License.

-24/512 - Copyright © 2008 - 2024 ProcessOne

https://github.com/processone/ejabberd/issues
https://hosted.weblate.org/projects/ejabberd/ejabberd-po/
https://docs.ejabberd.im/developer/extending-ejabberd/localization/
https://docs.ejabberd.im/developer/
https://github.com/processone/ejabberd/actions/workflows/installers.yml
https://github.com/processone/ejabberd/pkgs/container/ejabberd
https://www.process-one.net/contact/
https://www.process-one.net/ejabberd/
https://fluux.io/
https://www.process-one.net/ejabberd/
xmpp:ejabberd@conference.process-one.net
https://github.com/processone/ejabberd/discussions
https://stackoverflow.com/questions/tagged/ejabberd?sort=newest
https://github.com/processone/ejabberd-po/

Install

Install

Installation

There are several ways to install ejabberd Community Server, depending on your needs and your infrastructure.

Self-hosted

Container Images

e ejabberd and ecs Container Images - Ideal for Windows, macOS, Linug, ...

Binary Installers

e Linux RUN Installer - Suitable for various Linux distributions

* Linux DEB and RPM Installers - Specifically for DEB and RPM based Linux

Linux and *BSD

* Operating System Package - Tailored for System Operators

MacOS

* Homebrew - Optimized for MacOS

Source Code

e Source Code - Geared towards developers and advanced administrators

On-Premise (eBE)

* ejabberd Business Edition - Explore professional support and managed services on your infrastructure

Cloud Hosting (Fluux)

e Fluux.io - Opt for ejabberd hosting with a user-friendly web dashboard

-25/512 - Copyright © 2008 - 2024 ProcessOne

https://www.process-one.net/ejabberd/
https://fluux.io

ejabberd Container Images

@v26.02 ejabberd v26.02 ecs v26.02

ejabberd Container Images

ejabberd is an open-source, robust, scalable and extensible realtime platform built using Erlang/OTP, that includes XMPP Server,
MQTT Broker and SIP Service.

This page documents those container images (images comparison):

° ejabberd

published in ghcr.io/processone/ejabberd, built using ejabberd repository, both for stable ejabberd releases and the master
branch, in x64 and arm64 architectures.

° ecs

published in docker.io/ejabberd/ecs, built using docker-ejabberd/ecs repository for ejabberd stable releases in x64
architectures.

For Microsoft Windows, see Docker Desktop for Windows 10, and Docker Toolbox for Windows 7.

For Kubernetes Helm, see help-ejabberd.

Start ejabberd
daemon
Start ejabberd in a new container:
docker run --name ejabberd -d -p 5222:5222 ghcr.io/processone/ejabberd
That runs the container as a daemon, using ejabberd default configuration file and XMPP domain localhost .
Restart the stopped ejabberd container:

docker restart ejabberd
Stop the running container:
docker stop ejabberd

Remove the ejabberd container:

docker rm ejabberd

with Erlang console
Start ejabberd with an interactive Erlang console attached using the live command:

docker run --name ejabberd -it -p 5222:5222 ghcr.io/processone/ejabberd live

That uses the default configuration file and XMPP domain localhost .

with your data

Pass a configuration file as a volume and share the local directory to store database:

mkdir conf && cp ejabberd.yml.example conf/ejabberd.yml

mkdir database && chown ejabberd database

-26/512 - Copyright © 2008 - 2024 ProcessOne

https://github.com/processone/ejabberd/tags
https://github.com/processone/ejabberd/tags
https://github.com/processone/ejabberd/pkgs/container/ejabberd
https://github.com/processone/ejabberd/pkgs/container/ejabberd
https://hub.docker.com/r/ejabberd/ecs/
https://hub.docker.com/r/ejabberd/ecs/
https://www.ejabberd.im/
https://www.erlang.org/
https://xmpp.org/
https://mqtt.org/
https://en.wikipedia.org/wiki/Session_Initiation_Protocol
https://github.com/processone/ejabberd/pkgs/container/ejabberd
https://github.com/processone/ejabberd/pkgs/container/ejabberd
https://github.com/processone/ejabberd/pkgs/container/ejabberd
https://github.com/processone/ejabberd/tree/master/.github/container
https://hub.docker.com/r/ejabberd/ecs/
https://hub.docker.com/r/ejabberd/ecs/
https://hub.docker.com/r/ejabberd/ecs/
https://github.com/processone/docker-ejabberd/tree/master/ecs
https://www.process-one.net/blog/install-ejabberd-on-windows-10-using-docker-desktop/
https://www.process-one.net/blog/install-ejabberd-on-windows-7-using-docker-toolbox/
https://github.com/sando38/helm-ejabberd

Next steps

docker run --name ejabberd -it \
-v $(pwd)/conf/ejabberd.yml:/opt/ejabberd/conf/ejabberd.yml \
-v $(pwd)/database:/opt/ejabberd/database \
-p 5222:5222 ghcr.io/processone/ejabberd live

Notice that ejabberd runs in the container with an account named ejabberd with UID 9000 and group ejabberd with GID 9000,
and the volumes you mount must grant proper rights to that account.

Next steps

Register admin account

ejabberd

If you set the REGISTER_ADMIN_PASSWORD environment variable, an account is automatically registered with that password, and
admin privileges are granted to it. The account created depends on what variables you have set:

* EJABBERD_MACRO_ADMIN=juliet@example.org -> juliet@example.org

* EJABBERD_MACRO_HOST=example.org -> admin@example.org

¢ None of those variables are set -> admin@localhost
The account registration is shown in the container log:

$ podman run -it \
--env EJABBERD_MACRO_HOST=example.org \
--env EJABBERD_MACRO_ADMIN=juliet@example.org \
--env REGISTER_ADMIN_PASSWORD=somePasswOrd \
ghcr.io/processone/ejabberd

:> ejabberdctl register juliet example.org somePasswoOrd
User juliet@example.org successfully registered

This is implemented internally by using Commands on start.

Alternatively, you can register the account manually yourself and edit conf/ejabberd.yml and add the ACL as explained in
ejabberd Docs: Administration Account.

ecs

The default ejabberd configuration has already granted admin privilege to an account that would be called admin@localhost, so
you just need to register it, for example:

docker exec -it ejabberd ejabberdctl register admin localhost passwoOrd

Check ejabberd log

Check the content of the log files inside the container, even if you do not put it on a shared persistent drive:

docker exec -it ejabberd tail -f logs/ejabberd.log

Inspect container files

The container uses Alpine Linux. Start a shell inside the container:

docker exec -it ejabberd sh

Open debug console

Open an interactive debug Erlang console attached to a running ejabberd in a running container:

docker exec -it ejabberd ejabberdctl debug

-27/512 - Copyright © 2008 - 2024 ProcessOne

https://github.com/processone/ejabberd/pkgs/container/ejabberd
https://github.com/processone/ejabberd/pkgs/container/ejabberd
https://docs.ejabberd.im/admin/install/next-steps/#administration-account
https://hub.docker.com/r/ejabberd/ecs/
https://hub.docker.com/r/ejabberd/ecs/

Advanced

CAPTCHA
ejabberd includes two example CAPTCHA scripts. If you want to use any of them, first install some additional required libraries:

docker exec --user root ejabberd apk add imagemagick ghostscript-fonts bash

Now update your ejabberd configuration file, for example:

docker exec -it ejabberd vi conf/ejabberd.yml

and add this option:

captcha_cmd: "$HOME/bin/captcha.sh"

Finally, reload the configuration file or restart the container:

docker exec ejabberd ejabberdctl reload_config

If the CAPTCHA image is not visible, there may be a problem generating it (the ejabberd log file may show some error message);
or the image URL may not be correctly detected by ejabberd, in that case you can set the correct URL manually, for example:

captcha_url: https://localhost:5443/captcha

For more details about CAPTCHA options, please check the CAPTCHA documentation section.

Advanced

Ports
The container image exposes several ports (check also Docs: Firewall Settings):

e 5222 : The default port for XMPP clients.

* 5269 : For XMPP federation. Only needed if you want to communicate with users on other servers.

* 5280 : For admin interface (URL is admin/).

* 5443 : With encryption, used for admin interface, API, CAPTCHA, OAuth, Websockets and XMPP BOSH.
* 1880 : For admin interface (URL is /, useful for podman-desktop and docker-desktop)

e 1883 : Used for MQTT

* 5478 UDP: STUN service

* 50000-50099 UDP: TURN service

e 7777 : SOCKS?5 file transfer proxy

e 5210 : Erlang connectivity when ERL_DIST_PORT is set, alternative to EPMD -

* 4369-4399 : EPMD and Erlang connectivity, used for ejabberdctl and clustering

Volumes

ejabberd produces two types of data: log files and database spool files (Mnesia). This is the kind of data you probably want to
store on a persistent or local drive (at least the database).

The volumes you may want to map:

* /opt/ejabberd/conf/ : Directory containing configuration and certificates

* /opt/ejabberd/database/ : Directory containing Mnesia database. You should back up or export the content of the directory to
persistent storage (host storage, local storage, any storage plugin)

* /opt/ejabberd/logs/ : Directory containing log files

* /opt/ejabberd/upload/ : Directory containing uploaded files. This should also be backed up.

- 28/512 - Copyright © 2008 - 2024 ProcessOne

https://docs.ejabberd.im/admin/configuration/basic/#captcha
https://docs.ejabberd.im/admin/guide/security/#firewall-settings
https://podman-desktop.io/
https://www.docker.com/products/docker-desktop/

Advanced

All these files are owned by an account named ejabberd with group ejabberd in the container. Its corresponding UID:GID is
9000:9000 . If you prefer bind mounts instead of volumes, then you need to map this to valid uip:6Ip on your host to get read/
write access on mounted directories.

If using Docker, try:

mkdir database
sudo chown 9000:9000 database

If using Podman, try:

mkdir database
podman unshare chown 9000:9000 database

It's possible to install additional ejabberd modules using volumes, check this Docs tutorial.

Commands on start

The ejabberdctl script reads the cTL_oN_CREATE environment variable the first time the container is started, and reads
CTL_ON_START every time the container is started. Those variables can contain one ejabberdctl command, or several commands
separated with the blankspace and ; characters.

If any of those commands returns a failure, the container starting gets aborted. If there is a command with a result that can be
ignored, prefix that command with !

All this works when starting ejabberd with the default method foreground, not when using live, iexlive, ...

This example registers an admin@localhost account when the container is first created. Everytime the container starts, it shows
the list of registered accounts, checks that the admin account exists and password is valid, changes the password of an account if
it exists (ignoring any failure), and shows the ejabberd starts (check also the full example):

environment:
- CTL_ON_CREATE=register admin localhost asd
- CTL_ON_START=stats registeredusers ;
check_password admin localhost asd ;
! change_password bot123 localhost qqq ;
status

Same example using Podman:

$ podman run -it \
--env CTL_ON_CREATE="register admin localhost asd" \
--env CTL_ON_START="stats registeredusers ; \
check_password admin localhost asd ; \
! change_password bot123 localhost qqq ; \
status" \
ghcr.io/processone/ejabberd

:> ejabberdctl register admin localhost asd
User admin@localhost successfully registered

1> ejabberdctl stats registeredusers
1

:> ejabberdctl check_password admin localhost asd

:> ejabberdctl change_password bot123 localhost qqq

{not_found, "unknown_user"}

:> FAILURE in command 'change_password bot123 localhost gqq' !!! Ignoring result
:> ejabberdctl status

The node ejabberd@localhost is started. Status: started
ejabberd 25.10.0 is running in that node

Macros in environment

ejabberd reads EJABBERD_MACRO_* environment variables and uses them to define the corresponding macros, overwriting the
corresponding macro definition if it was set in the configuration file. This is supported since ejabberd 24.12.

- 29/512 - Copyright © 2008 - 2024 ProcessOne

https://docs.ejabberd.im/developer/extending-ejabberd/modules/#your-module-in-ejabberd-modules-with-ejabberd-container
https://docs.ejabberd.im/admin/configuration/file-format/#macros-in-configuration-file

Advanced

For example, if you configure this in ejabberd.yml:

acl:
admin:
user: ADMIN

now you can define the admin account JID using an environment variable:

environment:
- EJABBERD_MACRO_ADMIN=admin@localhost

Check the full example for other example.

ejabberd-contrib
This section addresses those topics related to ejabberd-contrib:

* Download source code
¢ Install a module
* Install git for dependencies

¢ Install your module

DOWNLOAD SOURCE CODE
The ejabberd container image includes the ejabberd-contrib git repository source code, but ecs does not, so first download it:
$ docker exec ejabberd ejabberdctl modules_update_specs

INSTALL A MODULE
Compile and install any of the contributed modules, for example:

docker exec ejabberd ejabberdctl module_install mod_statsdx

Module mod_statsdx has been installed and started.

It's configured in the file:
/opt/ejabberd/.ejabberd-modules/mod_statsdx/conf/mod_statsdx.yml

Configure the module in that file, or remove it

and configure in your main ejabberd.yml

INSTALL GIT FOR DEPENDENCIES

Some modules depend on erlang libraries, but the container images do not include git or mix to download them. Consequently,
when you attempt to install such a module, there will be error messages like:

docker exec ejabberd ejabberdctl module_install ejabberd_observer_cli

I'll download "recon" using git because I can't use Mix to fetch from hex.pm:
/bin/sh: mix: not found

Fetching dependency observer_cli:
/bin/sh: git: not found

the solution is to install git in the container image:

docker exec --user root ejabberd apk add git

fetch https://dl-cdn.alpinelinux.org/alpine/v3.21/main/x86_64/APKINDEX. tar.gz
fetch https://dl-cdn.alpinelinux.org/alpine/v3.21/community/x86_64/APKINDEX.tar.gz
(1/3) Installing pcre2 (10.43-r0)

(2/3) Installing git (2.47.2-r0)

(3/3) Installing git-init-template (2.47.2-r0)

Executing busybox-1.37.0-r12.trigger

OK: 27 MiB in 42 packages

and now you can upgrade the module:

docker exec ejabberd ejabberdctl module_upgrade ejabberd_observer_cli

I'll download "recon" using git because I can't use Mix to fetch from hex.pm:

-30/512 - Copyright © 2008 - 2024 ProcessOne

https://docs.ejabberd.im/admin/guide/modules/#ejabberd-contrib

Advanced

/bin/sh: mix: not found

Fetching dependency observer_cli: Cloning into 'observer_cli'...

Fetching dependency os_stats: Cloning into 'os_stats'...

Fetching dependency recon: Cloning into 'recon'...

Inlining: inline_size=24 inline_effort=150

0ld inliner: threshold=0 functions=[{insert,2}, {merge,2}]

Module ejabberd_observer_cli has been installed.

Now you can configure it in your ejabberd.yml

I'll download "recon" using git because I can't use Mix to fetch from hex.pm:
/bin/sh: mix: not found

INSTALL YOUR MODULE

If you developed an ejabberd module, you can install it in your container image:

1. Create a local directory for ejabberd-modules :

mkdir docker-modules

2. Then create the directory structure for your custom module:

cd docker-modules

mkdir -p sources/mod_hello_world/
touch sources/mod_hello_world/mod_hello_world.spec

mkdir sources/mod_hello_world/src/
mv mod_hello_world.erl sources/mod_hello_world/src/

mkdir sources/mod_hello_world/conf/
echo -e "modules:\n mod_hello_world: {}" > sources/mod_hello_world/conf/mod_hello_world.yml

cd ..

3. Grant ownership of that directory to the UID that ejabberd will use inside the Docker image:

sudo chown 9000 -R docker-modules/

4. Start ejabberd in the container:

sudo docker run \
--name hellotest \
-d \
--volume "$(pwd)/docker-modules:/home/ejabberd/.ejabberd-modules/" \
-p 5222:5222 \
-p 5280:5280 \
ejabberd/ecs

5. Check the module is available for installing, and then install it:

sudo docker exec -it hellotest ejabberdctl modules_available
mod_hello_world []

sudo docker exec -it hellotest ejabberdctl module_install mod_hello_world

6. If the module works correctly, you will see Hello in the ejabberd logs when it starts:

sudo docker exec -it hellotest grep Hello logs/ejabberd.log
2020-10-06 13:40:13.154335+00:00 [info]
<0.492.0>@mod_hello_world:start/2:15 Hello, ejabberd world!

ejabberdapi

When the container is running (and thus ejabberd), you can exec commands inside the container using ejabberdctl or any other
of the available interfaces, see Understanding ejabberd "commands"

Additionally, the container image includes the ejabberdapi executable. Please check the ejabberd-api homepage for configuration
and usage details.

For example, if you configure ejabberd like this:

listen:

port: 5282
module: ejabberd_http
request_handlers:

-31/512 - Copyright © 2008 - 2024 ProcessOne

https://docs.ejabberd.im/developer/extending-ejabberd/modules/
https://docs.ejabberd.im/developer/ejabberd-api/#understanding-ejabberd-commands
https://github.com/processone/ejabberd-api

"/api": mod_http_api

acl
loopback:
ip:
- 127.0.0.0/8
- ::11/128
- ::FFFF:127.0.0.1/128

api_permissions:
"admin access":
who:
access:
allow:
acl: loopback
what:
- "register"

Then you could register new accounts with this query:

docker exec -it ejabberd ejabberdapi register --endpoint=http://127.0.0.1:5282/ --jid=admin@localhost --password=password

Clustering

Advanced

When setting several containers to form a cluster of ejabberd nodes, each one must have a different Erlang Node Name and the

same Erlang Cookie.
For this you can either:

e edit conf/ejabberdctl.cfg and set variables ERLANG_NODE and ERLANG_COOKIE

e set the environment variables ERLANG_NODE_ARG and ERLANG_COOKIE

Example to connect a local ejabberdctl to a containerized ejabberd:
1. When creating the container, export port 5210, and set ERLANG_COOKIE :

docker run --name ejabberd -it \
-e ERLANG_COOKIE="cat $HOME/.erlang.cookie’ \
-p 5210:5210 -p 5222:5222 \
ghcr.io/processone/ejabberd

2. Set ERL_DIST_PORT=5210 in ejabberdctl.cfg of container and local ejabberd
3. Restart the container

4. Now use ejabberdctl in your local ejabberd deployment
To connect using a local ejabberd script:

ERL_DIST_PORT=5210 _build/dev/rel/ejabberd/bin/ejabberd ping

Example using environment variables (see full example docker-compose.yml):

environment:
- ERLANG_NODE_ARG=ejabberd@node7
- ERLANG_COOKIE=dummycookie123

Once you have the ejabberd nodes properly set and running, you can tell the secondary nodes to join the master node using the

join_cluster API call.
Example using environment variables (see the full docker-compose.yml clustering example):

environment:
- ERLANG_NODE_ARG=ejabberd@replica
- ERLANG_COOKIE=dummycookiel23
- CTL_ON_CREATE=join_cluster ejabberd@main

-32/512 -

Copyright © 2008 - 2024 ProcessOne

https://docs.ejabberd.im/admin/guide/clustering/
https://docs.ejabberd.im/admin/guide/security/#erlang-node-name
https://docs.ejabberd.im/admin/guide/security/#erlang-cookie
https://github.com/processone/docker-ejabberd/issues/64#issuecomment-887741332
https://docs.ejabberd.im/developer/ejabberd-api/admin-api/#join-cluster
https://docs.ejabberd.im/developer/ejabberd-api/admin-api/#join-cluster

Advanced

Change Mnesia Node Name

To use the same Mnesia database in a container with a different hostname, it is necessary to change the old hostname stored in
Mnesia.

This section is equivalent to the ejabberd Documentation Change Computer Hostname, but particularized to containers that use
this ecs container image from ejabberd 23.01 or older.

SETUP OLD CONTAINER

Let's assume a container running ejabberd 23.01 (or older) from this ecs container image, with the database directory binded
and one registered account. This can be produced with:

OLDCONTAINER=ejaold
NEWCONTAINER=ejanew

mkdir database

sudo chown 9000:9000 database

docker run -d --name $OLDCONTAINER -p 5222:5222 \
-v $(pwd)/database:/opt/ejabberd/database \
ghcr.io/processone/ejabberd:23.01

docker exec -it $OLDCONTAINER ejabberdctl started

docker exec -it $OLDCONTAINER ejabberdctl register userl localhost somepass

docker exec -it $OLDCONTAINER ejabberdctl registered_users localhost

Methods to know the Erlang node name:

1s database/ | grep ejabberd@
docker exec -it $OLDCONTAINER ejabberdctl status
docker exec -it $OLDCONTAINER grep "started in the node" logs/ejabberd.log

CHANGE MNESIA NODE
First of all let's store the Erlang node names and paths in variables. In this example they would be:

OLDCONTAINER=ejaold

NEWCONTAINER=ejanew
OLDNODE=ejabberd@95145ddee27c
NEWNODE=ejabberd@localhost
OLDFILE=/opt/ejabberd/database/old.backup
NEWFILE=/opt/ejabberd/database/new.backup

-33/512 - Copyright © 2008 - 2024 ProcessOne

https://docs.ejabberd.im/admin/guide/managing/#change-computer-hostname

Advanced

. Start your old container that can still read the Mnesia database correctly. If you have the Mnesia spool files, but don't have access
to the old container anymore, go to Create Temporary Container and later come back here.

. Generate a backup file and check it was created:

docker exec -it $OLDCONTAINER ejabberdctl backup $OLDFILE
1s -1 database/*.backup

. Stop ejabberd:

docker stop $OLDCONTAINER

. Create the new container. For example:

docker run \
--name $NEWCONTAINER \
-d \
-p 5222:5222 \
-v $(pwd)/database:/opt/ejabberd/database \
ghcr.io/processone/ejabberd: latest

. Convert the backup file to new node name:

docker exec -it $NEWCONTAINER ejabberdctl mnesia_change_nodename $OLDNODE $NEWNODE $OLDFILE $NEWFILE
. Install the backup file as a fallback:

docker exec -it $NEWCONTAINER ejabberdctl install_fallback $NEWFILE
. Restart the container:

docker restart $NEWCONTAINER

. Check that the information of the old database is available. In this example, it should show that the account user1 is registered:

docker exec -it $NEWCONTAINER ejabberdctl registered_users localhost

. When the new container is working perfectly with the converted Mnesia database, you may want to remove the unneeded files: the
old container, the old Mnesia spool files, and the backup files.

CREATE TEMPORARY CONTAINER

In case the old container that used the Mnesia database is not available anymore, a temporary container can be created just to
read the Mnesia database and make a backup of it, as explained in the previous section.

This method uses --hostname command line argument for docker, and ERLANG_NODE_ARG environment variable for ejabberd. Their
values must be the hostname of your old container and the Erlang node name of your old ejabberd node. To know the Erlang
node name please check Setup Old Container.

Command line example:

OLDHOST=${OLDNODE#*@}
docker run \
-d \
--name $OLDCONTAINER \
--hostname $OLDHOST \
-p 5222:5222 \
-v $(pwd)/database:/opt/ejabberd/database \
-e ERLANG_NODE_ARG=$0LDNODE \
ghcr.io/processone/ejabberd: latest

Check the old database content is available:

docker exec -it $OLDCONTAINER ejabberdctl registered_users localhost

Now that you have ejabberd running with access to the Mnesia database, you can continue with step 2 of previous section
Change Mnesia Node.

- 34/512 - Copyright © 2008 - 2024 ProcessOne

Build Container Image

Build Container Image

The container image includes ejabberd as a standalone OTP release built using Elixir.

Build ejabberd ejabberd

The ejabberd Erlang/OTP release is configured with:

* mix.exs : Customize ejabberd release
e vars.config: ejabberd compilation configuration options
e config/runtime.exs : Customize ejabberd paths

* ejabberd.yml.template : ejabberd default config file

DIRECT BUILD
Build ejabberd Community Server container image from ejabberd master git repository:

docker buildx build \
-t personal/ejabberd \
-f .github/container/Dockerfile \

PODMAN BUILD
Some minor remarks:

e When building, it mentions that healthcheck is not supported by the Open Container Initiative image format

» To start with command 1live, you may want to add environment variable EJABBERD_BYPASS_WARNINGS=true

podman build \
-t ejabberd \
-f .github/container/Dockerfile \

podman run --name ejal -d -p 5222:5222 localhost/ejabberd
podman exec ejal ejabberdctl status

podman exec -it ejal sh

podman stop ejal

podman run --name ejal -it -e EJABBERD_BYPASS_WARNINGS=true -p 5222:5222 localhost/ejabberd live

Build ecs ecs

The ejabberd Erlang/OTP release is configured with:

e rel/config.exs: Customize ejabberd release

e rel/dev.exs : ejabberd environment configuration for development release
* rel/prod.exs : ejabberd environment configuration for production release
e vars.config: ejabberd compilation configuration options

* conf/ejabberd.yml : ejabberd default config file

Build ejabberd Community Server base image from ejabberd master on Github:
docker build -t personal/ejabberd .

Build ejabberd Community Server base image for a given ejabberd version:

./build.sh 18.03

-35/512 - Copyright © 2008 - 2024 ProcessOne

https://github.com/processone/ejabberd/pkgs/container/ejabberd
https://github.com/processone/ejabberd/pkgs/container/ejabberd
https://hub.docker.com/r/ejabberd/ecs/
https://hub.docker.com/r/ejabberd/ecs/

Composer Examples

Composer Examples

Minimal Example
This is the barely minimal file to get a usable ejabberd.
If using Docker, write this docker-compose.yml file and start it with docker-compose up :

services:
main:

image: ghcr.io/processone/ejabberd
container_name: ejabberd
ports:

"5222:5222"

"5269:5269"

- "5280:5280"

- "5443:5443"

If using Podman, write this minimal.yml file and start it with podman kube play minimal.yml:

apivVersion: vi1
kind: Pod

metadata:
name: ejabberd

spec:
containers:

- name: ejabberd

image: ghcr.io/processone/ejabberd

ports:

- containerPort: 5222
hostPort: 5222

- containerPort: 5269
hostPort: 5269

- containerPort: 5280
hostPort: 5280

- containerPort: 5443
hostPort: 5443

Customized Example

This example shows the usage of several customizations: it uses a local configuration file, defines a configuration macro using an
environment variable, stores the mnesia database in a local path, registers an account when it's created, and checks the number
of registered accounts every time it's started.

Prepare an ejabberd configuration file:

mkdir conf && cp ejabberd.yml.example conf/ejabberd.yml

Create the database directory and allow the container access to it:
* Docker:

mkdir database && sudo chown 9000:9000 database

¢ Podman:

mkdir database && podman unshare chown 9000:9000 database

If using Docker, write this docker-compose.yml file and start it with docker-compose up :

version: '3.7'
services:

main:
image: ghcr.io/processone/ejabberd
container_name: ejabberd
environment:

- EJABBERD_MACRO_HOST=example.com
EJABBERD_MACRO_ADMIN=admin@example.com
REGISTER_ADMIN_PASSWORD=somePasswOrd
- CTL_ON_START=registered_users example.com ;

-36/512 - Copyright © 2008 - 2024 ProcessOne

Composer Examples

status
ports:
"5222:5222"
- "5269:5269"
- "5280:5280"
- "5443:5443"
volumes:
- ./conf/ejabberd.yml:/opt/ejabberd/conf/ejabberd.yml:ro
- ./database:/opt/ejabberd/database

If using Podman, write this custom.yml file and start it with podman kube play custom.yml:

apiversion: vl
kind: Pod

metadata:
name: ejabberd

spec:
containers:

- name: ejabberd
image: ghcr.io/processone/ejabberd
env:
- name: EJABBERD_MACRO_HOST
value: example.com
- name: EJABBERD_MACRO_ADMIN
value: admin@example.com
- name: REGISTER_ADMIN_PASSWORD
value: somePassword
- name: CTL_ON_START
value: registered_users example.com ;
status
ports:
- containerPort: 5222
hostPort: 5222
- containerPort: 5269
hostPort: 5269
- containerPort: 5280
hostPort: 5280
- containerPort: 5443
hostPort: 5443
volumeMounts:
- mountPath: /opt/ejabberd/conf/ejabberd.yml
name: config
readOnly: true
- mountPath: /opt/ejabberd/database
name: db

volumes:
- name: config
hostPath:
path: ./conf/ejabberd.yml
type: File
- name: db
hostPath:
path: ./database
type: DirectoryOrCreate

Clustering Example

In this example, the main container is created first. Once it is fully started and healthy, a second container is created, and once
ejabberd is started in it, it joins the first one.

An account is registered in the first node when created (and we ignore errors that can happen when doing that - for example
when account already exists), and it should exist in the second node after join.

Notice that in this example the main container does not have access to the exterior; the replica exports the ports and can be
accessed.

If using Docker, write this docker-compose.yml file and start it with docker-compose up :

version: '3.7'
services:

main:
image: ghcr.io/processone/ejabberd
container_name: main
environment:
- ERLANG_NODE_ARG=ejabberd@main
- ERLANG_COOKIE=dummycookiel23
- CTL_ON_CREATE=! register admin localhost asd

-37/512 - Copyright © 2008 - 2024 ProcessOne

Composer Examples

healthcheck:
test: netstat -nl | grep -q 5222
start_period: 5s
interval: 5s
timeout: 5s
retries: 120

replica:
image: ghcr.io/processone/ejabberd
container_name: replica
depends_on:
main:
condition: service_healthy
environment:
- ERLANG_NODE_ARG=ejabberd@replica
- ERLANG_COOKIE=dummycookiel23
- CTL_ON_CREATE=join_cluster ejabberd@main
- CTL_ON_START=registered_users localhost ;
status
ports:
"5222:5222"
"5269:5269"
"5280:5280"
- "5443:5443"

If using Podman, write this cluster.yml file and start it with podman kube play cluster.yml:

apivVersion: vl
kind: Pod

metadata:
name: cluster

spec:
containers:

name: first
image: ghcr.io/processone/ejabberd
env:
- name: ERLANG_NODE_ARG
value: main@cluster
- name: ERLANG_COOKIE
value: dummycookiel23
- name: CTL_ON_CREATE
value: register admin localhost asd
- name: CTL_ON_START
value: stats registeredusers ;

status
- name: EJABBERD_MACRO_PORT_C2S
value: 6222

- name: EJABBERD_MACRO_PORT_C2S_TLS
value: 6223

- name: EJABBERD_MACRO_PORT_S2S
value: 6269

- name: EJABBERD_MACRO_PORT_HTTP_TLS
value: 6443

- name: EJABBERD_MACRO_PORT_HTTP
value: 6280

- name: EJABBERD_MACRO_PORT_MQTT
value: 6883

- name: EJABBERD_MACRO_PORT_PROXY65
value: 6777

volumeMounts:

- mountPath: /opt/ejabberd/conf/ejabberd.yml
name: config
readOnly: true

name: second
image: ghcr.io/processone/ejabberd
env:
name: ERLANG_NODE_ARG
value: replica@cluster
- name: ERLANG_COOKIE
value: dummycookiel23
- name: CTL_ON_CREATE
value: join_cluster main@cluster ;
started ;
list_cluster
- name: CTL_ON_START
value: stats registeredusers ;
check_password admin localhost asd ;
status

ports:
- containerPort: 5222
hostPort: 5222
- containerPort: 5280
hostPort: 5280
volumeMounts:
- mountPath: /opt/ejabberd/conf/ejabberd.yml
name: config
readOnly: true

-38/512 - Copyright © 2008 - 2024 ProcessOne

Composer Examples

volumes:
- name: config
hostPath:
path: ./conf/ejabberd.yml
type: File

-39/512 - Copyright © 2008 - 2024 ProcessOne

Images Comparison

Images Comparison

Let's summarize the differences between both container images. Legend:

e -i%: is the recommended alternative
e (): changed in ejabberd 26.01
e -0t changed in ...

e -0:: changed in ejabberd 25.03

- 40/512 - Copyright © 2008 - 2024 ProcessOne

Source code
Generated by

Built for

Architectures

Software

Published in

[Additional content
ejabberd-contrib
ejabberdapi

[Ports

1880 for WebAdmin
5210 for ERL_DIST_PORT
[Paths

$HOME

User data

ejabberdctl

captcha.sh

*.sql files

Mnesia spool files

[Variables
EJABBERD_MACRO_*
Macros used in ejabberd.yml

EJABBERD_MACRO_ADMIN

REGISTER_ADMIN_PASSWORD

CTL_OVER_HTTP

ejabberd

ejabberd/.github/container
container.yml

stable releases
master branch

linux/amd64

linux/armé64

Erlang/OTP 28.3.1.0-alpine ()
Elixir 1.19.5 @

ghcr.io/processone/ejabberd

included

included

yes

supported

/opt/ejabberd/

$HOME <}¢
/home/ejabberd/

ejabberdctl =%

7~

bin/ejabberdctl
$HOME/bin/captcha.sh

$HOME/sql/*.sql /¢
$HOME/database/*.sql

$HOME/database/ /¢
$HOME/database/NODENAME/

supported
yes

Grant admin rights &
(default admin@localhost)

Register admin account

enabled -

-41/512 -

ecs

docker-ejabberd/ecs
tests.yml

stable releases
master branch zip

linux/amdé4

Alpine 3.22
Erlang/OTP 26.2
Elixir 1.18.3

docker.io/ejabberd/ecs
ghcr.io/processone/ecs

not included

included

yes

supported

/home/ejabberd/

$HOME
/opt/ejabberd/ s}¢

bin/ejabberdctl

ejabberdctl sj¢
$HOME/bin/captcha.sh

$HOME/database/*.sql
$HOME/sql/*.sql i

$HOME/database/NODENAME/

Al

$HOME/database/ /¢

supported
yes

Hardcoded admin@localhost

unsupported

unsupported

Images Comparison

Copyright © 2008 - 2024 ProcessOne

https://github.com/processone/ejabberd/pkgs/container/ejabberd
https://github.com/processone/ejabberd/pkgs/container/ejabberd
https://hub.docker.com/r/ejabberd/ecs/
https://hub.docker.com/r/ejabberd/ecs/
https://github.com/processone/ejabberd/tree/master/.github/container
https://github.com/processone/docker-ejabberd/tree/master/ecs
https://github.com/processone/ejabberd/blob/master/.github/workflows/container.yml
https://github.com/processone/docker-ejabberd/blob/master/.github/workflows/tests.yml
https://github.com/processone/docker-ejabberd/actions/workflows/tests.yml
https://github.com/processone/docker-ejabberd/actions/workflows/tests.yml
https://github.com/processone/ejabberd/pkgs/container/ejabberd
https://hub.docker.com/r/ejabberd/ecs/
https://github.com/processone/docker-ejabberd/pkgs/container/ecs

11.

Binary Installers

Binary Installers

Linux RUN Installer

The *.run binary installer will deploy and configure a full featured ejabberd server and does not require any extra dependencies.
It includes a stripped down version of Erlang. As such, when using ejabberd installer, you do not need to install Erlang
separately.

Those instructions assume installation on localhost for development purposes. In this document, when mentioning ejabberd-
YY.MM, we assume YY.MM is the release number, for example 18.01.

Installation using the *.run binary installer:

. Go to ejabberd GitHub Releases.
. Download the run package for your architecture

. Right-click on the downloaded file and select "Properties", click on the "Permissions" tab and tick the box that says "Allow

executing file as program". Alternatively, you can set the installer as executable using the command line:

chmod +x ejabberd-YY.MM-1-1linux-x64.run

. If the installer runs as superuser (by root or using sudo), it installs ejabberd binaries in /opt/ejabberd-xx.YY/ ; installs your

configuration, Mnesia database and logs in /opt/ejabberd/, and setups an ejabberd service unit in systemd :

sudo ./ejabberd-YY.MM-1-1linux-x64.run

. If the installer runs as a regular user, it asks the base path where ejabberd should be installed. In that case, the ejabberd service

unit is not set in systemd, and systemctl cannot be used to start ejabberd; start it manually.

. After successful installation by root, ejabberd is automatically started. Check its status with

systemctl status ejabberd

. Now that ejabberd is installed and running with the default configuration, it's time to do some basic setup: edit /opt/ejabberd/conf/

ejabberd.yml and setup in the hosts option the domain that you want ejabberd to serve. By default it's set to the name of your
computer on the local network.

. Restart ejabberd completely using systemctl, or using ejabberdctl, or simply tell it to reload the configuration file:

sudo systemctl restart ejabberd
sudo /opt/ejabberd-22.05/bin/ejabberdctl restart
sudo /opt/ejabberd-22.05/bin/ejabberdctl reload_config

. Quite probably you will want to register an account and grant it admin rights, please check Next Steps: Administration Account.

10.

Now you can go to the web dashboard at http://localhost:5280/admin/ and fill the username field with the full account JID, for
example admin@domain (or admin@localhost as above). Then fill the password field with that account's password . The next step is to
get to know how to configure ejabberd.

If something goes wrong during the installation and you would like to start from scratch, you will find the steps to uninstall in the
file /opt/ejabberd-22.05/uninstall.txt .

Linux DEB and RPM Installers

ProcessOne provides DEB and RPM all-in-one binary installers with the same content that the *.run binary installer mentioned
in the previous section.

Those are self-sufficient packages that contain a minimal Erlang distribution, this ensures that it does not interfere with your
existing Erlang version and is also a good way to make sure ejabberd will run with the latest Erlang version.

Those packages install ejabberd in /opt/ejabberd-xx.YY/ . Your configuration, Mnesia database and logs are available in /opt/
ejabberd/ .

-42/512 - Copyright © 2008 - 2024 ProcessOne

https://github.com/processone/ejabberd/releases

Linux DEB and RPM Installers

You can download directly the DEB and RPM packages from ejabberd GitHub Releases.

If you prefer, you can also get those packages from our official ejabberd packages repository.

-43/512 - Copyright © 2008 - 2024 ProcessOne

https://github.com/processone/ejabberd/releases
https://repo.process-one.net

Operating System Packages

Operating System Packages

Many operating systems provide specific ejabberd packages adapted to the system architecture and libraries. They usually also
check dependencies and perform basic configuration tasks like creating the initial administrator account.

List of known ejabberd packages:
¢ Alpine Linux

e Arch Linux

e Debian

» Fedora

* FreeBSD

* Gentoo

* OpenSUSE

* NetBSD

e Ubuntu
Consult the resources provided by your Operating System for more information.

There's also an ejabberd snap to install ejabberd on several operating systems using snap package manager.

-44/512 - Copyright © 2008 - 2024 ProcessOne

https://pkgs.alpinelinux.org/packages?name=ejabberd&branch=edge
https://archlinux.org/packages/extra/x86_64/ejabberd/
https://tracker.debian.org/pkg/ejabberd
https://packages.fedoraproject.org/pkgs/ejabberd/ejabberd/
https://www.freshports.org/net-im/ejabberd/
https://packages.gentoo.org/packages/net-im/ejabberd
https://software.opensuse.org/package/ejabberd
https://pkgsrc.se/chat/ejabberd/
https://packages.ubuntu.com/search?keywords=ejabberd
https://snapcraft.io/ejabberd

Install ejabberd from Source Code

Install ejabberd from Source Code

The canonical distribution form of ejabberd stable releases is the source code package. Compiling ejabberd from source code is
quite easy in *nix systems, as long as your system have all the dependencies.

Requirements

To compile ejabberd you need:

* GNU Make

* GCC

» Libexpat = 1.95
* Libyaml = 0.1.4

e Erlang/OTP = 25.0. It is recommended Erlang/OTP 27.3, which is the version used in the binary installers and container
images.

* OpenSSL = 1.0.0
 Curl. Optional, for ejabberdctl feature CTL_OVER HTTP

Other optional libraries are:

e Zlib = 1.2.3, For Zlib Stream Compression
* PAM library, for PAM Authentication
* ImageMagick’s Convert program and Ghostscript fonts, for CAPTCHA challenges.

e Elixir = 1.10.3, for Elixir Development. It is recommended Elixir 1.14.0 or higher.
If your system splits packages in libraries and development headers, install the development packages too.
For example, in Debian:

apt-get install libexpatil-dev libgd-dev libpam@g-dev \
libsqlite3-dev libwebp-dev libyaml-dev \
autoconf automake erlang elixir rebar3

Download
There are several ways to obtain the ejabberd source code:

* Source code package from ProcessOne Downloads or GitHub Releases

* Latest development code from ejabberd Git repository using the commands:

git clone https://github.com/processone/ejabberd.git
cd ejabberd

Compile
The generic instructions to compile ejabberd are:

./autogen.sh
./configure
make

Let's view them in detail.

- 45/512 - Copyright © 2008 - 2024 ProcessOne

https://www.erlang.org/
https://elixir-lang.org/
https://www.process-one.net/download/
https://github.com/processone/ejabberd/releases
https://github.com/processone/ejabberd

Compile

./configure

The build configuration script supports many options. Get the full list:
./configure --help

In this example, ./configure prepares the installed program to run with a user called ejabberd that should exist in the system (it

isn't recommended to run ejabberd with root user):

./configure --enable-user=ejabberd --enable-mysql

If you get Error loading module rebar3, please consult how to use rebar with old Erlang.

-46/512 - Copyright © 2008 - 2024 ProcessOne

Compile

Options details:

e --bindir=/: Specify the path to the user executables (where epmd and iex are available).
e --prefix=/: Specify the path prefix where the files will be copied when running the make install command.
e --with-erlang=/: Specify the directory where Erlang/OTP is installed.

* --with-min-erlang=9.0.5 : Allow to compile ejabberd with Erlang/OTP 20.0, bypassing the verification of lower supported
version. Use only if you know what you are doing.

© addedin25.07
e --with-rebar=/: Specify the path to rebar, rebar3 or mix
Q added in 20.12 and improved in 24.02

* --enable-user[=USER] : Allow this normal system user to execute the ejabberdctl script (see section ejabberdctl), read the
configuration files, read and write in the spool directory, read and write in the log directory. The account user and group must
exist in the machine before running make install. This account needs a HOME directory, because the Erlang cookie file will be
created and read there.

* --enable-group[=GROUP] : Use this option additionally to --enable-user when that account is in a group that doesn't coincide
with its username.

e --enable-all: Enable many of the database and dependencies options described here: debug, elixir, lua, mssql, mysql, odbc,
pam, pgsql, redis, sip, sqlite, stun, tools, zlib. This is specially useful for Dialyzer checks.

e --disable-debug : Compile without +debug_info .

* --enable-elixir : Build ejabberd with Elixir extension support. Works only with rebar3, not rebar2. Requires to have Elixir
installed. If interested in Elixir development, you may prefer to use --with-rebar=mix

Q improved in 24.02
e --disable-erlang-version-check : Don't check Erlang/OTP version.
e --enable-full-xml: Use XML features in XMPP stream (ex: CDATA). This requires XML compliant clients).
e --enable-hipe : Compile natively with HiPE. This is an experimental feature, and not recommended.
e --enable-lager : Use lager Erlang logging tool instead of standard error logger.

* --enable-latest-deps : Makes rebar use latest versions of dependencies developed alongside ejabberd instead of version
specified in rebar.config. Should be only used when developing ejabberd.

* --enable-lua: Enable Lua support, to import from Prosody.
© addedin21.04
e --enable-mssql: Enable Microsoft SQL Server support, this option requires --enable-odbc (see Supported storages).
e --enable-mysql: Enable MySQL support (see Supported storages).
e --enable-odbc : Enable pure ODBC support.
e --enable-pam: Enable the PAM authentication method (see PAM Authentication section).
e --enable-pgsql: Enable PostgreSQL support (see Supported storages).
* --enable-redis : Enable Redis support to use for external session storage.
e --enable-roster-gateway-workaround : Turn on workaround for processing gateway subscriptions.
e --enable-sip : Enable SIP support.
* --enable-sql-schema-multihost : Use multihost SQL schema by default.
* --enable-sqlite : Enable SQLite support (see Supported storages).
e --.disable-stun: Disable STUN/TURN support.
* --enable-system-deps : Makes rebar use locally installed dependencies instead of downloading them.
* --enable-tools : Enable the use of development tools.
Q changed in 21.04

* --disable-zlib: Disable Stream Compression (XEP-0138) using zlib.

- 47/512 - Copyright © 2008 - 2024 ProcessOne

make
This manages many tasks:

* Download and compile erlang dependencies

e Compile ejabberd

e System install, uninstall

e Build OTP production / development releases
* Development: edoc, options, translations, tags

» Testing: dialyzer, hooks, test, xref

Get the full task list:

make help

Install

There are several ways to install and run ejabberd after it's compiled from source code:

* system install

* system install a release

¢ building a production OTP release

¢ building a development OTP release
« start directly with relivectl

e start directly with relive which uses Rebar3/Mix

Check the Install Comparison table to find the differences.

System Install

To install ejabberd in the destination directories, run:

make install

Note that you probably need administrative privileges in the system to install ejabberd.

-48/512 -

Install

Copyright © 2008 - 2024 ProcessOne

Install

The created files and directories depend on the options provided to ./configure, by default they are:

* /etc/ejabberd/ : Configuration directory:

* ejabberd.yml: ejabberd configuration file (see File Format)

e ejabberdctl.cfg: Configuration file of the administration script (see Erlang Runtime System)
e inetrc: Network DNS configuration file for Erlang

* /lib/ejabberd/ :

* ebin/ : Erlang binary files (*.beam)

* include/ : Erlang header files (*.hrl)

e priv/: Additional files required at runtime

* bin/ : Executable programs

e 1ib/ : Binary system libraries (*.so)

* msgs/ : Translation files (*.msgs) (see Default Language)

e /sbin/ejabberdctl: Administration script (see ejabberdctl)

* /share/doc/ejabberd/ : Documentation of ejabberd

e /var/lib/ejabberd/ : Spool directory:

* .erlang.cookie : The Erlang cookie file

e acl.pcp, ...: Mnesia database spool files (*.DCD, *.DCL, *.DAT)
e /var/log/ejabberd/ : Log directory (see Logging):

* ejabberd.log : ejabberd service log

* erlang.log : Erlang/OTP system log

System Install Release
© addedin24.02

This builds a production release, and then performs a system install of that release, obtaining a result similar to the one
mentioned in the previous section.

Simply run:
make install-rel
The benefits of install-rel over install:

* this uses OTP release code from rebar/rebar3/mix, and consequently requires less code in our Makefile.in file
* uninstall-rel correctly deletes all the library files

* the *.beam files are smaller as debug information is stripped

Production Release
Q improved in 21.07

You can build an OTP release that includes ejabberd, Erlang/OTP and all the required erlang dependencies in a single tar.gz file.
Then you can copy that file to another machine that has the same machine architecture, and run ejabberd without installing
anything else.

To build that production release, run:

make prod

If you provided to ./configure the option --with-rebar to use rebar3 or mix, this will directly produce a tar.gz that you can copy.

- 49/512 - Copyright © 2008 - 2024 ProcessOne

Install

This example uses rebar3 to manage the compilation, builds an OTP production release, copies the resulting package to a

temporary path, and starts ejabberd there:

./autogen.sh

./configure --with-rebar=rebar3

make

make prod

mkdir $HOME/eja-release

tar -xzvf _build/prod/ejabberd-*.tar.gz -C $HOME/eja-release
$HOME/eja-release/bin/ejabberdctl live

Development Release
© newin21.07
If you provided to ./configure the option --with-rebar to use rebar3 or mix, you can build an OTP development release.

This is designed to run ejabberd in the local machine for development, manual testing... without installing in the system.

This development release has some customizations: uses a dummy certificate file, if you register the account admin@localhost it

has admin rights...

This example uses Elixir's mix to manage the compilation, builds an OTP development release, and starts ejabberd there:

./autogen.sh
./configure --with-rebar=mix
make
make dev
_build/dev/rel/ejabberd/bin/ejabberdctl live
Relivectl
© newin26.01

make relivectl starts an interactive ejabberd without requiring installation or building OTP release. It uses the ejabberdctl

script, and stores data in local path _build/relivectl/.
Example usage:

./autogen.sh
./configure
make relivectl

The benefit over make dev is that relivectl doesn't build an OTP release, so it's faster to start.

Relive
Q new in 22.05

make relive starts an interactive ejabberd without requiring installation or building OTP release. It uses rebar3 shell or mix

run, and stores data in local path _build/relive/ .
Example usage:

./autogen.sh
./configure
make relive

As it uses Rebar3/Mix tools, it automatically compiles code at start and recompiles changed code at runtime.

However, as it doesn't use the ejabberdctl script, it doesn't read ejabberdctl.cfg .

- 50/512 - Copyright © 2008 - 2024 ProcessOne

https://www.process-one.net/blog/ejabberd-24-06/#support-for-code-automatic-update

Specific notes

Specific notes

asdf

When Erlang/OTP (and/or Elixir) is installed using asdf (multiple runtime version manager), it is available only for your account,
in $HOME/.asdf/shims/erl. In that case, you cannot install ejabberd globally in the system, and you cannot use the root account to
start it, because that account doesn't have access to erlang.

In that scenario, there are several ways to run/install ejabberd:

* Run a development release locally without installing
* Copy a production release locally
* Use system install, but install it locally:

./autogen.sh

./configure --prefix=$HOME/eja-install --enable-user

make

make install
$HOME/eja-install/shin/ejabberdctl live

BSD
The command to compile ejabberd in BSD systems is gmake .
You may want to check pkgsrc.se for ejabberd.

Up to ejabberd 23.04, some old scripts where included in ejabberd source for NetBSD compilation, and you can take a look to
those files for reference in ejabberd 23.04/examples/mtr/ path.

Erlang Configuration

Usually ejabberd is started using the ejabberdctl script, which takes care to setup the Erlang runtime system options following
your ejabberdctl.cfg configuration file.

However, there are other methods to start ejabberd, and they use specific methods to configure those options:

* When using rebar3 make relive :
system is set in rebar.config, apps in rel/relive.config

* When using mix make relive :
system is set in Makefile, apps in config/runtime.exs

* When using rebar3 make dev && ejabberd :
system is set in rel/vm.args, apps in rel/sys.config

* When using mix make dev|prod && ejabberd :
system is set in rel/vm.args.eex and rel/env.sh.eex, apps in config/runtime.exs

Erlang Local Install
If you compile Erlang/OTP from source code and install in a local folder, for example in $HOME/er1-local like this:

cd otp_src

./configure --prefix=$HOME/er1-local
make

make install

then those are the steps to compile ejabberd:

cd ejabberd-master

export PATH=$HOME/er1l-local/bin/:$PATH

./autogen.sh

./configure --with-erlang=$HOME/erl-local --with-rebar=./rebar3
make

- 51/512 - Copyright © 2008 - 2024 ProcessOne

https://asdf-vm.com/
https://pkgsrc.se/chat/ejabberd/
https://github.com/processone/ejabberd/tree/23.04/examples/mtr
https://github.com/processone/ejabberd/tree/23.04/examples/mtr
https://docs.ejabberd.im/admin/guide/managing/#erlang-runtime-system

Specific notes

Also notice that Erlang and ejabberd can be used only from that system account, see section asdf for details.

Install Comparison ()

Let's summarize all the make targets related to installation to determine their usage differences:

make ... install install-rel prod dev relivectl 1
Writes files in / / _build/ _build/ _build/ _
path prod/ dev/ relivectl/ r
Installs manually - -

uncompress
*.tar.gz
Uninstall with uninstall uninstall-rel manual - -
I\ incomplete remove

Start tool ejabberdctl ejabberdctl ejabberdctl ejabberdctl ejabberdctl rek
Reads
ejabberdctl.cfg
Recompiles - X
Starts ejabberd - - - -

Recompiles at - - - R X
runtime
Execution time 13 40 57 35 4
(s)

macOS

If compiling from sources on Mac OS X, you must configure ejabberd to use custom OpenSSL, Yaml, iconv. The best approach is
to use Homebrew to install your dependencies, then exports your custom path to let configure and make be aware of them.

brew install git erlang elixir openssl expat libyaml libiconv libgd sqlite rebar rebar3 automake autoconf
export LDFLAGS="-L/usr/local/opt/openssl/lib -L/usr/local/lib -L/usr/local/opt/expat/lib"

export CFLAGS="-I/usr/local/opt/openssl/include -I/usr/local/include -I/usr/local/opt/expat/include"
export CPPFLAGS="-I/usr/local/opt/openssl/include/ -I/usr/local/include -I/usr/local/opt/expat/include"
./configure

make

Check also the guide for Installing ejabberd development environment on OSX

man

ejabberd includes a man page which documents the toplevel and modules options, the same information that is published in the
Top-Level Options and Modules Options sections.

The man file can be read locally with:

man -1 man/ejabberd.yml.5

rebar with old Erlang
The ejabberd source code package includes rebar and rebar3 binaries that work with Erlang/OTP 25.0 up to 28.

To compile ejabberd using rebar/rebar3 and Erlang 20.0 up to 23.3, you can install it from your operating system, or compile
yourself from the rebar source code, or download the old binary from ejabberd 21.12:

-52/512 - Copyright © 2008 - 2024 ProcessOne

https://github.com/processone/ejabberd/issues/1496
https://brew.sh/

Start

wget https://github.com/processone/ejabberd/raw/21.12/rebar
wget https://github.com/processone/ejabberd/raw/21.12/rebar3

To compile ejabberd using rebar/rebar3 and Erlang 24.0 up to 24.3, you can install it from your operating system, or compile
yourself from the rebar source code, or download the old binary from ejabberd 24.12:

wget https://github.com/processone/ejabberd/raw/24.12/rebar
wget https://github.com/processone/ejabberd/raw/24.12/rebar3

Start

You can use the ejabberdctl command line administration script to start and stop ejabberd. Some examples, depending on your
installation method:

* When installed in the system:

ejabberdctl start
/sbin/ejabberdctl start

¢ When built an OTP production release:

_build/prod/rel/ejabberd/bin/ejabberdctl start
_build/prod/rel/ejabberd/bin/ejabberdctl live

 Start interactively without installing or building OTP release:

make relive

-53/512 - Copyright © 2008 - 2024 ProcessOne

Install ejabberd on macOS

Install ejabberd on macOS

Homebrew

Homebrew is a package manager for macOS that aims to port the many Unix & Linux software that is not easily available or
compatible. Homebrew installation is simple and the instruction is available on its website.

Check also the guide for Installing ejabberd development environment on OSX

The ejabberd configuration included in Homebrew's ejabberd has as default domain localhost, and has already granted
administrative privileges to the account admin@localhost .

. Once you have Homebrew installed, open Terminal. Run

brew install ejabberd

This should install the latest or at most the one-before-latest version of ejabberd. The installation directory should be reported at
the end of this process, but usually the main executable is stored at /usr/local/sbin/ejabberdctl.

. Start ejabberd in interactive mode, which prints useful messages in the Terminal.

/usr/local/sbhin/ejabberdctl live
. Create the account admin@localhost with password set as password :
/usr/local/shin/ejabberdctl register admin localhost password

. Now you can go to the web dashboard at http://localhost:5280/admin/ and fill the username field with the full account JID, for
example admin@localhost , then fill the password field with that account's password .

. Without configuration there's not much to see here, therefore the next step is to get to know how to configure ejabberd.

- 54/512 - Copyright © 2008 - 2024 ProcessOne

https://brew.sh/

Installing ejabberd development environment on OSX

Installing ejabberd development environment on OSX

This short guide will show you how to compile ejabberd from source code on Mac OS X, and get users chatting right away.

Before you start

ejabberd is supported on Mac OS X 10.6.8 and later. Before you can compile and run ejabberd, you also need the following to be
installed on your system:

* Gnu Make and GCC (the GNU Compiler Collection). To ensure that these are installed, you can install the Command Line Tools
for Xcode, available via Xcode or from the Apple Developer website.

e Git

e Erlang/OTP 19.1 or higher. We recommend using Erlang 21.2.

¢ Autotools

Homebrew

An easy way to install some of the dependencies is by using a package manager, such as Homebrew - the Homebrew commands
are provided here:

e Git: brew install git

* Erlang /OTP: brew install erlang
 Elixir: brew install elixir

e Autoconf: brew install autoconf
e Automake: brew install automake
* Openssl: brew install openssl

* Expat: brew install expat

e Libyaml: brew install libyaml

e Libiconv: brew install libiconv
e Sqlite: brew install sqlite

* GD: brew install gd

* Rebar: brew install rebar rebar3
You can install everything with a single command:

brew install erlang elixir openssl expat libyaml libiconv libgd sqlite rebar rebar3 automake autoconf

Installation

To build and install ejabberd from source code, do the following:

1. Clone the Git repository: git clone git@github.com:processone/ejabberd.git
2. Go to your ejabberd build directory: cd ejabberd

3. Run the following commands, assuming you want to install your ejabberd deployment into your home directory:

chmod +x autogen.sh

./autogen.sh

export LDFLAGS="-L/usr/local/opt/openssl/lib -L/usr/local/lib -L/usr/local/opt/expat/1lib"

export CFLAGS="-I/usr/local/opt/openssl/include/ -I/usr/local/include -I/usr/local/opt/expat/include"
export CPPFLAGS="-I/usr/local/opt/openssl/include/ -I/usr/local/include -I/usr/local/opt/expat/include"
./configure --prefix=$HOME/my-ejabberd --enable-sqlite

make && make install

-55/512 - Copyright © 2008 - 2024 ProcessOne

https://brew.sh/

—_

o 3)] &) S w N

Running ejabberd

Note that the previous command reference the previously installed dependencies from Homebrew.

Running ejabberd

e From your ejabberd build directory, go to the installation directory: cd $HOME/my-ejabberd
» To start the ejabberd server, run the following command: sbin/ejabberdctl start

» To verify that ejabberd is running, enter the following: shin/ejabberdctl status If the server is running, response should be as
follow:

$ shin/ejabberdctl status
The node ejabberd@localhost is started with status: started
ejabberd 14.12.40 is running in that node

» To connect to the ejabberd console after starting the server: sbin/ejabberdctl debug

 Alternatively, you can also run the server in interactive mode: sbin/ejabberdctl live

Registering a user

The default XMPP domain served by ejabberd right after the build is localhost . This is different from the IP address, DNS name
of the server. It means remote users can connect to ejabberd even if it is running on your machine with localhost XMPP domain,
by using your computer IP address or DNS name. This can prove handy in development phase to get more testers.

Adium

Adium is a popular XMPP client on OSX. You can use it

. Launch Adium. If the Adium Setup Assistant opens, close it.

. In the Adium menu, select Preferences, and then select the Accounts tab.

. Click the + button and select XMPP (Jabber).

. Enter a Jabber ID (for example, “userl@localhost”) and password, and then click Register New Account.
. In the Server field, enter the following:

. Users registering on the computer on which ejabberd is running: localhost

. Users registering from a different computer: the ejabberd server’s IP address

. Click Request New Account.
After registration, the user will connect automatically.
Registered users wishing to add an existing account to Adium should enter the ejabberd server’s IP address in the Connect
Server field on the Options tab.
Command line
You can register a user with the ejabberdctl utility: ejabberdctl register user domain password

For example: ejabberdctl register userl localhost myp4ssword

Domains

To use your system’s domain name instead of localhost, edit the following ejabberd configuration file: $HOME/my-ejabberd/etc/
ejabberd.yml (point to the place of your real installation).

Note: You may find example ejabberd.cfg files. This is the old obsolete format for configuration file. You can ignore the and focus
on the new and more user friendly Yaml format.

Find the line listing the hosts:

- 56/512 - Copyright © 2008 - 2024 ProcessOne

https://brew.sh/

Get chatting

hosts:
- "localhost"

Replace localhost with your XMPP domain name, for example:

hosts:
- "example.org"

Save the configuration file and restart the ejabberd server. A user’s Jabber ID will then use the domain instead of localhost, for
example: useri@example.org

You can also configure multiple (virtual) domains for one server:

hosts:
- "examplel.org"
- "example2.org"

Get chatting

Users that are registered on your server can now add their accounts in a chat application like Adium (specifying either the
server’s IP address or domain name), add each other as contacts, and start chatting.

- 57/512 - Copyright © 2008 - 2024 ProcessOne

Next Steps

Next Steps

Starting ejabberd

Depending on how you installed ejabberd, it may be started automatically by the operating system at system boot time.

You can use the ejabberdctl command line administration script to start and stop ejabberd, check its status and many other
administrative tasks.

If you provided the configure option --enable-user=USER (see compilation options, you can execute ejabberdctl with either that
system account or root.

Usage example:

prompt> ejabberdctl start

prompt> ejabberdctl status
The node ejabberd@localhost is started with status: started
ejabberd is running in that node

prompt> ejabberdctl stop

If ejabberd doesn't start correctly and a crash dump file is generated, there was a severe problem. You can try to start ejabberd
in interactive mode with the command bin/ejabberdctl live to see the error messages provided by Erlang and identify the exact
the problem.

The ejabberdctl administration script is included in the bin directory in the Linux Installers and Docker image.

Please refer to the section ejabberdctl for details about ejabberdctl, and configurable options to fine tune the Erlang runtime

system.

Autostart on Linux

If you compiled ejabberd from source code or some other method that doesn't setup autostarting ejabberd, you can try this
method.

On a *nix system, create a system user called 'ejabberd’, give it write access to the directories database/ and logs/, and set that
as home.

If you want ejabberd to be started as daemon at boot time with that user, copy ejabberd.init from the bin directory to
something like /etc/init.d/ejabberd. Then you can call /etc/inid.d/ejabberd start to start the server.

Or if you have a systemd distribution:

1. copy ejabberd.service to /etc/systemd/system/

2. run systemctl daemon-reload

3. run systemctl enable ejabberd.service

4. To start the server, you can run systemctl start ejabberd

When ejabberd is started, the processes that are started in the system are beam or beam.smp, and also epmd . For more
information regarding epmd consult the section relating to epmd.

Administration Account

lnin account

Account registered in ejabberd with administrative privileges granted in the ejabberd configuration file. Features that take into
consideration those privileges: api permissions, ejabberd web admin, mod announce, mod configure, mod http api, mod muc, ...

-58/512 - Copyright © 2008 - 2024 ProcessOne

Configuring ejabberd

Some ejabberd installation methods ask you details for the first account, and take care to register that account and grant it
administrative rights; in that case you can skip this section.

After installing ejabberd from source code or other methods, you may want to register the first XMPP account and grant it
administrative rights:

1. Register an XMPP account on your ejabberd server. For example, if example.org is configured in the hosts section in your ejabberd
configuration file, then you may want to register an account with JID admini@example.org .

There are two ways to register an XMPP account in ejabberd:

» Using an XMPP client and In-Band Registration.
» Using ejabberdctl:

ejabberdctl register adminl example.org password

2. Edit the ejabberd configuration file to give administration rights to the XMPP account you registered:

acl:
admin:
user: adminl@example.org

access_rules:
configure:
allow: admin

You can grant administrative privileges to many XMPP accounts, and also to accounts in other XMPP servers.
3. Restart ejabberd to load the new configuration, or run the reload config command.
4. Open the Web Admin page in your favourite browser. The exact address depends on your ejabberd configuration, and may be:
* http://localhost:5280/admin/ on binary installers
* https://localhost:5443/admin/ on binary installers
* https://localhost:5280/admin/ on Debian package

5. Your web browser shows a login window. Introduce the full JID, in this example admini@example.org, and the account password. If
the web address hostname is the same that the account JID, you can provide simply the username instead of the full JID: admini .
See Web Admin for details.

Configuring ejabberd

Now that you got ejabberd installed and running, it's time to configure it to your needs. You can follow on the Configuration
section and take also a look at the Tutorials.

- 59/512 - Copyright © 2008 - 2024 ProcessOne

http://localhost:5280/admin/
https://localhost:5443/admin/
https://localhost:5280/admin/

Configure

Configure

Configuring ejabberd

Here are the main entry points to learn more about ejabberd configuration. ejabberd is extremely powerful and can be
configured in many ways with many options.

Do not let this complexity scare you. Most of you will be fine with default config file (or light changes).
Tutorials for first-time users:

* How to move to ejabberd XMPP server
* How to set up ejabberd video & voice calling (STUN/TURN)

* How to configure ejabberd to get 100% in XMPP compliance test
Detailed documentation in sections:

* File Format

» Basic Configuration: hosts, acl, logging...
e Authentication: auth method

» Databases

* LDAP

e Listen Modules: ¢2s, s2s, http, sip, stun...
» Listen Options

* Top-Level Options

¢ Modules Options

There's also a copy of the old configuration document which was used up to ejabberd 20.03.

-60/512 - Copyright © 2008 - 2024 ProcessOne

https://www.process-one.net/blog/how-to-move-the-office-to-real-time-im-on-ejabberd/
https://www.process-one.net/blog/how-to-set-up-ejabberd-video-voice-calling/
https://www.process-one.net/blog/how-to-configure-ejabberd-to-get-100-in-xmpp-compliance-test/

g s W N e

File format

File format

Yaml File Format

ejabberd loads its configuration file during startup. This configuration file is written in vavL format, and its file name MUST have
“.yml” or “.yaml” extension. This helps ejabberd to differentiate between this new format and the legacy configuration file
format.

Please, consult ejabberd.log for configuration errors. ejabberd will report syntax related errors, as well as complains about
unknown options and invalid values. Make sure you respect indentation (YAML is sensitive to this) or you will get pretty cryptic
errors.

Note that ejabberd never edits the configuration file. If you are changing parameters at runtime from web admin interface, you

will need to apply them to configuration file manually. This is to prevent messing up with your config file comments, syntax, etc.

Reload at Runtime

You can modify the ejabberd configuration file and reload it at runtime: the changes you made are applied immediately, no need
to restart ejabberd. This applies to adding, changing or removing vhosts, listened ports, modules, ACLs or any other options.

How to do this?

. Let's assume your ejabberd server is already running

. Modify the configuration file

. Run the reload config command

. ejabberd will read that file, check its YAML syntax is valid, check the options are valid and known...

. If there's any problem in the configuration file, the reload is aborted and an error message is logged with details, so you can fix the

problem.

. If the file is right, it detects the changed options, and applies them immediately (add/remove hosts, add/remove modules, ...)

Legacy Configuration File

In previous ejabberd version the configuration file should be written in Erlang terms. The format is still supported, but it is highly
recommended to convert it to the new YAML format with the convert to yaml API command using ejabberdctl.

If you want to specify some options using the old Erlang format, you can set them in an additional cfg file, and include it using

the include config file option, see Include Additional Files.

Include Additional Files

The option include config file in a configuration file instructs ejabberd to include other configuration files immediately.
This is a basic example:

include_config_file: /etc/ejabberd/additional.yml

In this example, the included file is not allowed to contain a listen option. If such an option is present, the option will not be
accepted. The file is in a subdirectory from where the main configuration file is.

include_config_file:
./example.org/additional_not_listen.yml:
disallow: [listen]

Please notice that options already defined in the main configuration file cannot be redefined in the included configuration files.
But you can use host config and append host config as usual (see Virtual Hosting).

-61/512 - Copyright © 2008 - 2024 ProcessOne

https://en.wikipedia.org/wiki/YAML
https://en.wikipedia.org/wiki/YAML

Macros and Keywords

In this example, ejabberd.yml defines some ACL for the whole ejabberd server, and later includes another file:

acl
admin:
user:
- admin@localhost
include_config_file:
/etc/ejabberd/acl.yml

The file acl.yml can add additional administrators to one of the virtual hosts:

append_host_config:
localhost:
acl:
admin:
user:
- bob@localhost
- jan@localhost

Macros and Keywords

Q improved in 25.03

In the ejabberd configuration file, you can define a macro or keyword for a value (atom, integer, string...) and later use it when
configuring an ejabberd option.

Macros is a feature implemented internally by the yconf library and are replaced early and transparently to ejabberd. However,
macros cannot be defined inside host_config .

Keywords is a feature similar to macros, implemented by ejabberd itself, and are replaced after macro replacement. Keywords
can be defined inside host_config for module options, but not for toplevel options. Keywords cannot be used in those toplevel
options: hosts, loglevel, version.

First define macro and define keyword and then use them like this:

define_macro:
NAME1: valuel

define_keyword:
NAME2: "value2"

some_optionl: NAME1l
other_optioni: "I am @NAME1@"

some_option2: NAME2
other_option2: "I am @NAME2@"

where:

* NAME: should be specified in capital letters for convenience. Duplicated macro/keyword names are not allowed. If a macro is
defined with the same name than a keyword, the macro is used.

« value: for all options, the value can be any valid YAML element. It is also possible to use as value the name of another macro.

* use a macro/keyword when configuring the option: simply set nNAME instead of option value. Macros are processed after
additional configuration files have been included, so it is possible to use macros that are defined in configuration files included
before the usage.

* use inside a string: surround its name with @ characters

Let's see examples of all this in detail:

Atom

define_macro:
ANON: both

define_keyword:
TLS: optional

anonymous_protocol: ANON
s2s_use_starttls: TLS

- 62/512 - Copyright © 2008 - 2024 ProcessOne

https://github.com/processone/yconf

The resulting configuration is:

anonymous_protocol: both
s2s_use_starttls: optional

Integer

define_macro:
LOG_LEVEL_NUMBER: 5
NUMBER_PORT_C2S: 5222

define_keyword:
NUMBER_PORT_HTTP: 5280

loglevel: LOG_LEVEL_NUMBER

listen:
port: NUMBER_PORT_C2S
module: ejabberd_c2s

port: NUMBER_PORT_HTTP
module: ejabberd_http

The resulting configuration is:

loglevel: 5

listen:
port: 5222
module: ejabberd_c2s

port: 5280
module: ejabberd_http

Map
Option values can be any arbitrary YAML value:

define_macro:
USERBOB:
user:
- bob@localhost

define_keyword:
USERJAN:
user:
- jan@localhost

acl:
admin: USERBOB
moderator: USERJAN

The resulting configuration is:

acl:
admin:
user:
- bob@localhost
moderator:
user:
- jan@localhost

String

define_macro:
NAME: "MUC Service"
PERSISTENT: true

define_keyword:
TITLE: "Example Room"

modules:
mod_muc:
name: NAME
default_room_options:
persistent: PERSISTENT
title: TITLE

- 63/512 -

Macros and Keywords

Copyright © 2008 - 2024 ProcessOne

Macros and Keywords

The resulting configuration is:

modules:
mod_muc:
name: "MUC Service"
default_room_options:
persistent: true
title: "Example Room"
Inside string
A macro or keyword can be used inside an option string:

define_keyword:
CMD: "captcha"

captcha_cmd: "tools/@CMD@.sh"

is equivalent to:

define_keyword:
CMD: "tools/captcha.sh"

captcha_cmd: "@CMD@"

is equivalent to:

define_keyword:
CMD: "tools/captcha.sh"

captcha_cmd: CMD

The resulting configuration in all the cases is:

captcha_cmd: tools/captcha.sh

Macro over keyword

If a macro and a keyword are defined with the same name, the macro definition takes precedence and the keyword definition is
ignored:

define_macro:
LANGUAGE: "bg"

define_keyword:
LANGUAGE: "pt"

language: LANGUAGE

The resulting configuration is:

language: "bg"

Keyword inside macro
A macro definition can use a keyword:

define_macro:
MACRO: "tools/@KEYWORD@"

define_keyword:
KEYWORD: "captcha.sh"

captcha_cmd: MACRO

The resulting configuration is:

captcha_cmd: "tools/captcha.sh"

-64/512 - Copyright © 2008 - 2024 ProcessOne

Predefined keywords

Macros and Keywords

Several keywords are predefined automatically by ejabberd, so you can use them without need to define them explicitly:

* HOST: the virtual host name, for example "example.org". That keyword is only predefined for module options, not toplevel

options.

* HOME: the home directory of the user running ejabberd, for example "/home/ejabberd"

* VERSION: ejabberd version number in xx.vy format, for example "24.05"

* SEMVER: ejabberd version number in semver format when compiled with Elixir’s mix ("24.5"), otherwise it's in xx.vy format

("24.05")

It is possible to overwrite predefined keywords, global or for a vhost like in this example:

host_config:
localhost:
define_keyword:
VERSION: "1.2.3"

ext_api_url: "http://localhost/@VERSION@/api"

The resulting behaviour is equivalent to a configuration like:

host_config:
localhost:
ext_api_url: "http://localhost/1.2.3/api"

ext_api_url: "http://localhost/25.03/api"

Macro and host_config
Macros can be used inside host config:

define_macro:
MYSQL_PORT: 1234
PGSQL_PORT: 4567

host_config:
mysql.localhost:
sql_port: MYSQL_PORT
pgsql. localhost:
sql_port: MYSQL_PORT

The resulting configuration is:

host_config:
mysql.localhost:
sql_port: 1234
pgsql. localhost:
sql_port: 4567

host_config:
mysql. localhost:
define_macro:
SQL_PORT: 1234
pgsql. localhost:
define_macro:
SQL_PORT: 4567

sql_port: SQL_PORT

Invalid value of option sql_port:
Expected integer, got string instead

ﬂn't use macro defined in host_config

[critical] Failed to start ejabberd application:

Macros can not be defined inside host config. Use the previous method instead. That problematic macro is not replaced:

- 65/512 -

Copyright © 2008 - 2024 ProcessOne

https://hexdocs.pm/elixir/1.18.2/Version.html

Keyword and host_config

Keywords can be used and defined inside host config:

hosts:
- localhost
- example.org

define_keyword:
HOSTNAME: "Generic Name"

host_config:
example.org:
define_keyword:
HOSTNAME: "Example Host"

modules:
mod_vcard:
name: "vJUD of @HOSTNAME@"

The resulting configuration is:

host_config:
localhost:
modules:
mod_vcard:
name: "vJUD of Generic Name"
example.org:
modules:
mod_vcard:
name: "vJUD of Example Host"

Macros and Keywords

problematic keyword is not replaced:

host_config:
mysql. localhost:
define_keyword:
SQL_PORT: 1234
pgsql.localhost:
define_keyword:
SQL_PORT: 4567

sql_port: SQL_PORT

Invalid value of option sql_port:
Expected integer, got string instead

[critical] Failed to start ejabberd application:

An't use in toplevel a keyword defined in host_config

Keywords can be defined inside host_config, but only if they are being used in module options, not in toplevel options. That

- 66/512 -

Copyright © 2008 - 2024 ProcessOne

Basic Configuration

Basic Configuration

XMPP Domains

Host Names

ejabberd supports managing several independent XMPP domains on a single ejabberd instance, using a feature called virtual
hosting.

The option hosts defines a list containing one or more domains that ejabberd will serve.
Of course, the hosts list can contain just one domain if you do not want to host multiple XMPP domains on the same instance.

Examples:

* Serving one domain:

hosts: [example.org]

* Serving three domains:

hosts:
- example.net
- example.com
- jabber.somesite.org

Notice that Unicode is used natively by XMPP, Erlang/OTP, YAML... and ejabberd. You can setup non-latin host names using
Unicode/UTF8. Since ejabberd 25.08 the host can be expressed in IDNA/punycode. For example:

hosts:
- localhost1l
- locélhost2
- ooo

- xn--loclhost4-x2a

Virtual Hosting

When managing several XMPP domains in a single instance, those domains are truly independent. It means they can even have
different configuration parameters.

Options can be defined separately for every virtual host using the host_config option.

-67/512 - Copyright © 2008 - 2024 ProcessOne

Logging

Examples:

* Domain example.net is using the internal authentication method while domain example.com is using the LDAP server running
on the domain localhost to perform authentication:

host_config:
example.net:
auth_method: internal
example.com:
auth_method: ldap
ldap_servers:
- localhost
ldap_uids:
- uid
ldap_rootdn: "dc=localdomain"
ldap_password: ""

* Domain example.net is using SQL to perform authentication while domain example.com is using the LDAP servers running on
the domains localhost and otherhost :

host_config:
example.net:
auth_method: sql
sql_type: odbc
sql_server: "DSN=ejabberd;UID=ejabberd;PwD=ejabberd"
example.com:
auth_method: ldap
ldap_servers:
- localhost
- otherhost
ldap_uids:
- uid
ldap_rootdn: "dc=example,dc=com"
ldap_password: ""

To define specific ejabberd modules in a virtual host, you can define the global modules option with the common modules, and
later add specific modules to certain virtual hosts. To accomplish that, instead of defining each option in host_config use
append_host_config with the same syntax.

In this example three virtual hosts have some similar modules, but there are also other different modules for some specific virtual
hosts:

This ejabberd server has three vhosts:
hosts:

- one.example.org

- two.example.org

- three.example.org

Configuration of modules that are common to all vhosts

modules:
mod_roster: {3
mod_configure: {}
mod_disco: {3
mod_private: {3
mod_time: {3
mod_last: '3
mod_version: {3

append_host_config:
Add some modules to vhost one:
one.example.org:

modules:
mod_muc:
host: conference.one.example.org
mod_ping: {}

Add a module just to vhost two:
two.example.org:
modules:
mod_muc:
host: conference.two.example.org

Logging

ejabberd configuration can help a lot by having the right amount of logging set up.

-68/512 - Copyright © 2008 - 2024 ProcessOne

Default Language

There are several toplevel options to configure logging:

* loglevel: Verbosity of log files generated by ejabberd.
* hide sensitive log_data: Privacy option to disable logging of IP address or sensitive data.
e log_modules_fully : Modules that will log everything independently from the general loglevel option.

* log_rotate_size

* log_rotate_count : Setting count to N keeps N rotated logs. Setting count to 0 does not disable rotation, it instead rotates the
file and keeps no previous versions around. Setting size to X rotate log when it reaches X bytes.

® log_burst_limit_count

* log_burst_limit_window_time
The values in default configuration file are:

log_rotate_size: 10485760
log_rotate_count: 1

For example, log warning and higher messages, but all c2s messages, and hide sensitive data:

loglevel: warning
hide_sensitive_log_data: true
log_modules_fully: [ejabberd_c2s]

Default Language

The 1language option defines the default language of server strings that can be seen by XMPP clients. If a XMPP client does not
support xml:lang, ejabberd uses the language specified in this option.

The option syntax is:

language: Language : The default value is en. In order to take effect there must be a translation file Language.msg in ejabberd’s

msgs directory.
For example, to set Russian as default language:

language: ru

The page Internationalization and Localization provides more details.

CAPTCHA

Some ejabberd modules can be configured to require a CAPTCHA challenge on certain actions, for instance
mod block strangers, mod muc, mod register, and mod register web. If the client does not support CAPTCHA Forms
(xep-0158), a web link is provided so the user can fill the challenge in a web browser.

Example scripts are provided that generate the image using ImageMagick’s Convert program and Ghostscript fonts. Remember
to install those dependencies: in Debian install the imagemagick and gsfonts packages; in container images check their
documentation for details.

The relevant top-level options are:

e captcha_cmd : Path | Module : Full path to a script that generates the image, or name of a module that supports generating
CAPTCHA images (mod ecaptcha, mod captcha rust). The default value disables the feature: undefined

e captcha_url : URL | auto: An URL where CAPTCHA requests should be sent, or auto to determine the URL automatically. The
default value is auto.

And finally, configure request_handlers for the ejabberd http listener with a path handled by ejabberd captcha, where the
CAPTCHA images will be served.

- 69/512 - Copyright © 2008 - 2024 ProcessOne

https://xmpp.org/extensions/xep-0158.html
https://xmpp.org/extensions/xep-0158.html
https://imagemagick.org/
https://www.ghostscript.com/
https://github.com/processone/ejabberd-contrib/tree/master/mod_ecaptcha
https://github.com/processone/ejabberd-contrib/tree/master/mod_captcha_rust

ACME

Example configuration:

hosts: [example.org]

captcha_cmd: /lib/ejabberd-24.12/priv/bin/captcha.sh # make install or install-rel

captcha_cmd: /opt/ejabberd-24.12/1lib/captcha.sh # Binary installers and container images
captcha_cmd: tools/captcha.sh # if ejabberd started with: make relive

captcha_cmd: mod_ecaptcha # if installed: ejabberdctl module_install mod_ecaptcha

captcha_url: auto

captcha_url: http://example.org:5280/captcha
captcha_url: https://example.org:443/captcha
captcha_url: http://example.com/captcha

listen:

port: 5280
module: ejabberd_http
request_handlers:

/captcha: ejabberd_captcha

ACME

ACME is used to automatically obtain SSL certificates for the domains served by ejabberd, which means that certificate requests
and renewals are performed to some CA server (aka "ACME server") in a fully automated mode.

Setting up ACME
In ejabberd, ACME is configured using the acme top-level option, check there the available options and example configuration.

The automated mode is enabled by default. However, some configuration of ejabberd is still required, because ACME requires
HTTP challenges: an ACME remote server will connect to your ejabberd server on HTTP port 80 during certificate issuance.

For that reason you must have an ejabberd_http listener with TLS disabled handling an "ACME well known" path. For example:

listen:

module: ejabberd_http

port: 5280

tls: false

request_handlers:
/.well-known/acme-challenge: ejabberd_acme

Note that the ACME protocol requires challenges to be sent on port 80. Since this is a privileged port, ejabberd cannot listen on
it directly without root privileges. Thus you need some mechanism to forward port 80 to the port defined by the listener (port
5280 in the example above). There are several ways to do this: using NAT, setcap (Linux only), or HTTP front-ends (e.g. ssth,
nginx , haproxy and so on). Pick one that fits your installation the best, but DON'T run ejabberd as root.

If you see errors in the logs with ACME server problem reports, it's highly recommended to change ca_url option in the acme
top-level option to the URL pointing to some staging ACME environment, fix the problems until you obtain a certificate, and then
change the URL back and retry using request-certificate ejabberdctl command (see below). This is needed because ACME
servers typically have rate limits, preventing you from requesting certificates too rapidly and you can get stuck for several hours
or even days. By default, ejabberd uses Let's Encrypt authority. Thus, the default value of ca_url option is https://acme-
v02.api.letsencrypt.org/directory and the staging URL will be https://acme-staging-ve2.api.letsencrypt.org/directory :

acme:
Staging environment
ca_url: https://acme-staging-v02.api.letsencrypt.org/directory
Production environment (the default):
ca_url: https://acme-v02.api.letsencrypt.org/directory

The automated mode can be disabled by setting auto option to false in the acme top-level option:

acme:
auto: false

In this case automated renewals are still enabled, however, in order to request a new certificate, you need to run
request certificate API command:

ejabberdctl request-certificate all

- 70/512 - Copyright © 2008 - 2024 ProcessOne

https://tools.ietf.org/html/rfc8555
https://letsencrypt.org

Access Rights

If you only want to request certificates for a subset of the domains, run:

ejabberdctl request-certificate domain.tld, pubsub.domain.tld, server.com,conference.server.com,

You can view the certificates obtained using ACME and list certificates:

$ ejabberdctl list-certificates
domain.tld /path/to/cert/filel true
server.com /path/to/cert/file2 false

The output is mostly self-explained: every line contains the domain, the corresponding certificate file, and whether this certificate
file is used or not. A certificate might not be used for several reasons: mostly because ejabberd detects a better certificate (i.e.
not expired, or having a longer lifetime). It's recommended to revoke unused certificates if they are not yet expired (see below).

At any point you can revoke a certificate using revoke certificate: pick the certificate file from the listing above and run:

ejabberdctl revoke-certificate /path/to/cert/file

If the commands return errors, consult the log files for details.

ACME implementation details

In nutshell, certification requests are performed in two phases. Firstly, ejabberd creates an account at the ACME server. That is
an EC private key. Secondly, a certificate is requested. In the case of a revocation, no account is used - only a certificate in
question is needed. All information is stored under acme directory inside spool directory of ejabberd (typically /var/lib/
ejabberd). An example content of the directory is the following:

$ tree /var/lib/ejabberd

/var/1lib/ejabberd

|— acme

| }— account.key

| L— live

| F—— 251ce180d964e98a2f18b65504df2ab7c55943e2
| L— 93816a8429ebbaa75574eb3f59d4a806h67d6917

Here, account.key is the EC private key used to identify the ACME account. You can inspect its content using openssl command:

openssl ec -text -noout -in /var/lib/ejabberd/acme/account.key

Obtained certificates are stored under acme/live directory. You can inspect any of the certificates using openss1 command as
well:

openssl x509 -text -noout -in /var/lib/ejabberd/acme/live/251ce180d964e98a2f18hb65504df2ab7c55943e2

In the case of errors, you can delete the whole acme directory - ejabberd will recreate its content on next certification request.
However, don't delete it too frequently - usually there is a rate limit on the number of accounts and certificates an ACME server
creates. In particular, for Let's Encrypt the limits are described here.

Access Rights

This section describes new ACL syntax introduced in ejabberd 16.06. For old access rule and ACL syntax documentation, please
refer to configuration document archive

ACL

Access control in ejabberd is performed via Access Control Lists (ACLs), using the acl option. The declarations of ACLs in the
configuration file have the following syntax:

acl
ACLName :
ACLType: ACLValue

- 71/512 - Copyright © 2008 - 2024 ProcessOne

https://letsencrypt.org
https://letsencrypt.org/docs/rate-limits/
https://github.com/processone/docs.ejabberd.im/blob/7391ac375fd8253f74214cbffa2bafb140501981/content/admin/guide/configuration.md

Access Rights

ACLName is any name you may want to give, and later can use it in other options to reference that ACL. The following AcLName are
pre-defined:

* all: Matches any JID.

* none : Matches no JID.

-72/512 - Copyright © 2008 - 2024 ProcessOne

Access Rights

ACLType: ACLvalue can be one of the following:

-73/512 - Copyright © 2008 - 2024 ProcessOne

all: Matches all JIDs. Example:

acl
world: all

user: Username : Matches the user with the name username on any of the local virtual host. Example:

acl
admin:
user: yozhik

Access Rights

user: {Username: Server} | Jid: Matches the user with the JID username@server and any resource. Example:

acl
admin:
- user: peter@example.org
- user:
yozhik@example.org
- user: {susan: example.org}
- user:
jan: example.org

server: Server : Matches any JID from server server . Example:

acl:
exampleorg:
server: example.org

resource: Resource: Matches any JID with a resource Resource . Example:

acl
mucklres:
resource: muckl

shared_group: Groupname : Matches any member of a Shared Roster Group with name Groupname in the virtual host. Example:

acl
techgroupmembers:
shared_group: techteam

shared_group: {Groupname: Server}: Matches any member of a Shared Roster Group with name Groupname in the virtual host

server . Example:

acl
techgroupmembers:
- shared_group: {techteam: example.org}
- shared_group:
secteam: example.org

ip: Network : Matches any IP address from the Network

acl
loopback:
ip:
- 127.0.0.0/8
B

. Example:

user_regexp: Regexp: Matches any local user with a name that matches Regexp on local virtual hosts. Example:

acl:
tests:
user_regexp: "Atest[0-9]*$"

user_regexp: {Regexp: Server} | JidRegexp: Matches any user with a name that matches Regexp at server server . Example:

acl
tests:
user_regexp:
- "Atestl": example.org
- "Atest2@example.org"

server_regexp: Regexp: Matches any JID from the server that matches Regexp . Example:

acl:
icq:
server_regexp: "Aicg\\."

- 74/512 -

Copyright © 2008 - 2024 ProcessOne

Access Rights

* resource_regexp: Regexp: Matches any JID with a resource that matches Regexp . Example:

acl
icq:
resource_regexp: "Alaptop\\."

* node _regexp: {UserRegexp: ServerRegexp} : Matches any user with a name that matches userrRegexp at any server that matches
ServerRegexp . Example:
acl:
yozhik:

node_regexp:
"Ayozhik$": "Aexample.(com|org)S$"

* user_glob: Glob:

* user_glob: {Glob: Server}:
* server_glob: Glob:

* resource_glob: Glob:

* node_glob: {UserGlob: ServerGlob}: This is the same as above. However, it uses shell glob patterns instead of regexp. These
patterns can have the following special characters:

e *:matches any string including the null string.
* 2 : matches any single character.

e [...]:matches any of the enclosed characters. Character ranges are specified by a pair of characters separated by a - . If the
first character after [isa !, any character not enclosed is matched.

Access Rules
The access_rules option is used to allow or deny access to different services. The syntax is:

access_rules:
AccessName:
- allow|deny: ACLName|ACLDefinition

Each definition may contain arbitrary number of - allow or - deny sections, and each section can contain any number of acl
rules (as defined in previous section, it recognizes one additional rule acl: AcLName that matches when the ACL named AcLName
matches). If no ACL name or definition is defined, the ACL all is applied.

Definition's - allow and - deny sections are processed in top to bottom order, and first one for which all listed acl rules matches
is returned as result of access rule. If no rule matches, deny is returned.

To simplify configuration two shortcut version are available: - allow: acl and - allow, example below shows equivalent
definitions where short or long version are used:

access_rules:
a_short: admin
a_long:
- acl: admin
b_short:
- deny: banned
- allow
b_long:
- deny:
- acl: banned
- allow:
- all

If you define specific Access rights in a virtual host, remember that the globally defined Access rights have precedence over
those. This means that, in case of conflict, the Access granted or denied in the global server is used and the Access of a virtual
host doesn't have effect.

Example:

access_rules:
configure:

- 75/512 - Copyright © 2008 - 2024 ProcessOne

Access Rights

- allow: admin
something:
- deny: someone
- allow
s2s_banned:
- deny: problematic_hosts
- deny:
- acl: banned_forever
- deny:
- ip: 222.111.222.111/32
- deny:
- ip: 111.222.111.222/32
- allow
xmlrpc_access:
- allow:
- user: peter@example.com
- allow:
- user: ivone@example.com
- allow:
- user: bot@example.com
- ip: 10.0.0.0/24

The following Accessname are pre-defined:

* all: Always returns the value “allow’.

* none : Always returns the value ‘ deny ’.

Shaper Rules

The shaper_rules top-level option declares shapers to use for matching user/hosts. The syntax is:

shaper_rules:
ShaperRuleName:
- Number |ShaperName: ACLName|ACLDefinition

Semantic is similar to that described in Access Rights section, only difference is that instead using - allow or - deny, name of
shaper or number should be used.

Examples:

shaper_rules:
connections_limit:
- 10:
- user: peter@example.com
- 100: admin
=5
download_speed:
- fast: admin
- slow: anonymous_users
- normal
log_days: 30

Limiting Opened Sessions

The special access max_user_sessions specifies the maximum number of sessions (authenticated connections) per user. If a user
tries to open more sessions by using different resources, the first opened session will be disconnected. The error

session replaced will be sent to the disconnected session. The value for this option can be either a number, or infinity. The
default value is infinity .

The syntax is:

shaper_rules:
max_user_sessions
- Number: ACLName|ACLDefinition

This example limits the number of sessions per user to 5 for all users, and to 10 for admins:

shaper_rules:
max_user_sessions
- 10: admin
-5

-76/512 - Copyright © 2008 - 2024 ProcessOne

Shapers

Connections to Remote Server

The special access max_s2s_connections specifies how many simultaneous S2S connections can be established to a specific remote
XMPP server. The default value is 1. There’s also available the access max_s2s_connections_per_node .

The syntax is:

shaper_rules:
max_s2s_connections: MaxNumber

For example, let's allow up to 3 connections with each remote server:

shaper_rules:
max_s2s_connections: 3

Shapers

The shaper top-level option defines limitations in the connection traffic. The basic syntax is:

shaper:
ShaperName: Rate

where Rate stands for the maximum allowed incoming rate in bytes per second. When a connection exceeds this limit, ejabberd
stops reading from the socket until the average rate is again below the allowed maximum.

This example defines a shaper with name normal that limits traffic speed to 1,000bytes/second, and another shaper with name
fast that limits traffic speed to 50,000bytes/second:

shaper:
normal: 1000
fast: 50000

You can use the full syntax to set the Burstsize too:

shaper:
ShaperName:
rate: Rate
burst_size: BurstSize

With Burstsize you can allow client to send more data, but its amount can be clamped reasonably. Each connection is allowed to
send Burstsize of data before processing is delayed, and that amount is replenished by rate each second, but never more than

what Burstsize allows. This allows the client to send quite a bit of data at once, but still have limited amount of data to send on
constant basis.

In this example, the normal shaper has Rate setto 1000 and the Burstsize takes that same value. The not_normal shaper has the
same Rate that before, and sets a higher Burstsize:

shaper:
normal: 1000
not_normal:
rate: 1000
burst_size: 20000

- 77/512 - Copyright © 2008 - 2024 ProcessOne

Authentication

Authentication

Supported Methods
The authentication methods supported by ejabberd are:

e internal — See section Internal.

¢ external — See section External Script.

* ldap — See section LDAP.

¢ sql — See section Relational Databases.

* anonymous — See section Anonymous Login and SASL Anonymous.
* pam — See section PAM Authentication.

¢ jut — See section JWT Authentication.

The top-level option auth method defines the authentication methods that are used for user authentication. The option syntax is:

auth_method: [Methodl, Method2, ...]

When the auth_method option is omitted, ejabberd relies on the default database which is configured in default_db option. If this
option is not set neither, then the default authentication method will be internal.

Account creation is only supported by internal, external and sql auth methods.

General Options

The top-level option auth password format allows to store the passwords in SCRAM format, see the SCRAM section.
Other top-level options that are relevant to the authentication configuration: disable sasl mechanisms, fqdn.

Authentication caching is enabled by default, and can be disabled in a specific vhost with the option auth use cache. The global
authentication cache can be configured for all the authentication methods with the global top-level options: auth cache missed,
auth cache size, auth cache life time. For example:

auth_cache_size: 1500
auth_cache_life_time: 10 minutes
host_config:
example.org:
auth_method: [internal]
example.net:

auth_method: [ldap]
auth_use_cache: false

Internal

ejabberd uses its internal Mnesia database as the default authentication method. The value internal will enable the internal
authentication method.

To store the passwords in SCRAM format instead of plaintext, see the SCRAM section.

-78/512 - Copyright © 2008 - 2024 ProcessOne

External Script

Examples:

¢ To use internal authentication on example.org and LDAP authentication on example.net :

host_config:
example.org:
auth_method: [internal]
example.net:
auth_method: [ldap]

* To use internal authentication with hashed passwords on all virtual hosts:

auth_method: internal
auth_password_format: scram

External Script

In the external authentication method, ejabberd uses a custom script to perform authentication tasks. The server administrator

can write that external authentication script in any programming language.

Please check some example scripts, and the details on the interface between ejabberd and the script in the Developers >

Internals > External Authentication section.
Options:

e extauth pool name

* extauth pool size

* extauth program

Please note that caching interferes with the ability to maintain multiple passwords per account. So if your authentication
mechanism supports application-specific passwords, caching must be disabled in the host that uses this authentication method

with the option auth use cache.

This example sets external authentication, specifies the extauth script, disables caching, and starts three instances of the script

for each virtual host defined in ejabberd:

auth_method: [external]

extauth_program: /etc/ejabberd/JabberAuth.class.php
extauth_pool_size: 3

auth_use_cache: false

Anonymous Login and SASL Anonymous

The anonymous authentication method enables two modes for anonymous authentication:

Anonymous login : This is a standard login, that use the classical login and password mechanisms, but where password is accepted
or preconfigured for all anonymous users. This login is compliant with SASL authentication, password and digest non-SASL
authentication, so this option will work with almost all XMPP clients

SASL Anonymous : This is a special SASL authentication mechanism that allows to login without providing username or password
(see xep-0175). The main advantage of SASL Anonymous is that the protocol was designed to give the user a login. This is useful
to avoid in some case, where the server has many users already logged or registered and when it is hard to find a free username.
The main disadvantage is that you need a client that specifically supports the SASL Anonymous protocol.

The anonymous authentication method can be configured with the following options. Remember that you can use the host config

option to set virtual host specific options (see section Virtual Hosting):

 allow multiple connections

 anonymous_protocol

- 79/512 - Copyright © 2008 - 2024 ProcessOne

https://xmpp.org/extensions/xep-0175.html
https://xmpp.org/extensions/xep-0175.html

Examples:

* To enable anonymous login on all virtual hosts:

auth_method: [anonymous]
anonymous_protocol: login_anon

e Similar as previous example, but limited to public.example.org:

host_config:
public.example.org:
auth_method: [anonymous]
anonymous_protoco: login_anon

* To enable anonymous login and internal authentication on a virtual host:

host_config:
public.example.org:
auth_method:
- internal
- anonymous
anonymous_protocol: login_anon

* To enable SASL Anonymous on a virtual host:

host_config:
public.example.org:
auth_method: [anonymous]
anonymous_protocol: sasl_anon

* To enable SASL Anonymous and anonymous login on a virtual host:

host_config:
public.example.org:
auth_method: [anonymous]
anonymous_protocol: both

* To enable SASL Anonymous, anonymous login, and internal authentication on a virtual host:

host_config:
public.example.org:
auth_method:
- internal
- anonymous
anonymous_protocol: both

There are more configuration examples and XMPP client example stanzas in Anonymous users support .

PAM Authentication

PAM Authentication

ejabberd supports authentication via Pluggable Authentication Modules (PAM). PAM is currently supported in AIX, FreeBSD, HP-

UX, Linux, Mac OS X, NetBSD and Solaris.

If compiling ejabberd from source code, PAM support is disabled by default, so you have to enable PAM support when configuring

the ejabberd compilation: ./configure --enable-pam
Options:

* pam service

* pam userinfotype
Example:

auth_method: [pam]
pam_service: ejabberd

- 80/512 -

Copyright © 2008 - 2024 ProcessOne

https://www.ejabberd.im/Anonymous-users-support/
https://www.ejabberd.im/Anonymous-users-support/

JWT Authentication

Though it is quite easy to set up PAM support in ejabberd, there are several problems that you may need to solve:

* To perform PAM authentication, ejabberd uses external C-program called epam. By default, it is located in /var/1lib/ejabberd/
priv/bin/ directory. You have to set it root on execution in the case when your PAM module requires root privileges
(pam_unix.so for example). Also you have to grant access for ejabberd to this file and remove all other permissions from it.
Execute with root privileges:

chown root:ejabberd /var/lib/ejabberd/priv/bin/epam
chmod 4750 /var/lib/ejabberd/priv/bin/epam

Make sure you have the latest version of PAM installed on your system. Some old versions of PAM modules cause memory
leaks. If you are not able to use the latest version, you can kill(1) epam process periodically to reduce its memory
consumption: ejabberd will restart this process immediately.

ejabberd binary installers include epam pointing to module paths that may not work in your system. If authentication doesn't
work correctly, check if syslog (example: journalctl -t epam -f) reports errors like PAM unable to dlopen(/home/runner/... No
such file or directory. In that case, create a PAM configuration file (example: /etc/pam.d/ejabberd) and provide the real path
to that file in your machine:

#%PAM-1.0
auth sufficient /usr/1ib/x86_64-1linux-gnu/security/pam_unix.so audit
account sufficient /usr/1ib/x86_64-1linux-gnu/security/pam_unix.so audit

epam program tries to turn off delays on authentication failures. However, some PAM modules ignore this behavior and rely on
their own configuration options. You can create a configuration file (in Debian it would be /etc/pam.d/ejabberd). This example
shows how to turn off delays in pam_unix.so module:

#%PAM-1.0
auth sufficient pam_unix.so likeauth nullok nodelay
account sufficient pam_unix.so

That is not a ready to use configuration file: you must use it as a hint when building your own PAM configuration instead. Note
that if you want to disable delays on authentication failures in the PAM configuration file, you have to restrict access to this
file, so a malicious user can’t use your configuration to perform brute-force attacks.

* You may want to allow login access only for certain users. pam_listfile.so module provides such functionality.

e If you use pam_winbind to authorize against a Windows Active Directory, then /etc/nsswitch.conf must be configured to use
winbind as well.

JWT Authentication

ejabberd supports authentication using JSON Web Token (JWT). When enabled, clients send signed tokens instead of passwords,
which are checked using a private key specified in the jwt key option. JWT payload must look like this:

{
"jid": "test@example.org"
"exp": 1564436511

}

Options:

* jwt key
* jwt auth only rule

* jwt jid field
Example:

auth_method: jwt
jwt_key: /path/to/jwt/key

In this example, admins can use both JWT and plain passwords, while the rest of users can use only JWT.

the order is important here, don't use [sql, jwt]
auth_method: [jwt, sql]

- 81/512 - Copyright © 2008 - 2024 ProcessOne

SCRAM

access_rules:
jwt_only:
deny: admin
allow: all

jwt_auth_only_rule: jwt_only

Please notice that, when using JWT authentication, mod offline will not work. With JWT authentication the accounts do not exist
in the database, and there is no way to know if a given account exists or not.

For more information about JWT authentication, you can check a brief tutorial in the ejabberd 19.08 release notes.

SCRAM

The top-level option auth _password format defines in what format the users passwords are stored: SCRAM format or plaintext
format.

The top-level option auth_scram_hash defines the hash algorithm that will be used to scram the password.
ejabberd supports channel binding to the external channel, allowing the clients to use -pLus authentication mechanisms.
In summary, depending on the configured options, ejabberd supports:

® SCRAM_SHA-1(-PLUS)
* SCRAM_SHA-256(-PLUS)

* SCRAM_SHA-512(-PLUS)

For details about the client-server communication when using SCRAM, refer to SASL Authentication and SCRAM.

Internal storage

When ejabberd starts with internal auth method and SCRAM password format configured:

auth_method: internal
auth_password_format: scram

and detects that there are plaintext passwords stored, they are automatically converted to SCRAM format:

[info] Passwords in Mnesia table 'passwd' will be SCRAM'ed
[info] Transforming table 'passwd', this may take a while

SQL Database

Please note that if you use SQL auth method and SCRAM password format, the plaintext passwords already stored in the
database are not automatically converted to SCRAM format.

To convert plaintext passwords to SCRAM format in your database, use the convert to scram command:

ejabberdctl convert_to_scram example.org

Foreign authentication

Note on SCRAM using and foreign authentication limitations: when using the SCRAM password format, it is not possible to use
foreign authentication method in ejabberd, as the real password is not known.

Foreign authentication are use to authenticate through various bridges ejabberd provide. Foreign authentication includes at the
moment SIP and TURN auth support and they will not be working with SCRAM.

- 82/512 - Copyright © 2008 - 2024 ProcessOne

https://www.process-one.net/blog/ejabberd-19-08/
https://wiki.xmpp.org/web/SASL_Authentication_and_SCRAM

Database Configuration

Database Configuration

ejabberd uses its internal Mnesia database by default. However, it is possible to use a relational database, key-value storage or
an LDAP server to store persistent, long-living data.

ejabberd is very flexible: you can configure different authentication methods for different virtual hosts, you can configure
different authentication mechanisms for the same virtual host (fallback), you can set different storage systems for modules, and
so forth.

Supported storages
The following databases are supported by ejabberd:

e Mnesia . Used by default, nothing to setup to start using it

e MysqQL . Check the tutorial Using ejabberd with MySQL

* PostgreSQL

e MS SQL Server/sqQL Azure . Check the Microsoft SQL Server section
* sQLite

* Any opsc compatible database

» Redis (only for transient data). Check the Redis section

e LDAP is documented in the LDAP section

Virtual Hosting

If you define several host names in the ejabberd.yml configuration file, probably you want that each virtual host uses a different
configuration of database, authentication and storage, so that usernames do not conflict and mix between different virtual hosts.

For that purpose, the options described in the next sections must be set inside the host config top-level option for each virtual
host).

For example:

host_config:

public.example.org:
sql_type: pgsql
sql_server: localhost
sql_database: database-public-example-org
sql_username: ejabberd
sql_password: password
auth_method: [sql]

Default database

You can simplify your configuration by setting the default database with the default_db top-level option:

« it sets the default authentication method when the auth method top-level option is not configured

« it defines the database to use in ejabberd modules that support the db_type option, when that option is not configured.

Database Schema

Q updated in 24.06

- 83/512 - Copyright © 2008 - 2024 ProcessOne

https://www.erlang.org/doc/apps/mnesia/
https://www.erlang.org/doc/apps/mnesia/
https://www.mysql.com/
https://www.mysql.com/
https://www.postgresql.org/
https://www.postgresql.org/
https://www.microsoft.com/sql-server
https://www.microsoft.com/sql-server
https://sqlite.org/
https://sqlite.org/
https://en.wikipedia.org/wiki/Open_Database_Connectivity
https://en.wikipedia.org/wiki/Open_Database_Connectivity
https://redis.io/
https://redis.io/

Singlehost or Multihost

Waate

Modify the database schema and all its tables to match the installed ejabberd version. Not to be confused with upgrade ejabberd or
convert schema.

The update sqgl schema top-level option allows ejabberd to create and update the tables automatically in the SQL database when
using MySQL, PostgreSQL or SQLite. That option was added in ejabberd 23.10, and enabled by default in 24.06. If you can use
that feature:

1. Create the database in your SQL server

2. Create an account in the SQL server and grant it rights in the database

3. Configure in ejabberd the SQL Options that allow it to connect

4. Start ejabberd ...

5. and it will take care to create the tables (or update them if they exist from a previous ejabberd version)

If that option is disabled, or you are using a different SQL database, or an older ejabberd release, then you must create the tables
in the database manually before starting ejabberd. The SQL database schema files are available:

« If installing ejabberd from sources, sql files are in the installation directory. By default: /usr/local/lib/ejabberd/priv/sql

« If installing ejabberd from Process-One installer, sql files are in the ejabberd's installation path under <base>/lib/ejabberd*/
priv/sql

See ejabberd SQL Database Schema for details on database schemas.

Singlehost or Multihost

Q renamed from default/new to singlehost/multihost in 25.10
If using MySQL, PostgreSQL, Microsoft SQL or SQLite, you can choose between two database schemas:

¢ the singlehost schema is preferable when serving one massive domain, or just a few domains,
* the multihost schema is preferable when serving many small domains.
The singlehost schema stores only one XMPP domain in the database. The XMPP domain is not stored as this is the same for all

the accounts, and this saves space in massive deployments. However, to handle several domains, you have to setup one database
per domain and configure each one independently using host config, so in that case you may prefer the multihost schema.

The multihost schema stores the XMPP domain in a new column server_host in the database entries, so it allows to handle
several XMPP domains in a single ejabberd database. Using this schema is preferable when serving several XMPP domains and
changing domains from time to time. However, if you have only one massive domain, you may prefer to use the singlehost
schema.

To use the multihost schema, edit the ejabberd configuration file and enable sql schema multihost top-level option:

sql_schema_multihost: true

When creating the tables, if ejabberd can use the update sql schema top-level option as explained in the Database Schema
section, it will take care to create the tables with the correct schema.

On the other hand, if you are creating the tables manually, remember to use the proper SQL schema! For example, if you are
using MySQL and choose the singlehost schema, use mysql.sql. If you are using PostgreSQL and need the multihost schema, use
pg.new.sql.

- 84/512 - Copyright © 2008 - 2024 ProcessOne

SQL Options

.Wert

Change the database schema and all its tables from singlehost schema to multihost schema. Not to be confused with upgrade
ejabberd or update schema.

If you already have a MySQL or PostgreSQL database with the singlehost schema and contents, you can convert it to the
multihost schema:

e MySQL: Edit the file sql/mysql.old-to.new.sql which is included with ejabberd, fill DEFAULT HOST in the first line, and import
that SQL file in your database. Then enable the sql_schema_multihost top-level option in the ejabberd configuration, and restart
ejabberd.

* PostgreSQL: First enable the sql_schema_multihost top-level option and mod admin update sql in your ejabberd configuration:

sql_schema_multihost: true
modules:
mod_admin_update_sql: {}

then restart ejabberd, and finally execute the update sql command:

ejabberdctl update_sql

SQL Options

The actual database access is defined in the options with sql_ prefix. The values are used to define if we want to use ODBC, or
one of the two native interface available, PostgreSQL or MySQL.

To configure SQL there are several top-level options:

sql type

sql server

sql port

sql database

sql username

sql password

sql ssl, see section SQL with SSL connection

sql ssl verify

sql ssl cafile

sql ssl certfile

sql pool size

sql keepalive interval

sql odbc driver

sql start_interval

sql prepared statements

update sql schema, see section Database Schema

sql schema multihost, see section Singlehost or Multihost
Example of plain ODBC connection:

sql_server: "DSN=database;UID=ejabberd;PwD=password"

Example of MySQL connection:

-85/512 - Copyright © 2008 - 2024 ProcessOne

SQL with SSL Connection

sql_type: mysql

sql_server: server.company.com
sql_port: 3306 # the default
sql_database: mydb
sql_username: userl
sql_password: "xxxxxxxsxn
sql_pool_size: 5

SQL with SSL Connection

The sql ssl top-level option allows SSL encrypted connections to MySQL, PostgreSQL, and Microsoft SQL servers.

Please notice that ejabberd verifies the certificate presented by the SQL server against the CA certificate list. For that reason, if
your SQL server uses a self-signed certificate, you need to setup sql ssl verify and sql ssl cafile, for example:

sql_ssl: true
sql_ssl_verify: false
sql_ssl_cafile: "/path/to/sql_server_cacert.pem"

This tells ejabberd to ignore problems from not matching any CA certificate from default list, and instead try to verify using the
specified CA certificate.

SQL Authentication

You can authenticate users against an SQL database, see the option auth_method in the Authentication section.

To store the passwords in SCRAM format instead of plaintext, see the SCRAM section.

SQL Storage

Several ejabberd modules have options called db_type, and can store their tables in an SQL database instead of internal.

In this sense, if you defined your database access using the SQL Options, you can configure a module to use your database by
adding the option db_type: sql to that module.

Alternatively, if you want all modules to use your SQL database when possible, you may prefer to set SQL as your default
database.

Microsoft SQL Server

For now, MS SQL is only supported in Unix-like OS'es. Your Erlang/OTP must be compiled with ODBC support. And ejabberd too:
either configuring compilation with ./configure --enable-mssql --enable-odbc Or ./configure --enable-all.

Also, in some cases you need to add the machine name to sql_username, especially when you have sql_server defined as an IP
address, e.g.:

sql_type: mssql
sql_server: 1.2.3.4
sql_username: useri@host

By default, ejabberd will use the FreeTds driver. You need to have the driver file 1libtdsodbc.so installed in your library PATH on
your system. For example, in Debian, install with apt-get install tdsodbc .

If the FreeTDS driver is not installed in a standard location, or if you want to use another ODBC driver, you can specify the path
to the driver using the sql odbc driver option, available in ejabberd 20.12 or later. For example, if you want to use Microsoft
ODBC Driver 17 for SQL Server:

sql_odbc_driver: "/opt/microsoft/msodbcsql17/1ib64/1ibmsodbcsql-17.3.s0.1.1"

Note that if you use a Microsoft driver, you may have to use an IP address instead of a host name for the sql_server option.

- 86/512 - Copyright © 2008 - 2024 ProcessOne

https://www.freetds.org/
https://www.freetds.org/

Redis

If hostname (or IP address) is specified in sql_server option, ejabberd will connect using a an ODBC DSN connection string
constructed with:

* SERVER=sql server

* DATABASE=sql database

e UID=sql username

* PWD=sql password

* PORT=sql port

* ENCRYPTION=required (only if sql ssl is true)

e CLIENT CHARSET=UTF-8

Since ejabberd 23.04, it is possible to use different connection options by putting a full ODBC connection string in sql_server
(e.g. DSN=database;UID=ejabberd;Pwb=password). The DSN must be configured in existing system or user odbc.ini file, where it can

be configured as desired, using a driver from system odbcinst.ini. The sql odbc driver option will have no effect in this case and
unixobec must be installed on your machine.

If specifying an ODBC connection string, an ODBC connection string must also be specified for any other hosts using MS SQL
DB, otherwise the auto-generated ODBC configuration will interfere.

Redis

Redis is an advanced key-value cache and store. You can use it to store transient data, such as records for C2S (client) sessions.
The available top-level options are:

* redis_server

* redis_port

* redis_password
e redis_db

* redis_connect timeout
Example configuration:

redis_server: redis.server.com
redis_db: 1

- 87/512 - Copyright © 2008 - 2024 ProcessOne

http://www.unixodbc.org/
http://www.unixodbc.org/
https://redis.io/
https://redis.io/

LDAP Configuration

LDAP Configuration

Supported storages
The following LDAP servers are tested with ejabberd:

* Active Directory (see section Active Directory)
* OpenLDAP
* CommuniGate Pro

* Normally any LDAP compatible server should work; inform us about your success with a not-listed server so that we can list it
here.

LDAP

ejabberd has built-in LDAP support. You can authenticate users against LDAP server and use LDAP directory as vCard storage.

Usually ejabberd treats LDAP as a read-only storage: it is possible to consult data, but not possible to create accounts or edit
vCard that is stored in LDAP. However, it is possible to change passwords if mod_register module is enabled and LDAP server
supports RFC 3062 .

LDAP Connection

Two connections are established to the LDAP server per vhost, one for authentication and other for regular calls.
To configure the LDAP connection there are these top-level options:

* ldap servers

* ldap backups

* ldap encrypt

e ldap tls verify

* ldap tls certfile

* ldap tls cacertfile
* ldap tls depth

e ldap port

* ldap rootdn

* ldap password

* ldap deref aliases
Example:

auth_method: [ldap]
ldap_servers:
- ldapl.example.org
ldap_port: 389
ldap_rootdn: "cn=Manager,dc=domain,dc=org"
ldap_password: "*xxxxxxxxxn

When there are several LDAP servers available as backup, set one in 1dap_servers and the others in 1dap_backups . At server
start, ejabberd connects to all the servers listed in 1dap_servers . If a connection is lost, ejabberd connects to the next server in
ldap_backups . If the connection is lost, the next server in the list is connected, and this repeats infinitely with all the servers in
ldap_servers and ldap_backups until one is successfully connected:

ldap_servers:
- ldapl.example.org

- 88/512 - Copyright © 2008 - 2024 ProcessOne

https://openldap.org/
https://openldap.org/
https://www.communigate.com/
https://www.communigate.com/
https://tools.ietf.org/html/rfc3062
https://tools.ietf.org/html/rfc3062

LDAP Authentication

ldap_backups:
- ldap2.example.org
- ldap3.example.org

LDAP Authentication

You can authenticate users against an LDAP directory. Note that current LDAP implementation does not support SASL
authentication.

To configure LDAP authentication there are these top-level options:

* ldap base
* ldap uids
* ldap filter
* ldap dn filter

LDAP Examples

Common example

Let’s say ldap.example.org is the name of our LDAP server. We have users with their passwords in ou=Users, dc=example, dc=org
directory. Also we have addressbook, which contains users emails and their additional infos in ou=AddressBook, dc=example, dc=org
directory. The connection to the LDAP server is encrypted using TLS, and using the custom port 6123. Corresponding
authentication section should looks like this:

Authentication method

auth_method: [ldap]

DNS name of our LDAP server

ldap_servers: [ldap.example.org]

Bind to LDAP server as '"cn=Manager,dc=example,dc=org" with password "secret"
ldap_rootdn: "cn=Manager,dc=example,dc=org"

ldap_password: secret

ldap_encrypt: tls

ldap_port: 6123

Define the user's base

ldap_base: "ou=Users, dc=example, dc=org"

We want to authorize users from 'shadowAccount' object class only
ldap_filter: "(objectClass=shadowAccount)"

Now we want to use users LDAP-info as their vCards. We have four attributes defined in our LDAP schema: mail — email
address, givenname — first name, sn — second name, birthbay — birthday. Also we want users to search each other. Let’s see
how we can set it up:

modules:
mod_vcard:

db_type: ldap

We use the same server and port, but want to bind anonymously because
our LDAP server accepts anonymous requests to

"ou=AddressBook,dc=example,dc=org" subtree.

ldap_rootdn: ""

ldap_password: ""

define the addressbook's base

ldap_base: "ou=AddressBook,dc=example,dc=org"

uidattr: user's part of JID is located in the "mail" attribute
uidattr_format: common format for our emails

ldap_uids:

mail: "%u@mail.example.org"

We have to define empty filter here, because entries in addressbook does not
belong to shadowAccount object class

ldap_filter: ""

Now we want to define vCard pattern

ldap_vcard_map:

NICKNAME: {"%u": []} # just use user's part of JID as their nickname
GIVEN: {"%s": [givenName]}

FAMILY: {"%s": [sn]}

FN: {"%s, %s": [sn, givenName]} # example: "Smith, John"

EMAIL: {"%s": [mail]}

BDAY: {"%s": [birthDay]}
Search form

ldap_search_fields:

User: "%u"

Name: givenName

"Family Name": sn

Email: mail

Birthday: birthDay

-89/512 - Copyright © 2008 - 2024 ProcessOne

Shared Roster in LDAP

vCard fields to be reported
Note that JID is always returned with search results
ldap_search_reported:

"Full Name": FN

Nickname: NICKNAME

Birthday: BDAY

Note that mod_vcard with LDAP backend checks for the existence of the user before searching their information in LDAP.

Active Directory
Active Directory is just an LDAP-server with predefined attributes. A sample configuration is shown below:

auth_method: [ldap]

ldap_servers: [office.org] # List of LDAP servers

ldap_base: "DC=office,DC=org" # Search base of LDAP directory
ldap_rootdn: "CN=Administrator,CN=Users,DC=office,DC=org" # LDAP manager
ldap_password: "*******! # password to LDAP manager

ldap_uids: [sAMAccountName]

ldap_filter: "(memberof=*)"

modules:
mod_vcard:

db_type: ldap

ldap_vcard_map:
NICKNAME: {"%u": []}
GIVEN: {"%s": [givenName]}
MIDDLE: {"%s": [initials]}
FAMILY: {"%s": [sn]}
FN: {"%s": [displayName]}
EMAIL: {"%s": [mail]}
ORGNAME: {"%s": [company]}
ORGUNIT: {"%s": [department]}
CTRY: {"%s": [c]}
LOCALITY: {"%s": [1]}
STREET: {"%s": [streetAddress]}
REGION: {"%s": [st]}
PCODE: {"%s": [postalCode]}
TITLE: {"%s": [title]}
URL: {"%s": [wWwHomePage]}
DESC: {"%s": [description]}
TEL: {"%s": [telephoneNumber]}

ldap_search_fields:
User: "%u"
Name: givenName
"Family Name": sn
Email: mail
Company: company
Department: department
Role: title
Description: description
Phone: telephoneNumber

ldap_search_reported:
"Full Name": FN
Nickname: NICKNAME
Email: EMAIL

Shared Roster in LDAP

Since mod_shared roster ldap has a few complex options, some of them are documented with more detail here:

Filters

ldap_ufilter : “User Filter” - used for retrieving the human-readable name of roster entries (usually full names of people in the
roster). See also the parameters ldap_userdesc and ldap_useruid . If unspecified, defaults to the top-level parameter of the same
name. If that one also is unspecified, then the filter is assembled from values of other parameters as follows ([ldap_SOMETHING] is
used to mean “the value of the configuration parameter ldap_SOMETHING ”):

(&(&([ldap_memberattr]=[ldap_memberattr_format])([ldap_groupattr]=%g))[ldap_filter])

Subsequently %u and %g are replaced with a *. This means that given the defaults, the filter sent to the LDAP server would be
(&(memberuid=*)(cn=*)) . If however the 1dap_memberattr_format is something like uid=%u, ou=People,o=org, then the filter will be

(&(memberuid=uid=*, ou=People, 0=org)(cn=*)) .

ldap_filter : Additional filter which is AND-ed together with User Filter and Group Filter. If unspecified, defaults to the top-level
parameter of the same name. If that one is also unspecified, then no additional filter is merged with the other filters.

-90/512 - Copyright © 2008 - 2024 ProcessOne

Shared Roster in LDAP

Note that you will probably need to manually define the User and Group Filter (since the auto-assembled ones will not work) if:

* your ldap_memberattr_format is anything other than a simple %u,

* and the attribute specified with 1ldap_memberattr does not support substring matches.

An example where it is the case is OpenLDAP and (unique)MemberName attribute from the groupOf(Unique)Names objectClass.
A symptom of this problem is that you will see messages such as the following in your slapd.log :

get_filter: unknown filter type=130
filter="(&(?=undefined)(?=undefined)(something=else))"
Control parameters
These parameters control the behaviour of the module.
ldap_memberattr_format_re : A regex for extracting user ID from the value of the attribute named by 1dap_memberattr .
An example value “cN=(\\w*), (0U=.*,)*DC=company,DC=com” works for user IDs such as the following:
* CN=Romeo, 0U=Montague, DC=company, DC=com
® CN=Abram, OU=Servants, OU=Montague, DC=company, DC=com
® CN=Juliet,OU=Capulet,DC=company,DC=com
®* CN=Peter,OU=Servants, OU=Capulet, DC=company, DC=com
In case:

 the option is unset,
e or the re module in unavailable in the current Erlang environment,

« or the regular expression does not compile,

then instead of a regular expression, a simple format specified by ldap_memberattr_format is used. Also, in the last two cases an
error message is logged during the module initialization.

Also, note that in all cases ldap_memberattr_format (and *not* the regex version) is used for constructing the default “User/Group

Filter” — see section Filters.

- 91/512 - Copyright © 2008 - 2024 ProcessOne

-

ii.

ii.

-

ii.

Shared Roster in LDAP

Retrieving the roster

When the module is called to retrieve the shared roster for a user, the following algorithm is used:

. [step:rfilter] A list of names of groups to display is created: the Roster Filter is run against the base DN, retrieving the values of the

attribute named by ldap_groupattr .

. Unless the group cache is fresh (see the 1dap_group_cache validity option), it is refreshed:

. Information for all groups is retrieved using a single query: the Group Filter is run against the Base DN, retrieving the values of

attributes named by 1ldap_groupattr (group ID), ldap_groupdesc (group “Display Name”) and ldap_memberattr (IDs of group
members).

. group “Display Name”, read from the attribute named by 1dap_groupdesc, is stored in the cache for the given group

. the following processing takes place for each retrieved value of attribute named by 1dap_memberattr :

. the user ID part of it is extracted using ldap_memberattr_format(_re),

then (unless ldap_auth_check is set to off) for each found user ID, the module checks (using the ejabberd authentication
subsystem) whether such user exists in the given virtual host. It is skipped if the check is enabled and fails. This step is here for
historical reasons. If you have a tidy DIT and properly defined “Roster Filter” and “Group Filter”, it is safe to disable it by setting
ldap_auth_check to off — it will speed up the roster retrieval.

the user ID is stored in the list of members in the cache for the given group.

. For each item (group name) in the list of groups retrieved in step [step:rfilter]:

. the display name of a shared roster group is retrieved from the group cache

. for each IDs of users which belong to the group, retrieved from the group cache:

. the ID is skipped if it’s the same as the one for which we are retrieving the roster. This is so that the user does not have himself in

the roster.

the display name of a shared roster user is retrieved:

. first, unless the user name cache is fresh (see the 1dap_user_cache_validity option), it is refreshed by running the User Filter,

against the Base DN, retrieving the values of attributes named by 1dap_useruid and ldap_userdesc .

. then, the display name for the given user ID is retrieved from the user name cache.

Multi-Domain

By default, the module option 1dap_userjidattr is set to the empty string, in that case the JID of the user's contact is formed by
compounding UID of the contact @ Host of the user owning the roster.

When the option ldap_userjidattr is set to something like "mail", then it uses that field to determine the JID of the contact. This
is useful if the ldap mail attribute contains the JID of the accounts.

Basically, it allows us to define a groupOfNames (e.g. xmppRosterGroup) and list any users, anywhere in the ldap directory by
specifying the attribute defining the JID of the members.

This allows hosts/domains other than that of the roster owner. It is also more flexible, since the LDAP manager can specify the
JID of the users without any assumptions being made. The only down side is that there must be an LDAP attribute (field) filled in
for all Jabber/XMPP users.

Below is a sample, a relevant LDAP entry, and ejabberd's module configuration:

cn=Example Org Roster, ou=groups,o=Example Organisation,dc=acme,dc=com
objectClass: groupOfNames

objectClass: xmppRosterGroup

objectClass: top

xmppRosterStatus: active

member :

description: Roster group for Example Org

cn: Example Org Roster

uniqueMember: uid=john, ou=people, o=Example Organisation,dc=acme, dc=com

-92/512 - Copyright © 2008 - 2024 ProcessOne

Shared Roster in LDAP

uniqueMember: uid=pierre, ou=people, o=Example Organisation,dc=acme,dc=com
uniqueMember: uid=jane, ou=people, o=Example Organisation,dc=acme,dc=com

uid=john, ou=people, o=Example Organisation, dc=acme, dc=com
objectClass: top

objectClass: person

objectClass: organizationalPerson
objectClass: inetOrgPerson
objectClass: mailUser

objectClass: sipRoutingObject

uid: john

givenName: John

sn: Doe

cn: John Doe

displayName: John Doe

accountStatus: active

userPassword: secretpass

IMAPURL: imap://imap.example.net:143
mailHost: smtp.example.net

mail: john@example.net
sipLocalAddress: john@example.net

Below is the sample ejabberd.yml module configuration to match:

mod_shared_roster_ldap:
ldap_servers:
- "ldap.acme.com"
ldap_encrypt: tls
ldap_port: 636
ldap_rootdn: "cn=Manager,dc=acme, dc=com"
ldap_password: "supersecretpass"
ldap_base: "dc=acme,dc=com"
ldap_filter: "(objectClass=*)"
ldap_rfilter: "(&(objectClass=xmppRosterGroup)(xmppRosterStatus=active))"
ldap_gfilter: "(&(objectClass=xmppRosterGroup)(xmppRosterStatus=active)(cn=%g))"
ldap_groupattr: "cn"
ldap_groupdesc: "cn"
ldap_memberattr: "uniqueMember"
ldap_memberattr_format_re: "uid=([a-z.]*), (ou=.*,)*(0=.*,)*dc=acme, dc=com"
ldap_useruid: "uid"
ldap_userdesc: "cn"
ldap_userjidattr: "mail"
ldap_auth_check: false
ldap_user_cache_validity: 86400
ldap_group_cache_validity: 86400

Configuration examples

Since there are many possible p1T layouts, it will probably be easiest to understand how to configure the module by looking at
an example for a given DIT (or one resembling it).

FLAT DIT

This seems to be the kind of DIT for which this module was initially designed. Basically there are just user objects, and group
membership is stored in an attribute individually for each user. For example in a layout like this, it's stored in the ou attribute:

-93/512 - Copyright © 2008 - 2024 ProcessOne

https://en.wikipedia.org/wiki/Directory_Information_Tree
https://en.wikipedia.org/wiki/Directory_Information_Tree

Shared Roster in LDAP

dn: cn=anusiak,ou=people,ou=flat, dc=nodomain
cn: anusiak

objectClass: inetOrgPerson

sn: anusiak

uid: anusiak

displayName: Anusiak Wiejski

ou: lewa-lawka

dn: cn=czesio,ou=people,ou=flat,dc=nodomain
cn: czesio

SI: czesio

uid: czesio

displayName: Czeslaw Zombie

___w|ouw prawa-lawka

dn: ou=flat,dc=nodomain dn: ou=people,ou=flat,dc=nodomain objectClass: inetOrgPerson
objectClass: organizationalUnit objectClass: organizationalUnit
ou: flat ou: people dn: cn=konieczko,ou=people,ou=flat,dc=nodomain

cn: konieczko

objectClass: inetOrgPerson

sn: konieczko

uid: konieczko

displayName: Konieczko Madrala
ou: lewa-lawka

dn: cn=maslana,ou=people,ou=flat,dc=nodomain
cn: maslana

sn: maslana

uid: maslana

displayName: Maslana Dziany

ou: prawa-lawka

objectClass: inetOrgPerson

Such layout has a few downsides, including:

» information duplication - the group name is repeated in every member object
e difficult group management - information about group members is not centralized, but distributed between member objects

« inefficiency - the list of unique group names has to be computed by iterating over all users

This however seems to be a common DIT layout, so the module keeps supporting it. You can use the following configuration...

modules:
mod_shared_roster_1ldap:

ldap_base: "ou=flat,dc=nodomain"
ldap_rfilter: "(objectClass=inetOrgPerson)"
ldap_groupattr: ou
ldap_memberattr: cn
ldap_filter: "(objectClass=inetOrgPerson)"
ldap_userdesc: displayName

...to be provided with a roster upon connecting as user czesio, as shown in this figure:

-94/512 - Copyright © 2008 - 2024 ProcessOne

Buddies Accounts Tools Help

v prawa-lawka

Maslana Dziany W
Offline

v lewa-lawka

Anusiak Wiejski

Offline v

Konieczko Madrala

Offline W

() Available - ’ ‘

DEEP DIT

Shared Roster in LDAP

This type of DIT contains distinctly typed objects for users and groups - see the next figure. They are shown separated into

different subtrees, but it’s not a requirement.

dn: ou=people,ou=deep,dc=nodomain

dn: cn=anusiak,ou=people,ou=deep,dc=nodomain
cn: anusiak

objectClass: inetOrgPerson

sn: anusiak

uid: anusiak

displayName: Anusiak Wiejski

dn: cn=czesio,ou=people,ou=deep,dc=nodomain
cn: czesio

objectClass: inetOrgPerson

objectClass: uidObject

sI: czesio

uid: czesio

displayName: Czeslaw Zombie

dn: cn=konieczko,ou=people,ou=deep,dc=nodomain
cn: konieczko
objectClass: inetOrgPerson

objectClass: organizationalUnit
ou: people

dn: ou=deep,dc=nodomain
objectClass: organizationalUnit

ou: deep

\ displayName: Konieczko Madrala
dn: cn=maslana,ou=people,ou=deep,dc=nodomain

sn: konieczko
uid: konieczko

cn: maslana

sn: maslana

uid: maslana

displayName: Maslana Dziany
objectClass: inetOrgPerson

dn: ou=jabber-groups,ou=deep,dc=nodomain
objectClass: organizationalUnit
ou: jabber-groups

quleMember: cn=konieczko,ou=people,ou=deep,dc=nodomain

-95/512 -

dn: cn=lewa-lawka,ou=jabber-groups,ou=deep,dc=nodomain
cn: lewa-lawka

description: Pierwsza lawka po lewej

objectClass: groupOfUniqueNames

uniqueMember: cn=anusiak,ou=people,ou=deep,dc=nodomain

dn: cn=prawa-lawka,ou=jabber-groups,ou=deep,dc=nodomain
cn: prawa-lawka

objectClass: groupOfUniqueNames

uniqueMember: cn=czesio,ou=people,ou=deep,dc=nodomain
uniqueMember: cn=maslana,ou=people,ou=deep,dc=nodomain

description: Pierwsza lawka po prawej

Copyright © 2008 - 2024 ProcessOne

vCard in LDAP

If you use the following example module configuration with it:

modules:
mod_shared_roster_ldap:

ldap_base: "ou=deep,dc=nodomain"
ldap_rfilter: "(objectClass=groupOfUniqueNames)"
ldap_filter: ""
ldap_gfilter: "(&(objectClass=groupOfUniqueNames)(cn=%g))"
ldap_groupdesc: description
ldap_memberattr: uniqueMember
ldap_memberattr_format: "cn=%u,ou=people, ou=deep,dc=nodomain"
ldap_ufilter: "(&(objectClass=inetOrgPerson)(cn=%u))"
ldap_userdesc: displayName

...and connect as user czesio, then ejabberd will provide you with the roster shown in this figure:

A Buaay mee N] [o)

Buddies Accounts Tools Help

v Pierwsza lawka po prawej

Maslana Dziany
= Offline W

v Pierwsza lawka po lewej

Anusiak Wiejski

= Offline v
Konieczko Madrala

= Offline v

() Available -~ ’ I

vCard in LDAP

Since LDAP may be complex to configure in mod vcard, this section provides more details.

ejabberd can map LDAP attributes to vCard fields. This feature is enabled when the mod_vcard module is configured with
db_type:
ldap . Notice that it does not depend on the authentication method (see LDAP Authentication).

Usually ejabberd treats LDAP as a read-only storage: it is possible to consult data, but not possible to create accounts or edit
vCard that is stored in LDAP. However, it is possible to change passwords if mod_register module is enabled and LDAP server
supports RFC 3062 .

This feature has its own optional parameters. The first group of parameters has the same meaning as the top-level LDAP
parameters to set the authentication method: ldap_servers, ldap_port, ldap_rootdn, ldap_password, ldap_base, ldap_uids,
ldap_deref_aliases and ldap_filter . See section LDAP Authentication for detailed information about these options. If one of
these options is not set, ejabberd will look for the top-level option with the same name.

-96/512 - Copyright © 2008 - 2024 ProcessOne

https://tools.ietf.org/html/rfc3062
https://tools.ietf.org/html/rfc3062

vCard in LDAP

Examples:

* Let’s say ldap.example.org is the name of our LDAP server. We have users with their passwords in ou=Users, dc=example, dc=org
directory. Also we have addressbook, which contains users emails and their additional infos in
ou=AddressBook, dc=example, dc=org directory. Corresponding authentication section should looks like this:

authentication method
auth_method: 1ldap
DNS name of our LDAP server
ldap_servers:
- ldap.example.org
We want to authorize users from 'shadowAccount' object class only
ldap_filter: "(objectClass=shadowAccount)"

* Now we want to use users LDAP-info as their vCards. We have four attributes defined in our LDAP schema: mail — email
address, givenName — first name, sn — second name, birthpay — birthday. Also we want users to search each other. Let’s see
how we can set it up:

modules:
mod_vcard:
db_type: ldap
We use the same server and port, but want to bind anonymously because
our LDAP server accepts anonymous requests to
"ou=AddressBook, dc=example,dc=org" subtree.
ldap_rootdn: ""
ldap_password: ""
define the addressbook's base
ldap_base: "ou=AddressBook,dc=example,dc=org"
uidattr: user's part of JID is located in the "mail" attribute
uidattr_format: common format for our emails
ldap_uids: {"mail": "%u@mail.example.org"}
Now we want to define vCard pattern
ldap_vcard_map:
NICKNAME: {"%u": []} # just use user's part of JID as their nickname
FIRST: {"%s": [givenName]}
LAST: {"%s": [sn]}
FN: {"%s, %s": [sn, givenName]} # example: "Smith, John"
EMAIL: {"%s": [mail]}
BDAY: {"%s": [birthDay]}
Search form
ldap_search_fields:
User: "%u"
Name: givenName
"Family Name": sn
Email: mail
Birthday: birthDay
vCard fields to be reported
Note that JID is always returned with search results
ldap_search_reported:
"Full Name": FN
Nickname: NICKNAME
Birthday: BDAY

Note that mod_vcard with LDAP backend checks an existence of the user before searching their info in LDAP.

* ldap_vcard_map example:

ldap_vcard_map:
NICKNAME: {"%u": []} # just use user's part of JID as their nickname
FN: {"%s": [displayName]}
CTRY: {Russia: []}
EMAIL: {"%u@%d": [1}
DESC: {"%s\n%s": [title, description]}

* ldap_search_fields example:

ldap_search_fields:
User: uid
"Full Name": displayName
Email: mail

* ldap_search_reported example:

ldap_search_reported:
"Full Name": FN
Email: EMAIL
Birthday: BDAY
Nickname: NICKNAME

-97/512 - Copyright © 2008 - 2024 ProcessOne

Listen Modules

Listen Modules

gase note

This section describes the most recent ejabberd version. If you are using an old ejabberd release, please refer to the corresponding
archived version of this page in the Archive.

Listen Option

The listen top-level option defines for which ports, addresses and network protocols ejabberd will listen and what services will be
run on them.

Each element of the list is an associative array of listen options:

* port and module mandatory options
* ip, transport, unix_socket additional options

 other options for listening module, enumerated later.

For example:

listen:

port: 5222

ip: 127.0.0.1
module: ejabberd_c2s
starttls: true

port: 5269

transport: tcp
module: ejabberd_s2s_in

ejabberd_c2s

Client to Server connection in XMPP. Opposed to s2s.

Handles ¢2s connections.

General listen options supported: access, allow unencrypted sasl2, cafile, ciphers, dhfile, max fsm queue, max stanza size,
protocol options, send timeout, shaper, starttls, starttls required, tls, tls compression, tls verify, zlib.

ejabberd_s2s _in

Server to Server connection in XMPP. Opposed to c2s.

Handles incoming s2s connections.

General listen options supported: cafile, ciphers, dhfile, max fsm queue, max stanza size, protocol options, send timeout,
shaper, tls, tls compression.

-98/512 - Copyright © 2008 - 2024 ProcessOne

ejabberd service

ejabberd_service

Interacts with an external component as defined in XEP-0114: Jabber Component Protocol.
General listen options supported: access, cafile, certfile, check from, ciphers, dhfile, global routes, hosts, max fsm queue,
max stanza size, password, protocol options, send timeout, shaper, shaper rule, tls, tls compression.

mod_maqtt

Support for MQTT requires configuring mod_mqtt both in the listen and the modules sections. Check the mod mgtt module
options, and the MQTT Support section.

General listen options supported: backlog, max fsm queue, max payload size, send timeout, tls, tls verify.

ejabberd_stun

ejabberd can act as a stand-alone STUN/TURN server, and this module handles STUN/TURN requests as defined in rRrc 5389/
RFC 5766 . In that role ejabberd helps clients with ICE (rRrc 5245) or Jingle ICE (xep-0176) support to discover their external
addresses and ports and to relay media traffic when it is impossible to establish direct peer-to-peer connection.

General listen options supported: certfile, send timeout, shaper, tls,

-99/512 - Copyright © 2008 - 2024 ProcessOne

https://www.ejabberd.im/tutorials-transports/
https://xmpp.org/extensions/xep-0114.html
https://tools.ietf.org/html/rfc5389
https://tools.ietf.org/html/rfc5389
https://tools.ietf.org/html/rfc5766
https://tools.ietf.org/html/rfc5766
https://tools.ietf.org/html/rfc5245
https://tools.ietf.org/html/rfc5245
https://xmpp.org/extensions/xep-0176.html
https://xmpp.org/extensions/xep-0176.html

ejabberd stun

The specific ejabberd_stun configurable options are:

* auth_realm: String

When auth_type is set to user and you have several virtual hosts configured you should set this option explicitly to the virtual
host you want to serve on this particular listening port. Implies use_turn .

* auth_type: user|anonymous

Which authentication type to use for TURN allocation requests. When type user is set, ejabberd authentication backend is
used. For anonymous type no authentication is performed (not recommended for public services). The default is user . Implies

use_turn .
* shaper: Atom

For tcp transports defines shaper to use. The default is none .
* server_name: String

Defines software version to return with every response. The default is the STUN library version.
 turn_blacklist: String | [String,...]

Specify one or more IP addresses and/or subnet addresses/masks. The TURN server will refuse to relay traffic from/to
blacklisted IP addresses. By default, loopback addresses (127.0.0.6/8 and ::1/128) are blacklisted.

* turn_ipv4_address: String

The IPv4 address advertised by your TURN server. The address should not be NAT ed or firewalled. There is not default, so you
should set this option explicitly. Implies use_turn.

* turn_ipv6_address: String

The IPv6 address advertised by your TURN server. The address should not be NAT ed or firewalled. There is not default, so you
should set this option explicitly. Implies use_turn.

* turn_max_allocations: Integer|infinity

Maximum number of TURN allocations available from the particular IP address. The default value is 10. Implies use_turn.
* turn_max_permissions: Integer|infinity

Maximum number of TURN permissions available from the particular IP address. The default value is 10. Implies use_turn.
e turn_max_port: Integer

Together with turn_min_port forms port range to allocate from. The default is 65535. Implies use_turn.
e turn_min_port: Integer

Together with turn_max_port forms port range to allocate from. The default is 49152. Implies use_turn.
* use_turn: true|false

Enables/disables TURN (media relay) functionality. The default is false.

Example configuration with disabled TURN functionality (STUN only):

listen:
port: 5478
transport: udp

module: ejabberd_stun

port: 5478
module: ejabberd_stun

port: 5349
module: ejabberd_stun

tls: true
certfile: /etc/ejabberd/server.pem

Example configuration with TURN functionality. Note that STUN is always enabled if TURN is enabled. Here, only UDP section is
shown:

listen:

port: 5478
transport: udp

- 100/512 - Copyright © 2008 - 2024 ProcessOne

ejabberd sip

use_turn: true
turn_ipv4_address: 10.20.30.1
module: ejabberd_stun

ejabberd_sip
ejabberd has built-in support to handle SIP requests as defined in RFC 3261 .

To activate this feature, add the ejabberd_sip listen module, enable mod_sip module for the desired virtual host, and configure
DNS properly.

To add a listener you should configure ejabberd_sip listening module as described in Listen section. If option tls is specified,
option certfile must be specified as well, otherwise incoming TLS connections would fail.

General listen options supported: certfile, send timeout, tls.
Example configuration with standard ports (as per RFC 3261):

listen:

port: 5060
transport: udp
module: ejabberd_sip

port: 5060
module: ejabberd_sip

port: 5061
module: ejabberd_sip

tls: true

certfile: /etc/ejabberd/server.pem

Note that there is no StartTLS support in SIP and snI support is somewhat tricky, so for TLS you have to configure different
virtual hosts on different ports if you have different certificate files for them.

Next you need to configure DNS SIP records for your virtual domains. Refer to rrc 3263 for the detailed explanation. Simply put,
you should add NAPTR and SRV records for your domains. Skip NAPTR configuration if your DNS provider doesn't support this
type of records. It’s not fatal, however, highly recommended.

Example configuration of NAPTR records:

example.com IN NAPTR 10 0 "s" "SIPS+D2T" "" _sips._tcp.example.com.
example.com IN NAPTR 20 0 "s" "SIP+D2T" "" _sip._tcp.example.com.
example.com IN NAPTR 30 0 "s" "SIP+D2U" "" _sip._udp.example.com.

Example configuration of SRV records with standard ports (as per RFC 3261 :

_sip._udp IN SRV 0 0 5060 sip.example.com.
_sip._tcp IN SRV 0 0 5060 sip.example.com.
_sips._tcp 1IN SRV 0 0 5061 sip.example.com.

&rning

SIP authentication does not support SCRAM. As such, it is not possible to use mod_sip to authenticate when ejabberd has been set to
encrypt password with SCRAM.

ejabberd_http

Handles incoming HTTP connections.

With the proper request handlers configured, this serves HTTP services like ACME, API ReST, BOSH, CAPTCHA, Converse.js,
Fileserver, Matrix, OAuth, RegisterWeb, Upload, WebAdmin, WebSocket, XML-RPC, XMPP Provider, XMPP host-meta .

The ejabberd-contrib git repository contains other useful HTTP services: CAPTCHA (Rust), CAPTCHA (Erlang), HTTP Redirect,
MUC Logs, Prometheus, ReST (stanzas and API), Unified Push, WebPresence.

-101/512 - Copyright © 2008 - 2024 ProcessOne

https://tools.ietf.org/html/rfc3261
https://tools.ietf.org/html/rfc3261
https://tools.ietf.org/html/rfc3261
https://tools.ietf.org/html/rfc3261
https://en.wikipedia.org/wiki/Server_Name_Indication
https://en.wikipedia.org/wiki/Server_Name_Indication
https://tools.ietf.org/html/rfc3263
https://tools.ietf.org/html/rfc3263
https://tools.ietf.org/html/rfc3261
https://tools.ietf.org/html/rfc3261
https://github.com/processone/ejabberd-contrib/tree/master/mod_captcha_rust
https://github.com/processone/ejabberd-contrib/tree/master/mod_ecaptcha
https://github.com/processone/ejabberd-contrib/tree/master/mod_http_redirect
https://github.com/processone/ejabberd-contrib/tree/master/mod_muc_log_http
https://github.com/processone/ejabberd-contrib/tree/master/mod_prometheus
https://github.com/processone/ejabberd-contrib/tree/master/mod_rest
https://github.com/processone/ejabberd-contrib/tree/master/mod_unified_push
https://github.com/processone/ejabberd-contrib/tree/master/mod_webpresence

ejabberd http

Options: cafile, ciphers, custom headers, dhfile, protocol options, request handlers, send timeout, tag, tls, tls compression, and
the trusted proxies top-level option.

ejabberd_http_ws
This module enables XMPP communication over WebSocket connection as described in RFc 7395 .
WEBSOCKET CONFIG

To enable WebSocket, simply add a handler to the request_handlers section of an ejabberd_http listener:

listen:

port: 5280
module: ejabberd_http
request_handlers:

/websocket: ejabberd_http_ws

This module can be configured using those top-level options:

» websocket origin
» websocket ping interval

* websocket timeout
WEBSOCKET DISCOVERY

With the example configuration previously mentioned, the WebSocket URL would be: ws://localhost:5280/websocket

You may want to provide a host-meta file so clients can easily discover WebSocket service for your XMPP domain (see XEP-0156).
One easy way to provide that file is using mod_host_meta .

TESTING WEBSOCKET
A test client can be found on Github: WebSocket test client

There is an example configuration for WebSocket and Converse.js in the ejabberd 21.12 release notes.

ejabberd_xmlrpc
Handles XML-RPC requests to execute API commands. It is configured as a request handler in ejabberd http.
This is the minimum configuration required to enable the feature:

listen:

port: 5280
module: ejabberd_http
request_handlers:

/xmlrpc: ejabberd_xmlrpc

api_permissions:
"public commands":
who:
ip: 127.0.0.1/8
what:
- connected_users_number

Example Python3 script:

import xmlrpc.client
server = xmlrpc.client.ServerProxy("http://127.0.0.1:5280/xmlrpc/");
print(server.connected_users_number())

By default there is no restriction to who can execute what commands, so it is strongly recommended that you configure
restrictions using API Permissions.

This example configuration adds some restrictions (only requests from localhost are accepted, the XML-RPC query must include
authentication credentials of a specific account registered in ejabberd, and only two commands are accepted):

-102/512 - Copyright © 2008 - 2024 ProcessOne

https://tools.ietf.org/html/rfc7395
https://tools.ietf.org/html/rfc7395
https://xmpp.org/extensions/xep-0156.html#http
https://github.com/processone/xmpp-websocket-client

listen:
port: 5280
dpg Mgg
module: ejabberd_http
request_handlers:
/xmlrpc: ejabberd_xmlrpc

api_permissions:
"some XMLRPC commands":
from: ejabberd_xmlrpc
who:
- ip: 127.0.0.1
- user: useril@localhost
what:
- registered_users
- connected_users_number

Example Python3 script for that restricted configuration:

import xmlrpc.client

server = xmlrpc.client.ServerProxy("http://127.0.0.1:5280/xmlrpc/");

params = {}

params['host'] = 'localhost'

auth = {'user': 'userl'
'server': 'localhost',
'password': 'mypassil'

'admin': True}

def calling(command, data):

fn = getattr(server, command)

return fn(auth, data)

print(calling('registered_users',6 params))

Please notice, when using the old Python2, replace the two first lines with:

import xmlrpclib

server = xmlrpclib.Server("http://127.0.0.1:5280/xmlrpc/");

It's possible to use OAuth for authentication instead of plain password, see OAuth Support.

In ejabberd 20.03 and older, it was possible to configure ejabberd xmlrpc as a listener.

Examples

Just for reference, there's also the old ejabberd_xmlrpc documentation with example clients in other languages.

Examples

For example, the following simple configuration defines:

e There are three domains. The default certificate file is server.pem . However, the ¢2s and s2s connections to the domain

example.com use the file example_com.pem.

e Port 5222 listens for c2s connections with STARTTLS, and also allows plain connections for old clients.

» Port 5223 listens for c2s connections with the old SSL.

» Port 5269 listens for s2s connections with STARTTLS. The socket is set for IPv6 instead of IPv4.
 Port 5478 listens for STUN requests over UDP.

e Port 5280 listens for HTTP requests, and serves the HTTP-Bind (BOSH) service.

e Port 5281 listens for HTTP requests, using HTTPS to serve HTTP-Bind (BOSH) and the Web Admin as explained in Managing:

Web Admin. The socket only listens connections to the IP address 127.0.0.1.

hosts:
- example.com
- example.org
- example.net

certfiles:
- /etc/ejabberd/server.pem

- /etc/ejabberd/example_com.pem

listen:

-103/512 -

Copyright © 2008 - 2024 ProcessOne

https://www.ejabberd.im/ejabberd_xmlrpc/
https://www.ejabberd.im/ejabberd_xmlrpc/

Examples

port: 5222

module: ejabberd_c2s
access: c2s

shaper: c2s_shaper
starttls: true
max_stanza_size: 65536

port: 5223
module: ejabberd_c2s
access: c2s

shaper: c2s_shaper
tls: true
max_stanza_size: 65536

port: 5269
ipz Hgal

module: ejabberd_s2s_in
shaper: s2s_shaper
max_stanza_size: 131072

port: 5478
transport: udp
module: ejabberd_stun

port: 5280

module: ejabberd_http

request_handlers:
/bosh: mod_bosh

port: 5281

ip: 127.0.0.1

module: ejabberd_http

tls: true

request_handlers:
/admin: ejabberd_web_admin
/bosh: mod_bosh

s2s_use_starttls: optional
outgoing_s2s_families:

- ipv4

- ipvé
outgoing_s2s_timeout: 10000
trusted_proxies: [127.0.0.1, 192.168.1.11]

In this example, the following configuration defines that:

* ¢2s connections are listened for on port 5222 (all IPv4 addresses) and on port 5223 (SSL, IP 192.168.0.1 and fdca:
8ab6:a243:75ef::1) and denied for the user called ‘ bad ’.

* s2s connections are listened for on port 5269 (all IPv4 addresses) with STARTTLS for secured traffic strictly required, and the
certificates are verified. Incoming and outgoing connections of remote XMPP servers are denied, only two servers can connect:
“jabber.example.org” and “example.com”.

* Port 5280 is serving the Web Admin and the HTTP-Bind (BOSH) service in all the IPv4 addresses. Note that it is also possible
to serve them on different ports. The second example in section Managing: Web Admin shows how exactly this can be done. A
request handler to serve MQTT over WebSocket is also defined.

 All users except for the administrators have a traffic of limit 1,000Bytes/second

e The AIM transport aim.example.org is connected to port 5233 on localhost IP addresses (127.0.0.1 and ::1) with password

“aimsecret .
e The ICQ transport JIT (icq.example.org and sms.example.org) is connected to port 5234 with password ‘ jitsecret .
e The MSN transport msn.example.org is connected to port 5235 with password ‘msnsecret ’.
e The vahoo! transport yahoo.example.org is connected to port 5236 with password ‘ yahoosecret .
e The Gadu-Gadu transport gg.example.org is connected to port 5237 with password ‘ ggsecret ’.
e The Jabber Mail Component jmc.example.org is connected to port 5238 with password ‘ jmcsecret .

» The service custom has enabled the special option to avoiding checking the from attribute in the packets send by this
component. The component can send packets in behalf of any users from the server, or even on behalf of any server.

acl:
blocked:
user: bad
trusted_servers:
server:
- example.com
- jabber.example.org
xmlrpc_bot:
user:

- 104/512 - Copyright © 2008 - 2024 ProcessOne

https://www.ejabberd.im/pyaimt/
https://www.ejabberd.im/pyaimt/
https://www.ejabberd.im/pymsnt/
https://www.ejabberd.im/pymsnt/
https://www.ejabberd.im/yahoo-transport-2/
https://www.ejabberd.im/yahoo-transport-2/
https://www.ejabberd.im/jabber-gg-transport/
https://www.ejabberd.im/jabber-gg-transport/
https://www.ejabberd.im/jmc/
https://www.ejabberd.im/jmc/

- xmlrpc-robot@example.org

shaper:
normal: 1000

shaper_rules:
c2s_shaper:

- none: admin
- normal

access_rules:
c2s:

- deny: blocked
- allow

xmlrpc_access:

- allow: xmlrpc_bot

s2s:

- allow: trusted_servers

certfiles:

/path/to/ssl.pem

s2s_access: s2s
s2s_use_starttls: required_trusted
listen:

port: 5222

module: ejabberd_c2s
shaper: c2s_shaper
access: c2s

ip: 192.168.0.1
port: 5223

module: ejabberd_c2s
tls: true

access: c2s

ip: "FDCA:8AB6:A243:75EF::1"
port: 5223

module: ejabberd_c2s

tls: true

access: c2s

port: 5269
module: ejabberd_s2s_in

port: 5280
module: ejabberd_http
request_handlers:
/admin: ejabberd_web_admin
/bosh: mod_bosh
/mqtt: mod_mqtt

port: 4560
module: ejabberd_xmlrpc
access_commands: {}

ip: 127.0.0.1
port: 5233
module: ejabberd_service
hosts:
aim.example.org:
password: aimsecret

dpeg Mgad”
port: 5233
module: ejabberd_service
hosts:
aim.example.org:
password: aimsecret

port: 5234
module: ejabberd_service
hosts:
icq.example.org:
password: jitsecret
sms.example.org:
password: jitsecret

port: 5235
module: ejabberd_service
hosts:
msn.example.org:
password: msnsecret

port: 5236
module: ejabberd_service
password: yahoosecret

port: 5237
module: ejabberd_service
hosts:
gg.example.org:
password: ggsecret

port: 5238
module: ejabberd_service
hosts:

jmc.example.org:

- 105/512 -

Examples

Copyright © 2008 - 2024 ProcessOne

Examples

password: jmcsecret

port: 5239
module: ejabberd_service
check_from: false
hosts:
custom.example.org:
password: customsecret

Note, that for services based in jabberd14 or WPJabber you have to make the transports log and do XDB by themselves:

&l =
You have to add elogger and rlogger entries here when using ejabberd.

In this case the transport will do the logging.
==

<log id='logger'>
<host/>
<logtype/>
<format>%d: [%t] (%h): %s</format>
<file>/var/log/jabber/service. log</file>
</log>

<!--
Some XMPP server implementations do not provide
XDB services (for example, jabberd2 and ejabberd).
xdb_file.so is loaded in to handle all XDB requests.
)

<xdb id="xdb">
<host/>
<load>
<!-- this is a lib of wpjabber or jabberdi4 -->
<xdb_file>/usr/1lib/jabber/xdb_file.so</xdb_file>
</load>
<xdb_file xmlns="jabber:config:xdb_file">
<spool><jabberd:cmdline flag='s'>/var/spool/jabber</jabberd:cmdline></spool>
</xdb_file>
</xdb>

-106/512 - Copyright © 2008 - 2024 ProcessOne

Listen Options

Listen Options

gase note

This section describes the most recent ejabberd version. If you are using an old ejabberd release, please refer to the corresponding
archived version of this page in the Archive.

This is a detailed description of each option allowed by the listening modules:

access

AccessName

This option defines access to the port. The default value is all.

allow_unencrypted_sasl|2

true | false
As per xep-0388, ejabberd rejects SASL2 negotiations over non-TLS connections by default. Setting this option to true allows

SASL2 over plaintext connections, which may be useful in case TLS is terminated by some proxy in front of ejabberd.

backlog

Value

The backlog value defines the maximum length that the queue of pending connections may grow to. This should be increased if
the server is going to handle lots of new incoming connections as they may be dropped if there is no space in the queue (and
ejabberd was not able to accept them immediately). Default value is 5.

cafile

Path
Path to a file of CA root certificates. The default is to use system defined file if possible.

This option is useful to define the file for a specific port listener. To set a file for all client listeners or for specific vhosts, you can
use the c2s_cafile top-level option. To set a file for all server connections, you can use the s2s_cafile top-level option or the
ca_file top-level option.

Please note: if this option is set in ejabberd_c2s or ejabberd_s2s_in and the corresponding top-level option is also set (c2s_cafile,
s2s_cafile), then the top-level option is used, not this one.

certfile

Path

Path to the certificate file. Only makes sense when the tls options is set. If this option is not set, you should set the certfiles
top-level option or configure ACME.

check_from

true | false

- 107/512 - Copyright © 2008 - 2024 ProcessOne

https://xmpp.org/extensions/xep-0388.html#security
https://xmpp.org/extensions/xep-0388.html#security

ciphers

This option can be used with ejabberd_service only. XEP-0114 requires that the domain must match the hostname of the
component. If this option is set to false, ejabberd will allow the component to send stanzas with any arbitrary domain in the
‘from’ attribute. Only use this option if you are completely sure about it. The default value is true, to be compliant with
XEP-0114 .

ciphers

Ciphers
OpenSSL ciphers list in the same format accepted by ‘ openss1 ciphers ' command.
Please note: if this option is set in ejabberd c2s or ejabberd s2s_in and the corresponding top-level option is also set

(c2s_ciphers, s2s_ciphers), then the top-level option is used, not this one.

custom_headers

{Name: Value}

Specify additional HTTP headers to be included in all HTTP responses. Default value is: []

dhfile

Path

Full path to a file containing custom parameters for Diffie-Hellman key exchange. Such a file could be created with the command
openssl dhparam -out dh.pem 2048 . If this option is not specified, default parameters will be used, which might not provide the
same level of security as using custom parameters.

Please note: if this option is set in ejabberd_c2s or ejabberd_s2s_in and the corresponding top-level option is also set (c2s_dhfile,

s2s_dhfile), then the top-level option is used, not this one.

global_routes

true | false

This option emulates legacy behaviour which registers all routes defined in hosts on a component connected. This behaviour is
considered harmful in the case when it's desired to multiplex different components on the same port, so, to disable it, set
global_routes to false.

The default value is true, e.g. legacy behaviour is emulated: the only reason for this is to maintain backward compatibility with

existing deployments.

hosts

{Hostname: [HostOption, ...]}

The external Jabber component that connects to this ejabberd_service can serve one or more hostnames. As HostOption you can
define options for the component; currently the only allowed option is the password required to the component when attempt to
connect to ejabberd: password: Secret . Note that you cannot define in a single ejabberd_service components of different services:
add an ejabberd_service for each service, as seen in an example below. This option may not be necessary if the component
already provides the host in its packets; in that case, you can simply provide the password option that will be used for all the
hosts (see port 5236 definition in the example below).

ip
string()

The socket will listen only in that network interface. Depending on the type of the IP address, IPv4 or IPv6 will be used.

- 108/512 - Copyright © 2008 - 2024 ProcessOne

https://xmpp.org/extensions/xep-0114.html
https://xmpp.org/extensions/xep-0114.html
https://xmpp.org/extensions/xep-0114.html
https://xmpp.org/extensions/xep-0114.html

max_fsm queue

It is possible to specify a generic address ("0.0.0.0" for IPv4 or "::" for IPv6), so ejabberd will listen in all addresses. Note that
on some operating systems and/or OS configurations, listening on "::" will mean listening for IPv4 traffic as well as IPv6 traffic.

Some example values for IP address:

* "0.0.0.0" to listen in all IPv4 network interfaces. This is the default value when the option is not specified.
e "::" to listen in all IPv6 network interfaces
e "10.11.12.13" is the IPv4 address 160.11.12.13

e "::FFFF:127.0.0.1" is the IPv6 address ::FFFF:127.0.0.1/128

max_fsm_queue
Size

This option specifies the maximum number of elements in the queue of the FSM (Finite State Machine). Roughly speaking, each
message in such queues represents one XML stanza queued to be sent into its relevant outgoing stream. If queue size reaches
the limit (because, for example, the receiver of stanzas is too slow), the FSM and the corresponding connection (if any) will be
terminated and error message will be logged. The reasonable value for this option depends on your hardware configuration. This
option can be specified for ejabberd_service and ejabberd_c2s listeners, or also globally for ejabberd_s2s_out . If the option is not
specified for ejabberd_service or ejabberd_c2s listeners, the globally configured value is used. The allowed values are integers
and 'undefined’. Default value: '10000’.

max_payload_size

Size

Specify the maximum payload size in bytes. It can be either an integer or the word infinity . The default value is infinity .

max_stanza_size
Size

This option specifies an approximate maximum size in bytes of XML stanzas. Approximate, because it is calculated with the
precision of one block of read data. For example {max_stanza_size, 65536} . The default value is infinity . Recommended values
are 65536 for c2s connections and 131072 for s2s connections. s2s max stanza size must always much higher than c2s limit.
Change this value with extreme care as it can cause unwanted disconnect if set too low.

module

ModuleName

Mandatory option to define what listening module will serve the incoming connections to the port.

password

Secret

Specify the password to verify an external component that connects to the port.

port

pos_integer() | string()

Q improved in 20.07

- 109/512 - Copyright © 2008 - 2024 ProcessOne

protocol options

This mandatory option defines which port to listen for incoming connections: it can be a Jabber/XMPP standard port or any other
valid port number between 1 and 65535 to listen on TCP or UDP socket,

Alternatively, set the option to a string in form "unix:/path/to/socket" to create and listen on a unix domain socket /path/to/
socket .

1

Q improved in 25.03

If it's a relative path, then it's created in the mnesia spool directory. For example, if set to "unix:dir/file.socket", then the socket file
is created in /opt/ejabberd/database/dir/file.socket , or whatever path the Mnesia database is stored in your installation.

File permissions can be set using the unix socket option.

protocol_options
ProtocolOpts

List of general options relating to SSL/TLS. These map to openssL’s set_options() . The default entry is: "no_sslv3|
cipher_server_preference|no_compression"

Please note: if this option is set in ejabberd c2s or ejabberd _s2s_in and the corresponding top-level option is also set
(c2s_protocol_options, s2s_protocol options), then the top-level option is used, not this one.

request_handlers
{Path: Module}
To define one or several handlers that will serve HTTP requests in ejabberd_http . The Path is a string; so the URIs that start with

that Path will be served by Module. For example, if you want mod_foo to serve the URIs that start with /a/b/, and you also want
mod_bosh to serve the URIs /bosh/, use this option:

request_handlers:
/a/b: mod_foo
/bosh: mod_bosh
/mqtt: mod_mqtt

send_timeout

Integer | infinity
© newin21.07

Sets the longest time that data can wait to be accepted to sent by OS socket. Triggering this timeout will cause the server to
close it. By default it's set to 15 seconds, expressed in milliseconds: 15000

shaper

none | ShaperName

This option defines a shaper for the port (see section Shapers). The default value is none .
shaper_rule

none | ShaperRule

This option defines a shaper rule for ejabberd_service (see section Shapers). The recommended value is fast .

-110/512 - Copyright © 2008 - 2024 ProcessOne

https://www.openssl.org/docs/manmaster/man3/SSL_CTX_set_options.html
https://www.openssl.org/docs/manmaster/man3/SSL_CTX_set_options.html

starttls

starttls

true | false

This option specifies that STARTTLS encryption is available on connections to the port. You should also set the certfiles top-
level option or configure ACME.

This option gets implicitly enabled when enabling starttls_required or tls_verify.

starttls_required

true | false

This option specifies that STARTTLS encryption is required on connections to the port. No unencrypted connections will be
allowed. You should also set the certfiles top-level option or configure ACME.

Enabling this option implicitly enables also the starttls option.

tag
String
Allow specifying a tag in a listen section and later use it to have a special api_permissions just for it.
For example:

listen:

port: 4000
module: ejabberd_http
tag: "magic_listener"

api_permissions:
"magic_access":
from:
- tag: "magic_listener"
who: all
what: "*"

The default value is the empty string: "".

timeout

Integer

Timeout of the connections, expressed in milliseconds. Default: 5000

tls

true | false

This option specifies that traffic on the port will be encrypted using SSL immediately after connecting. This was the traditional
encryption method in the early Jabber software, commonly on port 5223 for client-to-server communications. But this method is
nowadays deprecated and not recommended. The preferable encryption method is STARTTLS on port 5222, as defined

RFC 6120: XMPP Core, which can be enabled in ejabberd with the option starttls.

If this option is set, you should also set the certfiles top-level option or configure ACME.
The option tls can also be used in ejabberd_http to support HTTPS.

Enabling this option implicitly disables the starttls option.

-11 1/512 - Copyright © 2008 - 2024 ProcessOne

https://xmpp.org/rfcs/rfc6120.html#tls
https://xmpp.org/rfcs/rfc6120.html#tls

tls compression

tls_compression

true | false
Whether to enable or disable TLS compression. The default value is false.

Please note: if this option is set in ejabberd_c2s or ejabberd_s2s_in and the corresponding top-level option is also set
(c2s_tls compression, s2s_tls compression), then the top-level option is used, not this one.

tls_verify
false | true
This option specifies whether to verify the certificate or not when TLS is enabled.
The default value is false, which means no checks are performed.

The certificate will be checked against trusted CA roots, either defined at the operation system level or defined in the listener
cafile. If trusted, it will accept the jid that is embedded in the certificate in the subjectAltname field of that certificate.

Enabling this option implicitly enables also the starttls option.

transport

tepludp

Defines the transport protocol. Default is tcp.

unix_socket

{mode|owner|group: Value}

Q added in 23.10

Set the mode, owner and group of the unix domain socket defined in the port option.
The owner and group must be specified as integers, not as names.
Example:

listen:

port: "unix:sockets/ctl_over_http.socket"
unix_socket:
mode: '0600'
owner: 117
group: 135
module: ejabberd_http
request_handlers:
/ctl: ejabberd_ctl
tag: "ctl over_http"

use_proxy_protocol
true | false

Is this listener accessed by proxy service that is using proxy protocol for supplying real IP addresses to ejabberd server. You can
read about this protocol in Proxy protocol specification. The default value of this option is false .

zlib
true | false

This option specifies that Zlib stream compression (as defined in xep-0138) is available on connections to the port.

- 112/512 - Copyright © 2008 - 2024 ProcessOne

https://www.haproxy.org/download/1.8/doc/proxy-protocol.txt
https://xmpp.org/extensions/xep-0138.html
https://xmpp.org/extensions/xep-0138.html

Top-Level Options

Top-Level Options

gase note

This section describes top level options of ejabberd 26.02. If you are using an old ejabberd release, please refer to the corresponding
archived version of this page in the Archive.

The options that changed in this version are marked with ¢ .

access_rules

{AccessName: {allow|deny: ACLName|ACLDefinition}}

This option defines Access Rules. Each access rule is assigned a name that can be referenced from other parts of the
configuration file (mostly from access options of ejabberd modules). Each rule definition may contain arbitrary number of allow
or deny sections, and each section may contain any number of ACL rules (see acl option). There are no access rules defined by
default.

Example:

access_rules:

configure:
allow: admin

something:
deny: someone
allow: all

s2s_banned:
deny: problematic_hosts
deny: banned_forever

deny:

ip: 222.111.222.111/32
deny

ip: 111.222.111.222/32
allow: all

xmlrpc_access:

allow:

user: peter@example.com
allow:

user: ivone@example.com
allow:

user: bot@example.com
ip: 10.0.0.0/24

acl

{ACLName: {ACLType: ACLValue}}

This option defines access control lists: named sets of rules which are used to match against different targets (such as a JID or an
IP address). Every set of rules has name AcLName : it can be any string except all or none (those are predefined names for the
rules that match all or nothing respectively). The name AcLname can be referenced from other parts of the configuration file, for

-113/512 - Copyright © 2008 - 2024 ProcessOne

acme

example in access rules option. The rules of AcLname are represented by mapping {AcLType: AcLvalue} . These can be one of the

following:

ip: Network
The rule matches any IP address from the Network .

node_glob: pattern
Same as node_regexp, but matching is performed on a specified pattern according to the rules used by the Unix shell.

node_regexp: user_regexp@server_regexp
The rule matches any JID with node part matching regular expression user_regexp and server part matching regular
expression server_regexp .

resource: Resource
The rule matches any JID with a resource Resource .

resource_glob: pattern
Same as resource_regexp , but matching is performed on a specified pattern according to the rules used by the Unix shell.

resource_regexp: Regexp
The rule matches any JID with a resource that matches regular expression Regexp .

server: Server
The rule matches any JID from server server . The value of server must be a valid hostname or an IP address.

server_glob: rattern
Same as server_regexp, but matching is performed on a specified pattern according to the rules used by the Unix shell.

server_regexp: Regexp
The rule matches any JID from the server that matches regular expression Regexp .

user: Username

If username is in the form of "user@server", the rule matches a JID against this value. Otherwise, if username is in the form of
"user", the rule matches any JID that has username in the node part as long as the server part of this JID is any virtual host
served by ejabberd.

user_glob: pattern
Same as user_regexp, but matching is performed on a specified pattern according to the rules used by the Unix shell.

user_regexp: Regexp

If Regexp is in the form of "regexp@server", the rule matches any JID with node part matching regular expression "regexp" as
long as the server part of this JID is equal to "server". If rRegexp is in the form of "regexp", the rule matches any JID with node
part matching regular expression "regexp" as long as the server part of this JID is any virtual host served by ejabberd.

acme

Options

-114/512 - Copyright © 2008 - 2024 ProcessOne

allow contrib modules

ACME configuration, to automatically obtain SSL certificates for the domains served by ejabberd, which means that certificate
requests and renewals are performed to some CA server (aka "ACME server") in a fully automated mode. The options are:

* auto: true | false
Whether to automatically request certificates for all configured domains (that yet have no a certificate) on server start or

configuration reload. The default is true.

* ca_url: URL
The ACME directory URL used as an entry point for the ACME server. The default value is https://acme-
v02.api.letsencrypt.org/directory - the directory URL of Let’s Encrypt authority.

e cert_type: rsa | ec
A type of a certificate key. Available values are ec and rsa for EC and RSA certificates respectively. It’s better to have RSA
certificates for the purpose of backward compatibility with legacy clients and servers, thus the default is rsa.

e contact: [Contact, ...]
A list of contact addresses (typically emails) where an ACME server will send notifications when problems occur. The value of
contact must be in the form of "scheme:address" (e.g. "mailto:user@domain.tld"). The default is an empty list which means an
ACME server will send no notices.

Example:

acme:
ca_url: https://acme-v02.api.letsencrypt.org/directory
contact:
- mailto:admin@domain.t1ld
- mailto:bot@domain.tld
auto: true
cert_type: rsa

allow_contrib_modules

true | false

Whether to allow installation of third-party modules or not. See ejabberd-modules documentation section. The default value is

true.

allow_multiple_connections

true | false

This option is only used when the anonymous mode is enabled. Setting it to true means that the same username can be taken
multiple times in anonymous login mode if different resource are used to connect. This option is only useful in very special
occasions. The default value is false.

anonymous_protocol

login_anon | sasl_anon | both

Define what anonymous protocol will be used:

* login_anon means that the anonymous login method will be used.
* sasl_anon means that the SASL Anonymous method will be used.

* both means that SASL Anonymous and login anonymous are both enabled.

The default value is sasl_anon.

api_permissions

[Permission, ...]

-115/512 - Copyright © 2008 - 2024 ProcessOne

https://acme-v02.api.letsencrypt.org/directory
https://acme-v02.api.letsencrypt.org/directory

append host config

Define the permissions for API access. Please consult the ejabberd Docs web — For Developers — ejabberd ReST API — API
Permissions.

append_host_config

{Host: Options}

Add a few specific options to a certain virtual host.

auth_cache_life_time

timeout ()

Same as cache life time, but applied to authentication cache only. If not set, the value from cache life time will be used.

auth_cache_missed

true | false

Same as cache missed, but applied to authentication cache only. If not set, the value from cache missed will be used.

auth_cache_size

pos_integer() | infinity

Same as cache size, but applied to authentication cache only. If not set, the value from cache size will be used.

auth_external_user_exists_check

true | false
Q added in 23.10

Supplement check for user existence based on mod last data, for authentication methods that don’t have a way to reliably tell if a
user exists (like is the case for jwt and certificate based authentication). This helps with processing offline message for those
users. The default value is true.

auth_method

[mnesia | sql | anonymous | external | jwt | ldap | pam, ...]

A list of authentication methods to use. If several methods are defined, authentication is considered successful as long as
authentication of at least one of the methods succeeds. The default value is [mnesia] .

auth_opts

[Option, ...]

This is used by the contributed module ejabberd_auth_http that can be installed from the ejabberd-contrib Git repository. Please
refer to that module’s README file for details.

auth_password_format

plain | scram

Q improved in 20.01

- 116/512 - Copyright © 2008 - 2024 ProcessOne

auth password types hidden in sasll

The option defines in what format the users passwords are stored, plain text or in SCRAM format:

* plain: The password is stored as plain text in the database. This is risky because the passwords can be read if your database
gets compromised. This is the default value. This format allows clients to authenticate using: the old Jabber Non-SASL
(XEP-0078), SASL PLAIN, SASL DIGEST-MD5, and SASL SCRAM-SHA-1/256/512(-PLUS).

e scram: The password is not stored, only some information required to verify the hash provided by the client. It is impossible to
obtain the original plain password from the stored information; for this reason, when this value is configured it cannot be
changed to plain anymore. This format allows clients to authenticate using: SASL PLAIN and SASL SCRAM-SHA-1/256/512(-
PLUS). The SCRAM variant depends on the auth scram hash option.

The default value is plain.

auth_password_types_hidden_in_sasl1

[plain | scram_shal | scram_sha256 | scram_sha512]
© addedin25.07

List of password types that should not be offered in SASL1 authenticatication. Because SASL1, unlike SASL2, can’t have list of
available mechanisms tailored to individual user, it’s possible that offered mechanisms will not be compatible with stored
password, especially if new password type was added recently. This option allows disabling offering some mechanisms in SASL1,
to a time until new password type will be available for all users.

auth_scram_hash

sha | sha256 | sha512

Hash algorithm that should be used to store password in SCRAM format. You shouldn’t change this if you already have
passwords generated with a different algorithm - users that have such passwords will not be able to authenticate. The default

value is sha.

auth_stored_password_types

[plain | scram_shal | scram_sha256 | scram_sha512]
© addedin25.03

List of password types that should be stored simultaneously for each user in database. When the user sets the account password,
database will be updated to store the password in formats compatible with each type listed here. This can be used to migrate
user passwords to a more secure format. If this option if set, it will override values set in auth scram hash and

auth password format options. The default value is [].

auth_use_cache

true | false

Same as use cache, but applied to authentication cache only. If not set, the value from use cache will be used.

c2s_calfile

Path

Full path to a file containing one or more CA certificates in PEM format. All client certificates should be signed by one of these
root CA certificates and should contain the corresponding JID(s) in subjectAltName field. There is no default value.

You can use host config to specify this option per-vhost.

-117/512 - Copyright © 2008 - 2024 ProcessOne

c2s_ciphers

To set a specific file per listener, use the listener’s cafile option. Please notice that c2s_cafile overrides the listener’s cafile
option.
c2s_ciphers
[Cipher, ...]
A list of OpenSSL ciphers to use for c2s connections. The default value is shown in the example below:
Example:

c2s_ciphers:
- HIGH
- '"laNuLL"
- "leNULL"
- "I3DES"
- "@STRENGTH"

c2s_dhfile
Path
Full path to a file containing custom DH parameters to use for c2s connections. Such a file could be created with the command

"openssl dhparam -out dh.pem 2048". If this option is not specified, 2048-bit MODP Group with 256-bit Prime Order Subgroup
will be used as defined in RFC5114 Section 2.3.

c2s_protocol_options
[Option, ...]

List of general SSL options to use for c2s connections. These map to OpenSSLs set_options() . The default value is shown in the
example below:

Example:

c2s_protocol_options:
- no_sslv3
- cipher_server_preference
- no_compression

c2s_tls_compression
true | false

Whether to enable or disable TLS compression for c2s connections. The default value is false.

ca_file
Path

Path to a file of CA root certificates. The default is to use system defined file if possible.

For server connections, this ca_file option is overridden by the s2s cafile option.
cache_life_time

timeout()

The time of a cached item to keep in cache. Once it’s expired, the corresponding item is erased from cache. The default value is
1 hour . Several modules have a similar option; and some core ejabberd parts support similar options too, see
auth cache life time, oauth cache life time, router cache life time, and sm cache life time.

- 118/512 - Copyright © 2008 - 2024 ProcessOne

cache missed

cache_missed

true | false

Whether or not to cache missed lookups. When there is an attempt to lookup for a value in a database and this value is not found
and the option is set to true, this attempt will be cached and no attempts will be performed until the cache expires (see
cache life time). Usually you don’t want to change it. Default is true . Several modules have a similar option; and some core
ejabberd parts support similar options too, see auth cache missed, oauth cache missed, router cache missed, and

sm_cache missed.

cache_size

pos_integer() | infinity

A maximum number of items (not memory!) in cache. The rule of thumb, for all tables except rosters, you should set it to the
number of maximum online users you expect. For roster multiply this number by 20 or so. If the cache size reaches this
threshold, it’s fully cleared, i.e. all items are deleted, and the corresponding warning is logged. You should avoid frequent cache
clearance, because this degrades performance. The default value is 1600 . Several modules have a similar option; and some core
ejabberd parts support similar options too, see auth cache size, oauth cache size, router cache size, and sm cache size.

captcha_cmd

Path | ModuleName
Q improved in 23.01

Full path to a script that generates CAPTCHA images. The keyword @VERSION@ is replaced with ejabberd version number in
xx.Yy format. The keyword @semver@ is replaced with ejabberd version number in semver format when compiled with Elixir’s
mix, or XX.YY format otherwise. Alternatively, it can be the name of a module that implements ejabberd CAPTCHA support. There
is no default value: when this option is not set, CAPTCHA functionality is completely disabled.

Examples:
When using the ejabberd installers or container image, the example captcha scripts can be used like this:

captcha_cmd: /opt/ejabberd-@VERSION@/lib/ejabberd-@SEMVER@/priv/bin/captcha.sh

captcha_host

String

Deprecated. Use captcha url instead.

captcha_limit
pos_integer() | infinity
Maximum number of CAPTCHA generated images per minute for any given JID. The option is intended to protect the server from
CAPTCHA DoS. The default value is infinity .
captcha_url
URL | auto | undefined
Q improved in 23.04

An URL where CAPTCHA requests should be sent. NOTE: you need to configure request_handlers for ejabberd http listener as
well. If set to auto, it builds the URL using a request_handler already enabled, with encryption if available. If set to undefined, it
builds the URL using the deprecated captcha host + /captcha. The default value is auto .

- 119/512 - Copyright © 2008 - 2024 ProcessOne

certfiles

certfiles

[Path, ...]

The option accepts a list of file paths (optionally with wildcards) containing either PEM certificates or PEM private keys. At
startup or configuration reload, ejabberd reads all certificates from these files, sorts them, removes duplicates, finds matching
private keys and then rebuilds full certificate chains for the use in TLS connections. Use this option when TLS is enabled in
either of ejabberd listeners: ejabberd_c2s, ejabberd_http and so on. NOTE: if you modify the certificate files or change the value
of the option, run ejabberdctl reload-config in order to rebuild and reload the certificate chains.

Examples:

If you use Let’s Encrypt certificates for your domain "domain.tld", the configuration will look like this:

certfiles:
- /etc/letsencrypt/live/domain.tld/fullchain.pem
- /etc/letsencrypt/live/domain.t1ld/privkey.pem

cluster_backend

Backend

A database backend to use for storing information about cluster. The only available value so far is mnesia .

cluster_nodes

[Node, ...]

A list of Erlang nodes to connect on ejabberd startup. This option is mostly intended for ejabberd customization and sophisticated

setups. The default value is an empty list.

default_db

mnesia | sql

Default database to store persistent data in ejabberd. Some components can be configured with specific toplevel options like
oauth db type. Many modules can be configured with specific module options, usually named db_type . The default value is

mnesia .

default_ram_db

mnesia | redis | sql

Default volatile (in-memory) storage for ejabberd. Some components can be configured with specific toplevel options like
router db type and sm db type. Some modules can be configured with specific module options, usually named ram_db_type . The

default value is mnesia .

define_keyword
{NAME: Value}
© addedin25.03
Allows to define configuration keywords.
Example:
define_keyword:

SQL_USERNAME: "eja.global"

host_config:

- 120/512 - Copyright © 2008 - 2024 ProcessOne

https://letsencrypt.org

localhost:
define_keyword:
SQL_USERNAME: "eja.localhost"

sql_username: "prefix.@SQL_USERNAME@"
define_macro

{NAME: Value}

Q improved in 25.03

Allows to define configuration macros.

Example:

define_macro:
DEBUG: debug
LOG_LEVEL: DEBUG
USERBOB:
user: bob@localhost

loglevel: LOG_LEVEL

acl
admin: USERBOB

disable_sasl_mechanisms

[Mechanism, ...]

define macro

Specify a list of SASL mechanisms (such as DIGEST-MD5 or SCRAM-SHA1) that should not be offered to the client. For convenience,
the value of Mechanism is case-insensitive. The default value is an empty list, i.e. no mechanisms are disabled by default.

disable_sasl_scram_downgrade_protection

true | false

Allows to disable sending data required by XEP-0474: SASL SCRAM Downgrade Protection. There are known buggy clients (like
those that use strophejs 1.6.2) which will not be able to authenticatate when servers sends data from that specification. This

options allows server to disable it to allow even buggy clients connects, but in exchange decrease MITM protection. The default
value of this option is false which enables this extension.

domain_balancing

{Domain: Options}

An algorithm to load-balance the components that are plugged on an ejabberd cluster. It means that you can plug one or several
instances of the same component on each ejabberd node and that the traffic will be automatically distributed. The algorithm to

-121/512 -

Copyright © 2008 - 2024 ProcessOne

ext api headers

deliver messages to the component(s) can be specified by this option. For any component connected as bomain, available options
are:

* component_number: 2..1000
The number of components to balance.

* type: value
How to deliver stanzas to connected components. The default value is random. Possible values:

- bare_destination
by the bare JID (without resource) of the packet’s to attribute

- bare_source
by the bare JID (without resource) of the packet’s from attribute is used

- destination
an instance is chosen by the full JID of the packet’s to attribute

- random
an instance is chosen at random

- source
by the full JID of the packet’s from attribute

Example:

domain_balancing:
component.domain.tld:
type: destination
component_number: 5
transport.example.org:
type: bare_source

ext_api_headers

Headers

String of headers (separated with commas ,) that will be provided by ejabberd when sending ReST requests. The default value
is an empty string of headers: "".

ext_api_http_pool_size

pos_integer ()

Define the size of the HTTP pool, that is, the maximum number of sessions that the ejabberd ReST service will handle
simultaneously. The default value is: 100 .

ext_api_path_oauth

Path

Define the base URI path when performing OAUTH ReST requests. The default value is: "/oauth" .

ext_api_url
URL

Define the base URI when performing ReST requests. The default value is: "http://localhost/api" .

extauth_pool_name

Name

-122/512 - Copyright © 2008 - 2024 ProcessOne

extauth pool size

Define the pool name appendix in external auth, so the full pool name will be extauth_pool_name . The default value is the
hostname.

extauth_pool_size
Size
The option defines the number of instances of the same external auth program to start for better load balancing. The default is

the number of available CPU cores.

extauth_program

Path

Indicate in this option the full path to the external authentication script. The script must be executable by ejabberd.

fgdn
Domain

A fully qualified domain name that will be used in SASL DIGEST-MD5 authentication. The default is detected automatically.

hide_sensitive_log_data

true | false

A privacy option to not log sensitive data (mostly IP addresses). The default value is false for backward compatibility.

host_config

{Host: Options}

The option is used to redefine options for virtual host Host . In the example below LDAP authentication method will be used on
virtual host domain.t1ld and SQL method will be used on virtual host example.org.

Example:

hosts:
- domain.tld
- example.org

auth_method:
- sql

host_config:

domain.tld:
auth_method:

- ldap

hosts

[Domainl, Domain2, ...]

List of one or more host names (or domains) that ejabberd will serve. This is a mandatory option.
hosts_alias

{Alias: Host}

Q added in 25.07

- 123/512 - Copyright © 2008 - 2024 ProcessOne

include config file

Define aliases for existing vhosts managed by ejabberd. An alias may be a regexp expression. This option is only consulted by the
ejabberd_http listener.

Example:

hosts:
- domain.tld
- example.org

hosts_alias:
xmpp.domain.tld: domain.tld
jabber.domain.tld: domain.tld
mytest.net: example.org
"exa*": example.org

include_config_file

[Filename, ...] | {Filename: Options}

Read and include additional file from Filename . If the value is provided in {Filename: Options} format, the options must be one
of the following:

* allow_only: [optionName, ...]
Allows only the usage of those options in the included file Filename . The options that do not match this criteria are not
accepted. The default value is to include all options.

* disallow: [OptionName, ...]
Disallows the usage of those options in the included file Filename . The options that match this criteria are not accepted. The
default value is an empty list.

install_contrib_modules
[Module, ...]
© addedin23.10
Modules from ejabberd-modules to install automatically at start time. The default value is an empty list of modules: [].
Example:
install_contrib_modules:

- mod_tombstones

modules:
mod_tombstones: {}

jwt_auth_only_rule

AccessName

This ACL rule defines accounts that can use only the JWT auth method, even if others are also defined in the ejabberd
configuration file. In other words: if there are several auth methods enabled for this host (JWT, SQL, ...), users that match this
rule can only use JWT. The default value is none .

jwt_jid_field
FieldName

By default, the JID is defined in the "jid" JWT field. In this option you can specify other JWT field name where the JID is defined.

jwt_key

FilePath

- 124/512 - Copyright © 2008 - 2024 ProcessOne

language

Path to the file that contains the JWT key. The default value is undefined .

language
Language

Define the default language of server strings that can be seen by XMPP clients. If an XMPP client does not possess xml:lang
attribute, the specified language is used. The default value is "en"

I[dap_backups

[HESE, ool

A list of IP addresses or DNS names of LDAP backup servers (see LDAP connection). When no servers listed in ldap servers
option are reachable, ejabberd connects to these backup servers. The default is an empty list, i.e. no backup servers specified.
Please notice that ejabberd only connects to the next server when the existing connection is lost; it doesn’t detect when a
previously-attempted server becomes available again.

I[dap_base
Base

LDAP base directory which stores users accounts. There is no default value: you must set the option in order for LDAP
connections to work properly.

I[dap_deref aliases

never | always | finding | searching

Whether to dereference aliases or not. The default value is never .

I[dap_dn_filter

{Filter: FilterAttrs}

This filter is applied on the results returned by the main filter. The filter performs an additional LDAP lookup to make the
complete result. This is useful when you are unable to define all filter rules in 1dap_filter . You can define "%u", "%d",

"%s"* and *"%D" pattern variables in Filter: "%u" is replaced by a user’s part of the JID, "%d" is replaced by the corresponding
domain (virtual host), all "%s" variables are consecutively replaced by values from the attributes in FilterAttrs and "%D" is
replaced by Distinguished Name from the result set. There is no default value, which means the result is not filtered. WARNING:
Since this filter makes additional LDAP lookups, use it only as the last resort: try to define all filter rules in ldap filter option if
possible.

Example:

ldap_dn_filter:
"(&(name=%s) (owner=%D) (user=%u@%d))": [sn]

Idap_encrypt
tls | none

Whether to encrypt LDAP connection using TLS or not. The default value is none . NOTE: STARTTLS encryption is not supported.

Idap_filter

Filter

-125/512 - Copyright © 2008 - 2024 ProcessOne

Idap password

An LDAP filter as defined in RFC4515. There is no default value. Example: "(&(objectClass=shadowAccount)(memberOf=XMPP
Users))". NOTE: don't forget to close brackets and don’t use superfluous whitespaces. Also you must not use "uid" attribute in
the filter because this attribute will be appended to the filter automatically.

l[dap_password

Password

Bind password. The default value is an empty string.

Idap_port

15165535

Port to connect to your LDAP server. The default port is 389 if encryption is disabled and 636 if encryption is enabled.

Idap_rootdn

ROOtDN

Bind Distinguished Name. The default value is an empty string, which means "anonymous connection".

Idap_servers

[Host, ...]

A list of IP addresses or DNS names of your LDAP servers (see LDAP connection). ejabberd connects immediately to all of them,
and reconnects infinitely if connection is lost. The default value is [localhost] .

Idap_tls_cacertfile

Path

A path to a file containing PEM encoded CA certificates. This option is required when TLS verification is enabled.

Idap_tls_certfile

Path
A path to a file containing PEM encoded certificate along with PEM encoded private key. This certificate will be provided by
ejabberd when TLS enabled for LDAP connections. There is no default value, which means no client certificate will be sent.

I[dap_tls_depth

Number

Specifies the maximum verification depth when TLS verification is enabled, i.e. how far in a chain of certificates the verification
process can proceed before the verification is considered to be failed. Peer certificate = 0, CA certificate = 1, higher level CA
certificate = 2, etc. The value 2 thus means that a chain can at most contain peer cert, CA cert, next CA cert, and an additional
CA cert. The default value is 1.

Idap_tls_verify

false | soft | hard

-126/512 - Copyright © 2008 - 2024 ProcessOne

https://tools.ietf.org/html/rfc4515

ldap uids

This option specifies whether to verify LDAP server certificate or not when TLS is enabled. When hard is set, ejabberd doesn’t

proceed if the certificate is invalid. When soft is set, ejabberd proceeds even if the check has failed. The default is false , which
means no checks are performed.

I[dap_uids
[Attr] | {Attr: AttrFormat}

LDAP attributes which hold a list of attributes to use as alternatives for getting the JID, where Attr is an LDAP attribute which
holds the user’s part of the JID and AttrFormat must contain one and only one pattern variable "%u" which will be replaced by

the user’s part of the JID. For example, "%u@example.org". If the value is in the form of [Attr] then AttrFormat is assumed to be
ll%ull .

listen
[Options, ...]

The option for listeners configuration. See the Listen Modules section for details.

log_burst_limit_count

Number

Q added in 22.10

The number of messages to accept in log_burst_limit_window_time period before starting to drop them. Default 500

log_burst_limit_window_time
Number

Q added in 22.10

The time period to rate-limit log messages by. Defaults to 1 second.

log_modules_fully

[Module, ...]

Q added in 23.01

List of modules that will log everything independently from the general loglevel option.

log_rotate_count
Number

The number of rotated log files to keep. The default value is 1, which means that only keeps ejabberd.log.0, error.log.6 and
crash.log.0.

log_rotate_size
pos_integer() | infinity

The size (in bytes) of a log file to trigger rotation. If set to infinity, log rotation is disabled. The default value is 10 Mb
expressed in bytes: 10485760 .

-127/512 - Copyright © 2008 - 2024 ProcessOne

mailto:u@example

loglevel

loglevel

none | emergency | alert | critical | error | warning | notice | info | debug

Verbosity of ejabberd logging. The default value is info. NOTE: previous versions of ejabberd had log levels defined in numeric
format (0..5). The numeric values are still accepted for backward compatibility, but are not recommended.

max_fsm_queue
Size

This option specifies the maximum number of elements in the queue of the FSM (Finite State Machine). Roughly speaking, each
message in such queues represents one XML stanza queued to be sent into its relevant outgoing stream. If queue size reaches
the limit (because, for example, the receiver of stanzas is too slow), the FSM and the corresponding connection (if any) will be
terminated and error message will be logged. The reasonable value for this option depends on your hardware configuration. The
allowed values are positive integers. The default value is 10000 .

modules

{Module: Options}

Set all the modules configuration options.

negotiation_timeout

timeout ()

Time to wait for an XMPP stream negotiation to complete. When timeout occurs, the corresponding XMPP stream is closed. The
default value is 120 seconds.

net_ticktime

timeout()

This option can be used to tune tick time parameter of net_kernel. It tells Erlang VM how often nodes should check if intra-node
communication was not interrupted. This option must have identical value on all nodes, or it will lead to subtle bugs. Usually
leaving default value of this is option is best, tweak it only if you know what you are doing. The default value is 1 minute .

new_sql_schema

true | false

Q obsoleted in 25.10

This option was renamed to sql schema multihost in ejabberd 25.10. Please update your configuration to use the new option
name

oauth_access

AccessName

By default creating OAuth tokens is not allowed. To define which users can create OAuth tokens, you can refer to an ejabberd
access rule in the oauth_access option. Use all to allow everyone to create tokens.

oauth_cache_life_time

timeout ()

-128/512 - Copyright © 2008 - 2024 ProcessOne

oauth cache missed

Same as cache life time, but applied to OAuth cache only. If not set, the value from cache life time will be used.

oauth_cache_missed

true | false

Same as cache missed, but applied to OAuth cache only. If not set, the value from cache missed will be used.

oauth_cache_rest _failure_life_time

timeout()
Q added in 21.01

The time that a failure in OAuth ReST is cached. The default value is infinity .

oauth_cache_size

pos_integer() | infinity

Same as cache size, but applied to OAuth cache only. If not set, the value from cache size will be used.

oauth_client_id_check

allow | db | deny
Define whether the client authentication is always allowed, denied, or it will depend if the client ID is present in the database.
The default value is allow.

oauth_db_type

mnesia | sql
Database backend to use for OAuth authentication. The default value is picked from default db option, or if it’s not set, mnesia
will be used.

oauth_expire

timeout()
Time during which the OAuth token is valid, in seconds. After that amount of time, the token expires and the delegated credential

cannot be used and is removed from the database. The default is 4294967 seconds.

oauth_use_cache

true | false

Same as use cache, but applied to OAuth cache only. If not set, the value from use cache will be used.

oom_Killer

true | false

Enable or disable OOM (out-of-memory) killer. When system memory raises above the limit defined in oom watermark option,
ejabberd triggers OOM Kkiller to terminate most memory consuming Erlang processes. Note that in order to maintain
functionality, ejabberd only attempts to kill transient processes, such as those managing client sessions, s2s or database
connections. The default value is true.

- 129/512 - Copyright © 2008 - 2024 ProcessOne

oom_queue

oom_queue
Size

Trigger OOM killer when some of the running Erlang processes have messages queue above this size . Note that such processes
won'’t be killed if oom killer option is set to false or if oom watermark is not reached yet.

oom_watermark

Percent

A percent of total system memory consumed at which OOM Kkiller should be activated with some of the processes possibly be
killed (see oom killer option). Later, when memory drops below this percent, OOM Kkiller is deactivated. The default value is 8o
percents.

outgoing_s2s_families
[ipv6 | ipv4, ...]
Q changed in 23.01

Specify which address families to try, in what order. The default is [ipve, ipv4] which means it first tries connecting with IPv6, if
that fails it tries using IPv4. This option is obsolete and irrelevant when using ejabberd 23.01 and Erlang/OTP 22, or newer
versions of them.

outgoing_s2s_ipv4_address

Address
© addedin20.12

Specify the IPv4 address that will be used when establishing an outgoing S2S IPv4 connection, for example "127.0.0.1". The
default value is undefined .

outgoing_s2s_ipv6_address

Address
© addedin20.12

Specify the IPv6 address that will be used when establishing an outgoing S2S IPv6 connection, for example "::FFFF:127.0.0.1".
The default value is undefined .

outgoing_s2s_port

1..65535

A port number to use for outgoing s2s connections when the target server doesn’t have an SRV record. The default value is 5269 .

outgoing_s2s_timeout

timeout()

The timeout in seconds for outgoing S2S connection attempts. The default value is 10 seconds.

pam_service

Name

- 130/512 - Copyright © 2008 - 2024 ProcessOne

pam userinfotype

This option defines the PAM service name. Refer to the PAM documentation of your operation system for more information. The
default value is ejabberd .

pam_userinfotype

username | jid

This option defines what type of information about the user ejabberd provides to the PAM service: only the username, or the
user’s JID. Default is username .

pgsql_users_number_estimate

true | false

Whether to use PostgreSQL estimation when counting registered users. The default value is false.

queue_dir
Directory

If queue type option is set to file, use this pirectory to store file queues. The default is to keep queues inside Mnesia directory.

queue_type
ram | file

Default type of queues in ejabberd. Modules may have its own value of the option. The value of ram means that queues will be
kept in memory. If value file is set, you may also specify directory in queue dir option where file queues will be placed. The
default value is ram.

redis_connect_timeout

timeout()

A timeout to wait for the connection to be re-established to the Redis server. The default is 1 second .

redis_db
Number

Redis database number. The defaultis o.

redis_password

Password

The password to the Redis server. The default is an empty string, i.e. no password.

redis_pool_size

Number

The number of simultaneous connections to the Redis server. The default value is 10.

redis_port

1..65535

- 131/512 - Copyright © 2008 - 2024 ProcessOne

redis queue type

The port where the Redis server is accepting connections. The default is 6379 .

redis_queue_type

ram | file
The type of request queue for the Redis server. See description of queue type option for the explanation. The default value is the

value defined in queue type or ram if the latter is not set.

redis_server

Host | IP Address | Unix Socket Path

Q improved in 24.12
A hostname, IP address or unix domain socket file of the Redis server. Setup the path to unix domain socket like: "unix:/path/to/

socket" . The default value is localhost .

registration_timeout

timeout ()
This is a global option for module mod register. It limits the frequency of registrations from a given IP or username. So, a user

that tries to register a new account from the same IP address or JID during this time after their previous registration will receive

an error with the corresponding explanation. To disable this limitation, set the value to infinity . The default value is

600 seconds .

replaced_connection_timeout

timeout ()

© added in 26.01
Maximum time that new session will wait for termination of session that it’s replacing. This allows old session to properly sends

its unavailable presences, and helps with potetnial race conditions between old and new sessions presences.

resource_conflict

setresource | closeold | closenew
NOTE: this option is deprecated and may be removed anytime in the future versions. The possible values match exactly the three

possibilities described in XMPP Core: section 7.7.2.2. The default value is closeold . If the client uses old Jabber Non-SASL

authentication (XEP-0078), then this option is not respected, and the action performed is closeold .

rest_proxy

Host

© addedin25.07
Address of a HTTP Connect proxy used by modules issuing rest calls (like ejabberd oauth rest)
rest_proxy_password
string()

Q added in 25.07

- 132/512 - Copyright © 2008 - 2024 ProcessOne

https://tools.ietf.org/html/rfc6120#section-7.7.2.2

rest proxy port

Password used to authenticate to HTTP Connect proxy used by modules issuing rest calls (like ejabberd oauth rest)

rest_proxy_port

1..65535
Q added in 25.07

Port of a HTTP Connect proxy used by modules issuing rest calls (like ejabberd oauth rest)

rest_proxy_username

string()
Q added in 25.07

Username used to authenticate to HTTP Connect proxy used by modules issuing rest calls (like ejabberd oauth rest)

router_cache_life_time

timeout()

Same as cache life time, but applied to routing table cache only. If not set, the value from cache life time will be used.

router_cache_missed

true | false

Same as cache missed, but applied to routing table cache only. If not set, the value from cache missed will be used.

router_cache_size

pos_integer() | infinity

Same as cache size, but applied to routing table cache only. If not set, the value from cache size will be used.

router_db_type

mnesia | redis | sql

Database backend to use for routing information. The default value is picked from default ram db option, or if it’s not set, mnesia
will be used.

router_use_cache

true | false

Same as use cache, but applied to routing table cache only. If not set, the value from use cache will be used.

rpc_timeout
timeout()

A timeout for remote function calls between nodes in an ejabberd cluster. You should probably never change this value since
those calls are used for internal needs only. The default value is 5 seconds.

- 133/512 - Copyright © 2008 - 2024 ProcessOne

s2s_access

S2s_access

Access

This Access Rule defines to what remote servers can s2s connections be established. The default value is all; no restrictions are
applied, it is allowed to connect s2s to/from all remote servers.

s2s_cafile
Path

A path to a file with CA root certificates that will be used to authenticate s2s connections. If not set, the value of ca file will be
used.

You can use host config to specify this option per-vhost.

s2s_ciphers
[Cipher, ...]

A list of OpenSSL ciphers to use for s2s connections. The default value is shown in the example below:

Example:

s2s_ciphers:
- HIGH
- "raNuLL"
- "leNULL"
- "I3DES"
- "@STRENGTH"

s2s_dhfile

Path

Full path to a file containing custom DH parameters to use for s2s connections. Such a file could be created with the command

"openssl dhparam -out dh.pem 2048". If this option is not specified, 2048-bit MODP Group with 256-bit Prime Order Subgroup
will be used as defined in RFC5114 Section 2.3.

s2s_dns_retries
Number

DNS resolving retries. The default value is 2.

s2s_dns_timeout
timeout()

The timeout for DNS resolving. The default value is 16 seconds.

s2s_max_retry_delay

timeout()

The maximum allowed delay for s2s connection retry to connect after a failed connection attempt. The default value is 300
seconds (5 minutes).

-134/512 - Copyright © 2008 - 2024 ProcessOne

s2s_protocol options

s2s_protocol_options
[Option, ...]

List of general SSL options to use for s2s connections. These map to OpenSSLs set_options() . The default value is shown in the
example below:

Example:

s2s_protocol_options:
- no_sslv3
- cipher_server_preference
- no_compression

S2s_queue_type

ram | file
The type of a queue for s2s packets. See description of queue type option for the explanation. The default value is the value

defined in queue type or ram if the latter is not set.

s2s_timeout

timeout ()

A time to wait before closing an idle s2s connection. The default value is 1 hour.

s2s_tls_compression

true | false

Whether to enable or disable TLS compression for s2s connections. The default value is false.

s2s_use_starttls

true | false | optional | required

Whether to use STARTTLS for s2s connections. The value of false means STARTTLS is prohibited. The value of true or optional
means STARTTLS is enabled but plain connections are still allowed. And the value of required means that only STARTTLS
connections are allowed. The default value is false (for historical reasons).

s2s_zlib

true | false

Whether to use zlib compression (as defined in XEP-0138) or not. The default value is false . WARNING: this type of
compression is nowadays considered insecure.

shaper

{ShaperName: Rate}

The option defines a set of shapers. Every shaper is assigned a name shapername that can be used in other parts of the
configuration file, such as shaper rules option. The shaper itself is defined by its rRate, where Rate stands for the maximum
allowed incoming rate in bytes per second. When a connection exceeds this limit, ejabberd stops reading from the socket until
the average rate is again below the allowed maximum. In the example below shaper normal limits the traffic speed to 1,000
bytes/sec and shaper fast limits the traffic speed to 50,000 bytes/sec:

Example:

- 135/512 - Copyright © 2008 - 2024 ProcessOne

https://xmpp.org/extensions/xep-0138.html

shaper rules

shaper:
normal: 1000
fast: 50000

shaper_rules

{ShaperRuleName: {Number |ShaperName: ACLName|ACLDefinition}}

This option defines shaper rules to use for matching user/hosts. Semantics is similar to access rules option, the only difference is
that instead using allow or deny, a name of a shaper (defined in shaper option) or a positive number should be used.

Example:

shaper_rules:
connections_limit:
10:
user: peter@example.com
100: admin
5: all
download_speed:
fast: admin
slow: anonymous_users
normal: all
log_days: 30

sm_cache_life_time

timeout()

Same as cache life time, but applied to client sessions table cache only. If not set, the value from cache life time will be used.

sm_cache_missed

true | false

Same as cache missed, but applied to client sessions table cache only. If not set, the value from cache missed will be used.

sm_cache_size

pos_integer() | infinity

Same as cache size, but applied to client sessions table cache only. If not set, the value from cache size will be used.
sm_db_type

mnesia | redis | sql

Database backend to use for client sessions information. The default value is picked from default ram db option, or if it’s not set,
mnesia will be used.

sm_use_cache

true | false

Same as use cache, but applied to client sessions table cache only. If not set, the value from use cache will be used.

sql_connect_timeout

timeout ()

A time to wait for connection to an SQL server to be established. The default value is 5 seconds.

-136/512 - Copyright © 2008 - 2024 ProcessOne

sql database

sql_database

Database

An SQL database name. For SQLite this must be a full path to a database file. The default value is ejabberd .

sqgl_flags
[mysql_alternative_upsert]
© added in 24.02

This option accepts a list of SQL flags, and is empty by default. mysql _alternative upsert forces the alternative upsert
implementation in MySQL.

sql_keepalive_interval
timeout ()

An interval to make a dummy SQL request to keep alive the connections to the database. There is no default value, so no
keepalive requests are made.

sql_odbc_driver
Path
© addedin20.12

Path to the ODBC driver to use to connect to a Microsoft SQL Server database. This option only applies if the sql type option is
set to mssql and sql server is not an ODBC connection string. The default value is: libtdsodbc.so

sql_password

Password

The password for SQL authentication. The default is empty string.

sql_pool_size
Size

Number of connections to the SQL server that ejabberd will open for each virtual host. The default value is 16 . WARNING: for
SQLite this value is 1 by default and it’s not recommended to change it due to potential race conditions.

sql_port
fIE5535)

The port where the SQL server is accepting connections. The default is 3306 for MySQL, 5432 for PostgreSQL and 1433 for MS
SQL. The option has no effect for SQLite.

sql_prepared_statements

true | false
© addedin20.01

This option is true by default, and is useful to disable prepared statements. The option is valid for PostgreSQL and MySQL.

-137/512 - Copyright © 2008 - 2024 ProcessOne

sql query timeout

sql_query_timeout
timeout()

A time to wait for an SQL query response. The default value is 60 seconds.

sql_queue_type
ram | file

The type of a request queue for the SQL server. See description of queue type option for the explanation. The default value is the
value defined in queue type or ram if the latter is not set.

sql_schema_multihost
true | false
@ renamed in 25.10

Whether to use the multihost SQL schema. All schemas are located at https://github.com/processone/ejabberd/tree/26.02/sql.
There are two schemas available. The legacy singlehost schema stores one XMPP domain into one ejabberd database. The
multihost schema can handle several XMPP domains in a single ejabberd database. The multihost schema is preferable when
serving several XMPP domains and/or changing domains from time to time. This avoid need to manage several databases and
handle complex configuration changes. The default depends on ./configure flag --enable-sql-schema-multihost which is set at
compile time.

sql_server

Host | IP Address | ODBC Connection String | Unix Socket Path

Q improved in 24.06
The hostname or IP address of the SQL server. For sql type mssql or odbc this can also be an ODBC connection string. When

sql type is mysql or pgsql, this can be the path to a unix domain socket expressed like: "unix:/path/to/socket" .The default value
is localhost .

sql_ssl
true | false
Q improved in 20.03

Whether to use SSL encrypted connections to the SQL server. The option is only available for MySQL, MS SQL and PostgreSQL.
The default value is false.

sql_ssl_cafile
Path

A path to a file with CA root certificates that will be used to verify SQL connections. Implies sql ssl and sql ssl verify options are
set to true. There is no default which means certificate verification is disabled. This option has no effect for MS SQL.

sql_ssl_certfile
Path

A path to a certificate file that will be used for SSL connections to the SQL server. Implies sql ssl option is set to true. There is
no default which means ejabberd won’t provide a client certificate to the SQL server. This option has no effect for MS SQL.

- 138/512 - Copyright © 2008 - 2024 ProcessOne

https://github.com/processone/ejabberd/tree/26.02/sql

sql ssl verify

sql_ssl_verify

true | false
Whether to verify SSL connection to the SQL server against CA root certificates defined in sql ssl cafile option. Implies sql ssl

option is set to true. This option has no effect for MS SQL. The default value is false.

sql_start_interval

timeout()
A time to wait before retrying to restore failed SQL connection. The default value is 30 seconds.

sqgl_type
mssql | mysql | odbc | pgsql | sqlite

The type of an SQL connection. The default is odbc .

sql_username

Username

A user name for SQL authentication. The default value is ejabberd .

trusted_proxies

all | [Networkl, Network2, ...]

Specify what proxies are trusted when an HTTP request contains the header X-Forwarded-For . You can specify all to allow all

proxies, or specify a list of IPs, possibly with masks. The default value is an empty list. Using this option you can know the real IP
of the request, for admin purpose, or security configuration (for example using mod fail2ban). IMPORTANT: The proxy MUST be
configured to set the x-Forwarded-For header if you enable this option as, otherwise, the client can set it itself and as a result the

IP value cannot be trusted for security rules in ejabberd.

update_sqgl_schema

true | false

() updated in 24.06
Allow ejabberd to update SQL schema in MySQL, PostgreSQL and SQLite databases. This option was added in ejabberd 23.10,

and enabled by default since 24.06. The default value is true .

update_sqgl_schema_timeout

timeout()

© addedin24.07

Time allocated to SQL schema update queries. The default value is set to 5 minutes.

use_cache

true | false
Enable or disable cache. The default is true . Several modules have a similar option; and some core ejabberd parts support

similar options too, see auth use cache, oauth use cache, router use cache, and sm use cache.

- 139/512 - Copyright © 2008 - 2024 ProcessOne

validate stream

validate_stream

true | false
Whether to validate any incoming XML packet according to the schemas of supported XMPP extensions. WARNING: the
validation is only intended for the use by client developers - don’t enable it in production environment. The default value is

false.

version

string()
The option can be used to set custom ejabberd version, that will be used by different parts of ejabberd, for example by

mod version module. The default value is obtained at compile time from the underlying version control system.

websocket_origin

ignore | URL
This option enables validation for origin header to protect against connections from other domains than given in the
configuration file. In this way, the lower layer load balancer can be chosen for a specific ejabberd implementation while still

providing a secure WebSocket connection. The default value is ignore . An example value of the URL is

"https://test.example.org:8081" .

websocket_ping_interval

timeout ()
Defines time between pings sent by the server to a client (WebSocket level protocol pings are used for this) to keep a connection
active. If the client doesn’t respond to two consecutive pings, the connection will be assumed as closed. The value of o can be
used to disable the feature. This option makes the server sending pings only for connections using the RFC compliant protocol.
For older style connections the server expects that whitespace pings would be used for this purpose. The default value is 60

seconds.
websocket_timeout

timeout ()
Amount of time without any communication after which the connection would be closed. The default value is 300 seconds.

-140/512 - Copyright © 2008 - 2024 ProcessOne

https://github.com/processone/xmpp#supported-xmpp-elements

Modules Options

Modules Options

gase note

archived version of this page in the Archive.

The modules that changed in this version are marked with

This section describes modules options of ejabberd 26.02. If you are using an old ejabberd release, please refer to the corresponding

.

mod_adhoc

-hoc command

Command that can be executed by an XMPP client using XEP-0050.

This module implements XEP-0050: Ad-Hoc Commands. It’s an auxiliary module and is only needed by some of the other

modules.
Available options:

* report_commands_node: true | false

Provide the Commands item in the Service Discovery. Default value: false.

mod_adhoc_api

() added in 25.03

Execute API commands in a XMPP client using XEP-0050: Ad-Hoc Commands. This module requires mod adhoc (to execute the

commands), and recommends mod _disco (to discover the commands).

Available options:

* default_version: integer() | string()

What API version to use. If setting an ejabberd version, it will use the latest API version that was available in that c2s ejabberd

version. For example, setting "24.06" in this option implies 2. The default value is the latest version.

Example:

acl:
admin:
user: jan@localhost

api_permissions:

"adhoc commands":
from: mod_adhoc_api
who: admin
what:

- "[tag:roster]"
- "[tag:session]"
- stats

- status

modules:

mod_adhoc_api:
default_version: 2

mod_admin_extra

This module provides additional administrative commands.

-141/512 -

Copyright © 2008 - 2024 ProcessOne

https://xmpp.org/extensions/xep-0050.html
https://xmpp.org/extensions/xep-0050.html

mod_admin update sql

Details for some commands:

ban _account API: This command kicks all the connected sessions of the account from the server. It also changes their password
to a randomly generated one, so they can’t login anymore unless a server administrator changes their password again. It is
possible to define the reason of the ban. The new password also includes the reason and the date and time of the ban. See an
example below.

push_roster API (and push roster all API): The roster file must be placed, if using Windows, on the directory where you installed
ejabberd: c:/Program Files/ejabberd or similar. If you use other Operating System, place the file on the same directory where
the .beam files are installed. See below an example roster file.

srg create API: If you want to put a group Name with blank spaces, use the characters "'and '" to define when the Name
starts and ends. See an example below.

The module has no options.
Examples:
With this configuration, vCards can only be modified with mod _admin_extra commands:

acl
adminextraresource:
- resource: "modadminextraf8x,31ad"
access_rules:
vcard_set:
- allow: adminextraresource
modules:
mod_admin_extra: {3}
mod_vcard:
access_set: vcard_set

Content of roster file for push roster API:

[{<<"bob">>, <<"example.org">>, <<"workers'">>, <<"Bob">>},
{<<"mart">>, <<"example.org">>, <<"workers'">>, <<"Mart">>},
{<<"Rich">>, <<"example.org">>, <<"bosses">>, <<"Rich">>}].

With this call, the sessions of the local account which JID is boby@example.org will be kicked, and its password will be set to
something like BANNED_ACCOUNT—20080425T21:45:07—2176635—Spammed_rooms

ejabberdctl vhost example.org ban_account boby "Spammed rooms"
Call to srg create API using double-quotes and single-quotes:

ejabberdctl srg_create gl example.org "'Group number 1'" this_is g1 g1

API Tags: accounts, erlang, last, private, purge, roster, session, shared roster group, stanza, statistics, vcard

mod_admin_update_sql

This module can be used to convert your existing SQL database from the singlehost to the multihost schema. Check the section
Singlehost or Multihost for details. Please note that only MS SQL, MySQL, and PostgreSQL are supported. When the module is
loaded use update sql APL.

The module has no options.

API Tags: sql

mod_announce

This module enables configured users to broadcast announcements and to set the message of the day (MOTD). Configured users
can perform these actions with an XMPP client either using Ad-Hoc Commands or sending messages to specific JIDs. Equivalent
API commands are also available.

- 142/512 - Copyright © 2008 - 2024 ProcessOne

mod_antispam

\J
l(ote

This module can be resource intensive on large deployments as it may broadcast a lot of messages. This module should be disabled
for instances of ejabberd with hundreds of thousands users.

To send announcements using XEP-0050: Ad-Hoc Commands, this module requires mod adhoc (to execute the commands), and
recommends mod_disco (to discover the commands).

To send announcements by sending messages to specific JIDs, these are the destination JIDs:

* example.org/announce/all: Send the message to all registered users in that vhost. If the user is online and connected to several
resources, only the resource with the highest priority will receive the message. If the registered user is not connected, the
message is stored offline in assumption that offline storage (see mod offline) is enabled.

* example.org/announce/online : Send the message to all connected users. If the user is online and connected to several resources,
all resources will receive the message.

e example.org/announce/motd : Set the message of the day (MOTD) that is sent to users when they login. Also sends the message to
all connected users (similar to announce/online).

* example.org/announce/motd/update : Set the message of the day (MOTD) that is sent to users when they login. This does not send
the message to any currently connected user.

e example.org/announce/motd/delete : Remove the existing message of the day (MOTD) by sending a message to this JID.
There are similar destination JIDs to apply to all virtual hosts in ejabberd:

e example.org/announce/all-hosts/all: send to all registered accounts
¢ example.org/announce/all-hosts/online : send to online sessions

¢ example.org/announce/all-hosts/motd : set MOTD and send to online
* example.org/announce/all-hosts/motd/update : update MOTD

* example.org/announce/all-hosts/motd/delete : delete MOTD
Available options:

® access: AccessName
This option specifies who is allowed to send announcements and to set the message of the day. The default value is none (i.e.
nobody is able to send such messages).

* cache_life_time: timeout()
Same as top-level cache life time option, but applied to this module only.

* cache_missed: true | false
Same as top-level cache missed option, but applied to this module only.

* cache_size: pos_integer() | infinity
Same as top-level cache size option, but applied to this module only.

* db_type: mnesia | sql
Same as top-level default db option, but applied to this module only.

* use_cache: true | false
Same as top-level use cache option, but applied to this module only.

API Tags: announce

mod_antispam

Q added in 25.07

-143/512 - Copyright © 2008 - 2024 ProcessOne

https://xmpp.org/extensions/xep-0050.html

mod_antispam

Filter spam messages and subscription requests received from remote servers based on Real-Time Block Lists (RTBL), lists of

known spammer JIDs and/or URLs mentioned in spam messages. Traffic classified as spam is rejected with an error (and an [info]

message is logged) unless the sender is subscribed to the recipient’s presence.

Available options:

access_spam: Access

Access rule that controls what accounts may receive spam messages. If the rule returns allow for a given recipient, spam
messages aren’t rejected for that recipient. The default value is none , which means that all recipients are subject to spam
filtering verification.

cache_size: pos_integer()

Maximum number of JIDs that will be cached due to sending spam URLs. If that limit is exceeded, the least recently used
entries are removed from the cache. Setting this option to o disables the caching feature. Note that separate caches are used
for each virtual host, and that the caches aren’t distributed across cluster nodes. The default value is 10000 .

rtbhl_services: [service]

Query a RTBL service to get domains to block, as provided by xmppbl.org. Please note right now this option only supports one
service in that list. For blocking spam and abuse on MUC channels, please use mod muc rtbl for now. If only the host is
provided, the default node names will be assumed. If the node name is different than spam_source_domains, you can setup the
custom node name with the option spam_source_domains_node . The default value is an empty list of services.

Example:

rtbl_services:
- pubsub.serveri.localhost:
spam_source_domains_node: actual_custom_pubsub_node

spam_domains_file: none | Path

Path to a plain text file containing a list of known spam domains, one domain per line. Messages and subscription requests sent
from one of the listed domains are classified as spam if sender is not in recipient’s roster. This list of domains gets merged with
the one retrieved by an RTBL host if any given. Use an absolute path, or the @CONFIG PATH@ predefined keyword if the file
is available in the configuration directory. The default value is none .

spam_dump_file: false | true | Path

Path to the file to store blocked messages. Use an absolute path, or the @Loc_paTH@ predefined keyword to store logs in the
same place that the other ejabberd log files. If set to false, it doesn’t dump stanzas, which is the default. If set to true, it
stores in "@LOG_PATH@/spam_dump_@HOST@. log" .

spam_jids_file: none | Path

Path to a plain text file containing a list of known spammer JIDs, one JID per line. Messages and subscription requests sent
from one of the listed JIDs are classified as spam. Messages containing at least one of the listed JIDsare classified as spam as
well. Furthermore, the sender’s JID will be cached, so that future traffic originating from that JID will also be classified as
spam. Use an absolute path, or the @conFic_praTH@ predefined keyword if the file is available in the configuration directory. The
default value is none .

spam_urls file: none | Path

Path to a plain text file containing a list of URLs known to be mentioned in spam message bodies. Messages containing at least
one of the listed URLs are classified as spam. Furthermore, the sender’s JID will be cached, so that future traffic originating
from that JID will be classified as spam as well. Use an absolute path, or the @conFic_paTH@ predefined keyword if the file is
available in the configuration directory. The default value is none .

whitelist_domains_file: none | Path

Path to a file containing a list of domains to whitelist from being blocked, one per line. If either it is in spam_domains_file or
more realistically in a domain sent by a RTBL host (see option rtbl_services) then this domain will be ignored and stanzas
from there won’t be blocked. Use an absolute path, or the @CONFIG PATH@ predefined keyword if the file is available in the
configuration directory. The default value is none .

Example:

modules:
mod_antispam:
rtbl_services:
- xmppbl.org

-144/512 - Copyright © 2008 - 2024 ProcessOne

https://xmppbl.org/
https://xmppbl.org/
https://docs.ejabberd.im/admin/configuration/file-format/#predefined-keywords
https://docs.ejabberd.im/admin/configuration/file-format/#predefined-keywords
https://docs.ejabberd.im/admin/configuration/file-format/#predefined-keywords
https://docs.ejabberd.im/admin/configuration/file-format/#predefined-keywords
https://docs.ejabberd.im/admin/configuration/file-format/#predefined-keywords

mod_auth fast

spam_jids_file: "@CONFIG_PATH@/spam_jids.txt"
spam_dump_file: "@LOG_PATH@/spam/host-@HOST@.log"

API Tags: spam

mod_auth_fast

() added in 24.12

The module adds support for XEP-0484: Fast Authentication Streamlining Tokens that allows users to authenticate using self-
managed tokens.

Available options:

* db_type: mnesia
Same as top-level default db option, but applied to this module only.

* token_lifetime: timeout()
Time that tokens will be kept, measured from it’s creation time. Default value set to 30 days

* token_refresh_age: timeout()
This time determines age of token, that qualifies for automatic refresh. Default value set to 1 day

Example:

modules:
mod_auth_fast:
token_lifetime: 14days

mod_avatar

The purpose of the module is to cope with legacy and modern XMPP clients posting avatars. The process is described in
XEP-0398: User Avatar to vCard-Based Avatars Conversion.

Also, the module supports conversion between avatar image formats on the fly.
The module depends on mod _vcard, mod vcard xupdate and mod_pubsub.

Available options:

e convert: {From: To}
Defines image conversion rules: the format in From will be converted to format in To. The value of From can also be default,
which is match-all rule. NOTE: the list of supported formats is detected at compile time depending on the image libraries

installed in the system.

Example:

convert:
webp: jpg
default: png
* rate_limit: number
Limit any given JID by the number of avatars it is able to convert per minute. This is to protect the server from image

conversion DoS. The default value is 10.

mod_block_strangers

This module blocks and logs any messages coming from an unknown entity. If a writing entity is not in your roster, you can let
this module drop and/or log the message. By default you’ll just not receive message from that entity. Enable this module if you
want to drop SPAM messages.

- 145/512 - Copyright © 2008 - 2024 ProcessOne

https://xmpp.org/extensions/xep-0484.html
https://xmpp.org/extensions/xep-0398.html

mod_blocking

Available options:

® accCess: AccessName
The option is supposed to be used when allow_local users and allow_transports* are not enough. It’s an Access Rule where
*deny means the stanza will be rejected; there’s an exception if option captcha is configured. And allow means the sender is
whitelisted and the stanza will pass through. The default value is none , which means nothing is whitelisted.

* allow_local_users: true | false
This option specifies if strangers from the same local host should be accepted or not. The default value is true .

* allow_transports: true | false
If set to true and some server’s JID is in user’s roster, then messages from any user of this server are accepted even if no
subscription present. The default value is true.

* captcha: true | false
Whether to generate CAPTCHA challenges in response to incoming presence subscription requests from strangers. See also
section CAPTCHA of the Configuration Guide. The default value is false.

e drop: true | false
This option specifies if strangers messages should be dropped or not. The default value is true.

* log: true | false
This option specifies if strangers' messages should be logged (as info message) in ejabberd.log. The default value is false.

mod_blocking

The module implements XEP-0191: Blocking Command.
This module depends on mod privacy where all the configuration is performed.

The module has no options.

mod_bosh

This module implements XMPP over BOSH as defined in XEP-0124 and XEP-0206. BOSH stands for Bidirectional-streams Over
Synchronous HTTP. It makes it possible to simulate long lived connections required by XMPP over the HTTP protocol. In practice,
this module makes it possible to use XMPP in a browser without WebSocket support and more generally to have a way to use
XMPP while having to get through an HTTP proxy.

- 146/512 - Copyright © 2008 - 2024 ProcessOne

https://xmpp.org/extensions/xep-0191.html
https://xmpp.org/extensions/xep-0124.html
https://xmpp.org/extensions/xep-0206.html

mod_caps

Available options:

cache_life_time: timeout()
Same as top-level cache life time option, but applied to this module only.

cache_missed: true | false
Same as top-level cache missed option, but applied to this module only.

cache_size: pos_integer() | infinity
Same as top-level cache size option, but applied to this module only.

* json: true | false
This option has no effect.

max_concat: pos_integer() | infinity
This option limits the number of stanzas that the server will send in a single bosh request. The default value is unlimited .

max_inactivity: timeout()
The option defines the maximum inactivity period. The default value is 360 seconds.

max_pause: pos_integer()
Indicate the maximum length of a temporary session pause (in seconds) that a client can request. The default value is 120.

prebind: true | false
If enabled, the client can create the session without going through authentication. Basically, it creates a new session with
anonymous authentication. The default value is false.

queue_type: ram | file
Same as top-level queue type option, but applied to this module only.

ram_db_type: mnesia | sql | redis
Same as top-level default ram db option, but applied to this module only.

use_cache: true | false
Same as top-level use cache option, but applied to this module only.

Example:

listen:

port: 5222
module: ejabberd_c2s

port: 5443

module: ejabberd_http

request_handlers:
/bosh: mod_bosh

modules:
mod_bosh: {}

mod_caps

This module implements XEP-0115: Entity Capabilities. The main purpose of the module is to provide PEP functionality (see
mod pubsub).

- 147/512 - Copyright © 2008 - 2024 ProcessOne

https://xmpp.org/extensions/xep-0115.html

mod_carboncopy

Available options:

* cache_life_time: timeout()
Same as top-level cache life time option, but applied to this module only.

* cache_missed: true | false
Same as top-level cache missed option, but applied to this module only.

» cache_size: pos_integer() | infinity
Same as top-level cache size option, but applied to this module only.

* db_type: mnesia | sql
Same as top-level default db option, but applied to this module only.

* use_cache: true | false
Same as top-level use cache option, but applied to this module only.

mod_carboncopy

The module implements XEP-0280: Message Carbons. The module broadcasts messages on all connected user resources
(devices).

The module has no options.

mod_client_state

This module allows for queueing certain types of stanzas when a client indicates that the user is not actively using the client
right now (see XEP-0352: Client State Indication). This can save bandwidth and resources.

A stanza is dropped from the queue if it’s effectively obsoleted by a new one (e.g., a new presence stanza would replace an old
one from the same client). The queue is flushed if a stanza arrives that won’t be queued, or if the queue size reaches a certain
limit (currently 100 stanzas), or if the client becomes active again.

Available options:

* queue_chat_states: true | false
Queue "standalone" chat state notifications (as defined in XEP-0085: Chat State Notifications) while a client indicates
inactivity. The default value is true.

* queue_pep: true | false
Queue PEP notifications while a client is inactive. When the queue is flushed, only the most recent notification of a given PEP
node is delivered. The default value is true .

* queue_presence: true | false
While a client is inactive, queue presence stanzas that indicate (un)availability. The default value is true .
mod_configure
Q improved in 25.10

The module provides server configuration functionalities using XEP-0030: Service Discovery and XEP-0050: Ad-Hoc Commands:

 List and discover outgoing s2s, online client sessions and all registered accounts
* Most of the ad-hoc commands defined in XEP-0133: Service Administration

* Additional custom ad-hoc commands specific to ejabberd

Ad-hoc commands from XEP-0133 that behave differently to the XEP:

e get-user-roster : returns standard fields instead of roster items that client cannot display

- 148/512 - Copyright © 2008 - 2024 ProcessOne

https://xmpp.org/extensions/xep-0280.html
https://xmpp.org/extensions/xep-0352.html
https://xmpp.org/extensions/xep-0085.html
https://xmpp.org/extensions/xep-0030.html
https://xmpp.org/extensions/xep-0050.html
https://xmpp.org/extensions/xep-0133.html

mod_conversejs

Those ad-hoc commands from XEP-0133 do not include in the response the client that executed the command:

* get-active-users-num
® get-idle-users-num
® get-active-users

* get-idle-users
Those ad-hoc commands from XEP-0133 are not implemented:

* edit-blacklist

* edit-whitelist

* edit-admin

This module requires mod adhoc (to execute the commands), and recommends mod disco (to discover the commands).

Please notice that all the ad-hoc commands implemented by this module have an equivalent API Command that you can execute
using mod adhoc api or any other API frontend.

Available options:

®* access: AccessName
Q added in 25.03 This option defines which access rule will be used to control who is allowed to access the features provided

by this module. The default value is configure .
Example:

acl:
admin:
user: sun@localhost

access_rules:
configure:
allow: admin

modules:
mod_configure:
access: configure

mod_conversejs

Q improved in 25.07
This module serves a simple page for the Converse XMPP web browser client.

To use this module, in addition to adding it to the modules section, you must also enable it in listen — ejabberd_http —
request_handlers.

Make sure either mod bosh or ejabberd http ws are enabled in at least one request_handlers .
When conversejs_css and conversejs_script are auto, by default they point to the public Converse client.
When this module is enabled in modules, it adds automatically a requesthandler and link in WebAdmin. .

This module is available since ejabberd 21.12.

- 149/512 - Copyright © 2008 - 2024 ProcessOne

https://docs.ejabberd.im/developer/ejabberd-api/
https://conversejs.org/

mod_conversejs

Available options:

* bosh_service_url: auto | BoshURL
BOSH service URL to which Converse can connect to. The keyword @HOST@ is replaced with the real virtual host name. If set
to auto, it will build the URL of the first configured BOSH request handler. The default value is auto.

conversejs_css: auto | URL
Converse CSS URL. The keyword @HosT@ is replaced with the hostname. The default value is auto.

conversejs_options: {Name: value}
Q added in 22.05 Specify additional options to be passed to Converse. See Converse configuration. Only boolean, integer

and string values are supported; lists are not supported.

conversejs_plugins: [Filename]

List of additional local files to include as scripts in the homepage. Please make sure those files are available in the path
specified in conversejs_resources option, in subdirectory plugins/ . If using the public Converse client, then "libsignal" gets
replaced with the URL of the public library. The default value is [] .

conversejs_resources: Path
Q added in 22.05 Local path to the Converse files. If not set, the public Converse client will be used instead.

conversejs_script: auto | URL
Converse main script URL. The keyword @HosT@ is replaced with the hostname. The default value is auto.

default_domain: pomain
Specify a domain to act as the default for user JIDs. The keyword @HosT@ is replaced with the hostname. The default value is
@HOSTE@ .

websocket_url: auto | webSocketURL
A WebSocket URL to which Converse can connect to. The @HosT@ keyword is replaced with the real virtual host name. If set to
auto, it will build the URL of the first configured WebSocket request handler. The default value is auto .

Examples:
Manually setup WebSocket url, and use the public Converse client:

listen:

port: 5280
module: ejabberd_http
request_handlers:

/bosh: mod_bosh

/websocket: ejabberd_http_ws

/conversejs: mod_conversejs

modules:
mod_bosh: {}
mod_conversejs:
conversejs_plugins: ["libsignal"]
websocket_url: "ws://@HOST@:5280/websocket"

Host Converse locally and let auto detection of WebSocket and Converse URLs:

listen:

port: 443

module: ejabberd_http

tls: true

request_handlers:
/websocket: ejabberd_http_ws
/conversejs: mod_conversejs

modules:
mod_conversejs:
conversejs_resources: "/home/ejabberd/conversejs-x.y.z/package/dist"
conversejs_plugins: ["libsignal-protocol.min.js"]
File path is: /home/ejabberd/conversejs-x.y.z/package/dist/plugins/libsignal-protocol.min.js

Configure some additional options for Converse

modules:
mod_conversejs:
websocket_url: auto
conversejs_options:
auto_away: 30

- 150/512 - Copyright © 2008 - 2024 ProcessOne

https://conversejs.org/docs/html/configuration.html

mod_delegation

clear_cache_on_logout: true
iisn: "pt"

locked_domain: "@HOST@"
message_archiving: always
theme: dracula

mod_delegation

This module is an implementation of XEP-0355: Namespace Delegation. Only admin mode has been implemented by now.
Namespace delegation allows external services to handle IQ using specific namespace. This may be applied for external PEP
service.

ﬁrning

Security issue: Namespace delegation gives components access to sensitive data, so permission should be granted carefully, only if
you trust the component.

-
l(ote

This module is complementary to mod privilege but can also be used separately.

Available options:

°* namespaces: {Namespace: Options}
If you want to delegate namespaces to a component, specify them in this option, and associate them to an access rule. The
Options are:

® acCcCess: AccessName
The option defines which components are allowed for namespace delegation. The default value is none .

« filtering: Attributes
The list of attributes. Currently not used.

Examples:

Make sure you do not delegate the same namespace to several services at the same time. As in the example provided later, to
have the sat-pubsub.example.org component perform correctly disable the mod pubsub module.

access_rules:
external_pubsub:
allow: external_component
external_mam:
allow: external_component

acl:
external_component:
server: sat-pubsub.example.org

modules:
mod_delegation:
namespaces:
urn:xmpp:mam:1:
access: external_mam
http://jabber.org/protocol/pubsub:
access: external_pubsub

mod_disco

This module adds support for XEP-0030: Service Discovery. With this module enabled, services on your server can be discovered
by XMPP clients.

-151/512 - Copyright © 2008 - 2024 ProcessOne

https://xmpp.org/extensions/xep-0355.html
https://xmpp.org/extensions/xep-0030.html

mod fail2ban

Available options:

extra_domains: [Domain, ...]
With this option, you can specify a list of extra domains that are added to the Service Discovery item list. The default value is
an empty list.

name: Name
A name of the server in the Service Discovery. This will only be displayed by special XMPP clients. The default value is
ejabberd .

server_info: [Info, ...]
Specify additional information about the server, as described in XEP-0157: Contact Addresses for XMPP Services. Every Info
element in the list is constructed from the following options:

modules: all | [Module, ...]
The value can be the keyword all, in which case the information is reported in all the services, or a list of ejabberd modules,
in which case the information is only specified for the services provided by those modules.

name: Name
The field var name that will be defined. See XEP-0157 for some standardized names.

urls: [URI, ...]
A list of contact URIs, such as HTTP URLs, XMPP URIs and so on.

Example:

server_info:

modules: all
name: abuse-addresses
urls: ["mailto:abuse@shakespeare.lit"]

modules: [mod_muc]
name: "Web chatroom logs"
urls: ["http://www.example.org/muc-logs"]

modules: [mod_disco]

name: feedback-addresses

urls:
- http://shakespeare.lit/feedback.php
- mailto:feedback@shakespeare.lit
- xmpp: feedback@shakespeare. lit

modules:
- mod_disco
- mod_vcard
name: admin-addresses
urls:
- mailto:xmpp@shakespeare.lit
- xmpp:admins@shakespeare. lit

mod_fail2ban

The module bans IPs that show the malicious signs. Currently only C2S authentication failures are detected.

Unlike the standalone program, mod_fail2ban clears the record of authentication failures after some time since the first failure or

on a successful authentication. It also does not simply block network traffic, but provides the client with a descriptive error

message.

ﬁrning

You should not use this module behind a proxy or load balancer. ejabberd will see the failures as coming from the load balancer and,
when the threshold of auth failures is reached, will reject all connections coming from the load balancer. You can lock all your user
base out of ejabberd when using this module behind a proxy.

-152/512 - Copyright © 2008 - 2024 ProcessOne

https://xmpp.org/extensions/xep-0157.html

mod_host meta

Available options:

® access: AccessName
Specify an access rule for whitelisting IP addresses or networks. If the rule returns allow for a given IP address, that address
will never be banned. The AccessName should be of type ip. The default value is none .
* c2s_auth_ban_lifetime: timeout()
The lifetime of the IP ban caused by too many C2S authentication failures. The default value is 1 hour.
* c2s_max_auth_failures: number
The number of C2S authentication failures to trigger the IP ban. The default value is 20.

API Tags: accounts

mod_host_meta

© addedin22.05
This module serves small host-meta files as described in XEP-0156: Discovering Alternative XMPP Connection Methods.

To use this module, in addition to adding it to the modules section, you must also enable it in listen — ejabberd_http —
request_handlers.

Notice it only works if ejabberd http has tls enabled.

Available options:

* bosh_service_url: undefined | auto | BoshURL
BOSH service URL to announce. The keyword @HosT@ is replaced with the real virtual host name. If set to auto, it will build
the URL of the first configured BOSH request handler. The default value is auto .

* websocket_url: undefined | auto | wWebSocketURL
WebSocket URL to announce. The keyword @HosT@ is replaced with the real virtual host name. If set to auto, it will build the
URL of the first configured WebSocket request handler. The default value is auto .

Example:

listen:

port: 443

module: ejabberd_http

tls: true

request_handlers:
/bosh: mod_bosh
/websocket: ejabberd_http_ws
/.well-known/host-meta: mod_host_meta
/.well-known/host-meta.json: mod_host_meta

modules:
mod_bosh: {}
mod_host_meta:
bosh_service_url: "https://@HOST@:5443/bosh"
websocket_url: "wss://@HOST@:5443/websocket"

mod_http_api

This module provides a ReST interface to call ejabberd API commands using JSON data.

To use this module, in addition to adding it to the modules section, you must also enable it in listen — ejabberd_http —
request_handlers.

To use a specific API version N, when defining the URL path in the request handlers, add a vN. For example: /api/v2:
mod_http_api.

To run a command, send a POST request to the corresponding URL: http://localhost:5280/api/COMMAND-NAME

- 153/512 - Copyright © 2008 - 2024 ProcessOne

https://xmpp.org/extensions/xep-0156.html

Available options:

* default_version: integer() | string()

mod_http fileserver

Q added in 24.12 What API version to use when none is specified in the URL path. If setting an ejabberd version, it will use

the latest API version that was available in that ejabberd version. For example, setting "24.06" in this option implies 2. The

default value is the latest version.
Example:

listen:
port: 5280
module: ejabberd_http
request_handlers:
/api: mod_http_api
modules:

mod_http_api:
default_version: 2

mod_http_fileserver

@ improved docroot in 26.01

This simple module serves files from the local disk over HTTP.

- 154/512 -

Copyright © 2008 - 2024 ProcessOne

mod http fileserver

Available options:

-155/512 - Copyright © 2008 - 2024 ProcessOne

* accesslog: Path

File to log accesses using an Apache-like format. No log will be recorded if this option is not specified.

¢ content_types: {Extension: Type}

mod_http fileserver

Specify mappings of extension to content type. There are several content types already defined. With this option you can add

new definitions or modify existing ones. The default values are:

Example:

content_types:
.avi: video/avi
.bmp: image/bmp
.bz2: application/x-bzip2
.css: text/css
.gif: image/gif
.gz: application/x-gzip
.html: text/html

.ico: image/vnd.microsoft.icon
.jar: application/java-archive

.jpeg: image/jpeg
.Jpg: image/jpeg

.js: text/javascript
.json: application/json
.m4a: audio/mp4

.map: application/json
.mp3: audio/mpeg
.mp4: video/mp4
.mpeg: video/mpeg
.mpg: video/mpeg
.0gg: application/ogg
.pdf: application/pdf
.png: image/png

.rtf: application/rtf
.svg: image/svg+xml
Ltiff: image/tiff
.ttf: font/ttf

.txt: text/plain
.wav: audio/wav
.webp: image/webp
.woff: font/woff
.woff2: font/woff2
.xml: application/xml

.xpi: application/x-xpinstall
.xul: application/vnd.mozilla.xul+xml

.xz: application/x-xz
.zip: application/zip

* custom_headers: {Name: value}

Indicate custom HTTP headers to be included in all responses. There are no custom headers by default.

* default_content_type: Type
Specify the content type to use for unknown extensions. The default value is application/octet-stream.

¢ directory_indices: [Index,

-1

Indicate one or more directory index files, similarly to Apache’s bDirectoryIndex variable. When an HTTP request hits a
directory instead of a regular file, those directory indices are looked in order, and the first one found is returned. The default

value is an empty list.

* docroot: pathpir | {PathURL, PathDir}

Q improved in 26.01 Directory to serve the files from, or a map with several URL path (as specified in request handlers) and

their corresponding directory. This is a mandatory option.

Example:

listen:
port: 5280
module: ejabberd_http
request_handlers:

/pub/content: mod_http_fileserver
/share: mod_http_fileserver

/: mod_http_fileserver
modules:
mod_http_fileserver:
docroot:

* must_authenticate_with: [{username, Hostname},

/pub/content: /var/service/www
/share: /usr/share/javascript
/: /var/www

-]
List of accounts that are allowed to use this service. Default value: [].

- 156/512 -

Copyright © 2008 - 2024 ProcessOne

Examples:

mod_http upload

This example configuration will serve the files from the local directory /var/www in the address http://example.org:5280/pub/
content/ . In this example a new content type ogg is defined, png is redefined, and jpg definition is deleted:

listen:
port: 5280
module: ejabberd_http
request_handlers:
/pub/content: mod_http_fileserver

modules:
mod_http_fileserver:
docroot: /var/www
accesslog: /var/log/ejabberd/access. log
directory_indices:
- index.html
- main.htm
custom_headers:
X-Powered-By: Erlang/0TP
X-Fry: "It's a widely-believed fact!"
content_types:
.0gg: audio/ogg
.png: image/png
default_content_type: text/html

mod_http_upload

Q added content_types in 26.01

This module allows for requesting permissions to upload a file via HTTP as described in XEP-0363: HTTP File Upload. If the

request is accepted, the client receives a URL for uploading the file and another URL from which that file can later be

downloaded.

In order to use this module, it must be enabled in 1listen — ejabberd_http — request handlers.

-157/512 -

Copyright © 2008 - 2024 ProcessOne

https://xmpp.org/extensions/xep-0363.html

mod_http upload

Available options:

-158/512 - Copyright © 2008 - 2024 ProcessOne

mod http upload

® access: AccessName
This option defines the access rule to limit who is permitted to use the HTTP upload service. The default value is local. If no
access rule of that name exists, no user will be allowed to use the service.

content_types: {Extension: Type}
Q added in 26.01 Specify mappings of extension to content type, similarly to the option content_types of

mod http fileserver.

custom_headers: {Name: value}
This option specifies additional header fields to be included in all HTTP responses. By default no custom headers are included.

dir_mode: Permission

This option defines the permission bits of the docroot directory and any directories created during file uploads. The bits are
specified as an octal number (see the chmod(1) manual page) within double quotes. For example: "e755" . The default is
undefined, which means no explicit permissions will be set.

docroot: path

Uploaded files are stored below the directory specified (as an absolute path) with this option. The keyword @HovE@ is replaced
with the home directory of the user running ejabberd, and the keyword @Host@ with the virtual host name. The default value is
"@HOME@/upload" .

external_secret: Text

This option makes it possible to offload all HTTP Upload processing to a separate HTTP server. Both ejabberd and the HTTP
server should share this secret and behave exactly as described at Prosody’s mod http upload external: Implementation.
There is no default value.

file_mode: Permission
This option defines the permission bits of uploaded files. The bits are specified as an octal number (see the chmod(1) manual
page) within double quotes. For example: "e644" . The default is undefined, which means no explicit permissions will be set.

get_url: urRL

This option specifies the initial part of the GET URLs used for downloading the files. The default value is undefined . When this
option is undefined, this option is set to the same value as put_url. The keyword @HosT@ is replaced with the virtual host name.
NOTE: if GET requests are handled by this module, the get_url must match the put_url. Setting it to a different value only
makes sense if an external web server or mod http fileserver is used to serve the uploaded files.

host
Deprecated. Use hosts instead.

hosts: [Host, ...]
This option defines the Jabber IDs of the service. If the hosts option is not specified, the only Jabber ID will be the hostname of
the virtual host with the prefix "upload." . The keyword @HosT@ is replaced with the real virtual host name.

jid_in_url: node | shai
When this option is set to node, the node identifier of the user’s JID (i.e., the user name) is included in the GET and PUT URLs
generated by mod_http_upload . Otherwise, a SHA-1 hash of the user’s bare JID is included instead. The default value is shai.

max_size: Size
This option limits the acceptable file size. Either a number of bytes (larger than zero) or infinity must be specified. The
default value is 104857600 .

name: Name
A name of the service in the Service Discovery. The default value is "HTTP File Upload" . Please note this will only be displayed
by some XMPP clients.

put_url: urL

This option specifies the initial part of the PUT URLs used for file uploads. The keyword @HosT@ is replaced with the virtual
host name. And @+osT_URL_ENCODE@ is replaced with the host name encoded for URL, useful when your virtual hosts contain
non-latin characters. NOTE: different virtual hosts cannot use the same PUT URL. The default value is "https://@HOST@:5443/
upload" .

* rm_on_unregister: true | false
This option specifies whether files uploaded by a user should be removed when that user is unregistered. The default value is

true .

- 159/512 - Copyright © 2008 - 2024 ProcessOne

https://modules.prosody.im/mod_http_upload_external.html#implementation

mod_http upload quota

» secret_length: Length
This option defines the length of the random string included in the GET and PUT URLs generated by mod_http_upload . The
minimum length is 8 characters, but it is recommended to choose a larger value. The default value is 40 .

service_url
Deprecated.

thumbnail: true | false
This option specifies whether ejabberd should create thumbnails of uploaded images. If a thumbnail is created, a <thumbnail/
> element that contains the download <uri/> and some metadata is returned with the PUT response. The default value is

false.

vcard: vcard

A custom vCard of the service that will be displayed by some XMPP clients in Service Discovery. The value of vcard is a YAML
map constructed from an XML representation of vCard. Since the representation has no attributes, the mapping is
straightforward.

Example:

This XML representation of vCard:
<vCard xmlns='vcard-temp'>
<FN>Conferences</FN>
<ADR>
<WORK/>
<STREET>Elm Street</STREET>
</ADR>
</vCard>
#
is translated to:
veard:
fn: Conferences
adr:

work: true
street: Elm Street

Example:

listen:

port: 5443
module: ejabberd_http
tls: true
request_handlers:
/upload: mod_http_upload

modules:
mod_http_upload:
docroot: /ejabberd/upload
put_url: "https://@HOST@:5443/upload"

mod_http_upload_quota

This module adds quota support for mod_http upload.

This module depends on mod http upload.

- 160/512 - Copyright © 2008 - 2024 ProcessOne

mod_invites

Available options:

* access_hard_quota: AccessName
This option defines which access rule is used to specify the "hard quota" for the matching JIDs. That rule must yield a positive
number for any JID that is supposed to have a quota limit. This is the number of megabytes a corresponding user may upload.
When this threshold is exceeded, ejabberd deletes the oldest files uploaded by that user until their disk usage equals or falls
below the specified soft quota (see also option access_soft_quota). The default value is hard_upload _quota .

* access_soft_quota: AccessName
This option defines which access rule is used to specify the "soft quota" for the matching JIDs. That rule must yield a positive
number of megabytes for any JID that is supposed to have a quota limit. See the description of the access_hard_quota option for
details. The default value is soft_upload_quota .

* max_days: Days
If a number larger than zero is specified, any files (and directories) older than this number of days are removed from the
subdirectories of the docroot directory, once per day. The default value is infinity .

Examples:

Notice it’s not necessary to specify the access_hard_quota and access_soft_quota options in order to use the quota feature. You
can stick to the default names and just specify access rules such as those in this example:

shaper_rules:
soft_upload_quota:
1000: all # MiB
hard_upload_quota:
1100: all # MiB

modules:
mod_http_upload: {}

mod_http_upload_quota:
max_days: 100

mod_invites

Q added in 26.01

Allow User Invitation and Account Creation to create out-of-band links to onboard others onto the XMPP network and establish a
mutual subscription. This implements XEP-0379: Pre-Authenticated Roster Subscription, XEP-0401: Ad-hoc Account Invitation
Generation, and XEP-0445: Pre-Authenticated In-Band Registration.

These invitations are created as XMPP URIs either via ad-hoc commands or via API commands (like generate invite API and
generate invite with username API), are then meant to be sent out-of-band.

The receiving user should have installed a client that supports those invitations. Since this has proven to be a common obstacle
for easy adoption, this module comes with an optional landing page parameter, that can either be some external service like an
installation of easy-xmpp-invitation, a third-party service like JoinJabber or for convenience a built-in service. This landing page
will then guide the recipient with setting up a client and creating an account if required.

In order to use the included landing page feature, you have to

* have a copy of jQuery 3 and Bootstrap 4 in a shared directory on your system. If you're using Debian or derivatives this is
easiest accomplished by installing both 1ibjs-jquery and 1libjs-bootstrap4 which will put them under /usr/share/javascript/
{jquery, bootstrap4} . Alternatively you can use tools/dl_invites_page_deps.sh <outdir>.

* in ejabberd.yml configure a listener for module ejabberd_http with a request handler for /share: mod_http_fileserver

e in the modules section configure mod_http_fileserver so that docroot points to the shared directory from above (e.g.

docroot: /usr/share/javascript)

e configure mod_invites and set landing_page to either auto or an URL template like https://{{ host }}/invites/
{{ invite.token }} if your server setup includes a so called reverse proxy

If you’d rather want to use an external service, set landing_page to something like http://{{ host }}:8080/easy-xmpp-invites/
#{{ invite.uri|strip_protocol }} Or https://invites.joinjabber.org/#{{ invite.uri|strip_protocol }}.

- 161/512 - Copyright © 2008 - 2024 ProcessOne

https://xmpp.org/extensions/xep-0379.html
https://xmpp.org/extensions/xep-0401.html
https://xmpp.org/extensions/xep-0401.html
https://xmpp.org/extensions/xep-0445.html
https://github.com/modernxmpp/easy-xmpp-invitation
https://invite.joinjabber.org
https://code.jquery.com/jquery-3.7.1.min.js
https://github.com/twbs/bootstrap/releases/download/v4.6.2/bootstrap-4.6.2-dist.zip

mod_invites

Available options:

* access_create_account: Access Rule Name
This is the name of an access rule that specifies who is allowed to create invites of create account . The default value is none,
i.e. nobody is able to create such invites. Furthermore it applies to roster invites and allows to do in-band registration (IBR) if
the sending user is allowed by this rule. Users from the admin ACL are always allowed to create those invites.

Example:

mod_invites:
access_create_account: local

db_type: mnesia | sql
Same as top-level default db option, but applied to this module only.

landing_page: none | auto | LandingPageURLTemplate

Whether or not to use a landing page for the invites that are being created. If using a template URL this can be either be
external or internal. Template variables include host, invite.token and invite.uri, there are also filters defined, most notably
strip_protocol. Here’s an example: http://{{ host }}:8080/easy-xmpp-invites/#{{ invite.uri|strip_protocol }} . For
convenience you can choose auto here and the ejabberd http handler for mod_invites will be used to construct the landing
page URL. Default is none .

max_invites: pos_integer() | infinity
Maximum number of create account invites that can be created by an individual user. Users that match the admin ACL are
exempt from this limitation. Furthermore it restricts the use of roster invites for account creation. Default is infinity .

site_name: site Name
A human readable name for your site. E.g. "My Beautiful Laundrette". Used in landing page templates.

templates_dir: path
The directory containing templates and static files used for landing page and web registration form. Only needs to be set if you
want to ship your own set of templates or list of recommended apps.

* token_expire_seconds: pos_integer()
Number of seconds until token expires. Default value is 432000 (that is five days: 5 * 24 * 60 * 60)

Examples:
Basic configuration with landing page but without creating accounts, just roster invites:

listen:
port: 5281
module: ejabberd_http
request_handlers:
/invites: mod_invites
/share: mod_http_fileserver
#[...]
modules:
mod_http_fileserver:
docroot: /usr/share/javascript
mod_invites:
landing_page: auto

To allow only admin users to create invites of create account and disable regular in-band registration, you would have a config
like this:

acl
admin:
- user: "my_admin_user@example.com"

access_rules:
register:
allow: admin

modules:
mod_invites:
landing_page: auto
mod_register:
allow_modules:
- mod_invites

- 162/512 - Copyright © 2008 - 2024 ProcessOne

mod jidprep

If you want all your users to be able to send create account invites, you would configure your server like this instead. Note that
the names of the access rules are just examples and you're free to change them.

acl:
local:
user_regexp: ""
access_rules:
create_account_invite:
allow: local

modules:
mod_invites:
access_create_account: create_account_invite
landing_page: auto
mod_register:
allow_modules:
- mod_invites

API Tags: accounts, purge

mod_jidprep

This module allows XMPP clients to ask the server to normalize a JID as per the rules specified in RFC 6122: XMPP Address
Format. This might be useful for clients in certain constrained environments, or for testing purposes.

Available options:

® access: AccessName
This option defines which access rule will be used to control who is allowed to use this service. The default value is local.

mod_last

This module adds support for XEP-0012: Last Activity. It can be used to discover when a disconnected user last accessed the
server, to know when a connected user was last active on the server, or to query the uptime of the ejabberd server.

Available options:

* cache_life_time: timeout()
Same as top-level cache life time option, but applied to this module only.

* cache_missed: true | false
Same as top-level cache missed option, but applied to this module only.

* cache_size: pos_integer() | infinity
Same as top-level cache size option, but applied to this module only.

* db_type: mnesia | sql
Same as top-level default db option, but applied to this module only.

* use_cache: true | false

Same as top-level use cache option, but applied to this module only.

mod_legacy_auth

The module implements XEP-0078: Non-SASL Authentication.

-
l(ote

This type of authentication was obsoleted in 2008 and you unlikely need this module unless you have something like outdated Jabber
bots.

The module has no options.

-163/512 - Copyright © 2008 - 2024 ProcessOne

https://tools.ietf.org/html/rfc6122
https://tools.ietf.org/html/rfc6122
https://xmpp.org/extensions/xep-0012.html
https://xmpp.org/extensions/xep-0078.html

mod mam

mod_mam

This module implements XEP-0313: Message Archive Management and XEP-0441: Message Archive Management Preferences.
Compatible XMPP clients can use it to store their chat history on the server.

-
l(ote

Mnesia backend for mod mam is not recommended: it’s limited to 2GB and often gets corrupted when reaching this limit. SQL
backend is recommended. Namely, for small servers SQLite is a preferred choice because it’s very easy to configure.

Available options:

* access_preferences: AccessName
This access rule defines who is allowed to modify the MAM preferences. The default value is all.

* archive_muc_as_mucsub: true | false
Q added in 25.10 When this option is enabled incoming groupchat messages for users that have mucsub subscription to a
room from which message originated will have those messages archived after being converted to mucsub event messages.The
default value is false.

assume_mam_usage: true | false

This option determines how ejabberd’s stream management code (see mod stream mgmt) handles unacknowledged messages
when the connection is lost. Usually, such messages are either bounced or resent. However, neither is done for messages that
were stored in the user’s MAM archive if this option is set to true. In this case, ejabberd assumes those messages will be
retrieved from the archive. The default value is false.

cache_life_time: timeout()
Same as top-level cache life time option, but applied to this module only.

cache_missed: true | false
Same as top-level cache missed option, but applied to this module only.

cache_size: pos_integer() | infinity
Same as top-level cache size option, but applied to this module only.

clear_archive_on_room_destroy: true | false
Whether to destroy message archive of a room (see mod muc) when it gets destroyed. The default value is true .

compress_xml: true | false
When enabled, new messages added to archives are compressed using a custom compression algorithm. This feature works
only with SQL backends. The default value is false.

db_type: mnesia | sql
Same as top-level default db option, but applied to this module only.

default: always | never | roster

The option defines default policy for chat history. When always is set every chat message is stored. With roster only chat
history with contacts from user’s roster is stored. And never fully disables chat history. Note that a client can change its policy
via protocol commands. The default value is never .

request_activates_archiving: true | false
If the value is true, no messages are stored for a user until their client issue a MAM request, regardless of the value of the
default option. Once the server received a request, that user’s messages are archived as usual. The default value is false.

use_cache: true | false
Same as top-level use cache option, but applied to this module only.

user_mucsub_from_muc_archive: true | false
When this option is disabled, for each individual subscriber a separate mucsub message is stored. With this option enabled,
when a user fetches archive virtual mucsub, messages are generated from muc archives. The default value is false.

API Tags: mam, purge

- 164/512 - Copyright © 2008 - 2024 ProcessOne

https://xmpp.org/extensions/xep-0313.html
https://xmpp.org/extensions/xep-0441.html

mod matrix gw

mod_matrix_gw

Q improved in 25.08

Matrix gateway. Supports room versions 9, 10 and 11 since ejabberd 25.03; room versions 4 and higher since ejabberd 25.07;
room version 12 (hydra rooms) since ejabberd 25.08. Erlang/OTP 25 or higher is required to use this module. This module is
available since ejabberd 24.02.

Available options:

* host: Host
This option defines the Jabber IDs of the service. If the host option is not specified, the Jabber ID will be the hostname of the
virtual host with the prefix "matrix." . The keyword @HosT@ is replaced with the real virtual host name.

* key: string()
Value of the matrix signing key, in base64.

* key name: string()
Name of the matrix signing key.

* leave_timeout: integer()
Delay in seconds between a user leaving a MUC room and sending leave Matrix event.

* matrix_domain: bomain
Specify a domain in the Matrix federation. The keyword @HosT@ is replaced with the hostname. The default value is @HosT@ .

* matrix_id_as_jid: true | false
If set to true, all packets failing to be delivered via an XMPP server-to-server connection will then be routed to the Matrix
gateway by translating a Jabber ID user@matrixdomain.tld to a Matrix user identifier @user:matrixdomain.tld . When set to
false , messages must be explicitly sent to the matrix gateway service Jabber ID to be routed to a remote Matrix server. In this
case, to send a message to Matrix user @user:matrixdomain.tld, the client must send a message to the JID
user%<matrixdomain.tld@matrix.myxmppdomain>.tld, where matrix.myxmppdomain.tld is the JID of the gateway service as set by the
host option. The default is false.

* notary_servers: [Server, ...]
A list of notary servers.

Example:

listen:

port: 8448

module: ejabberd_http

tls: true

request_handlers:
"/_matrix": mod_matrix_gw

modules:
mod_matrix_gw:
key_name: "key1"
key: "XXXXXXXXXXXXXXXXXXXXXKXKXKXXXXXKXXXKXXXXXXKXX
matrix_id_as_jid: true

- 165/512 - Copyright © 2008 - 2024 ProcessOne

https://matrix.org/

mod_metrics

mod_metrics

This module sends events to external backend (by now only grapherl is supported). Supported events are:

sm_register connection

sm_remove connection

user send packet

user receive packet

s2s_send_packet

s2s_receive _packet

register user

remove_user

offline message

When enabled, every call to these hooks triggers a counter event to be sent to the external backend.

Available options:

* ip: IPv4Address
IPv4 address where the backend is located. The default value is 127.0.0.1.

e port: Port
An internet port number at which the backend is listening for incoming connections/packets. The default value is 11111 .

mod_mix
Q added in 16.03 and improved in 19.02

This module is an experimental implementation of XEP-0369: Mediated Information eXchange (MIX). It’s asserted that the MIX
protocol is going to replace the MUC protocol in the future (see mod muc).

To learn more about how to use that feature, you can refer to our tutorial: Getting started with MIX
The module depends on mod mam.

Available options:

* access_create: AccessName

An access rule to control MIX channels creations. The default value is all.
* db_type: mnesia | sql

Same as top-level default db option, but applied to this module only.

* host
Deprecated. Use hosts instead.

¢ hosts: [Host, ...]
This option defines the Jabber IDs of the service. If the hosts option is not specified, the only Jabber ID will be the hostname of
the virtual host with the prefix "mix." . The keyword @HosT@ is replaced with the real virtual host name.

* name: Name
A name of the service in the Service Discovery. This will only be displayed by special XMPP clients. The default value is
Channels .

mod_mix_pam

This module implements XEP-0405: Mediated Information eXchange (MIX): Participant Server Requirements. The module is
needed if MIX compatible clients on your server are going to join MIX channels (either on your server or on any remote servers).

- 166/512 - Copyright © 2008 - 2024 ProcessOne

https://github.com/processone/grapherl
https://xmpp.org/extensions/xep-0369.html
https://xmpp.org/extensions/xep-0405.html

mod mgtt

A
l(ote

be impaired.

mod mix is not required for this module to work, however, without mod_mix_pam the MIX functionality of your local XMPP clients will

Available options:

* cache_life_time: timeout()
Same as top-level cache life time option, but applied to this module only.

* cache_missed: true | false
Same as top-level cache missed option, but applied to this module only.

» cache_size: pos_integer() | infinity
Same as top-level cache size option, but applied to this module only.

e db_type: mnesia | sql
Same as top-level default db option, but applied to this module only.

* use_cache: true | false
Same as top-level use cache option, but applied to this module only.

mod_maqtt

This module adds support for the MQTT protocol version 3.1.1 and 5.0. Remember to configure mod_mqtt in modules and

listen sections.

-167/512 -

Copyright © 2008 - 2024 ProcessOne

mod_mgtt bridge

Available options:

access_publish: {TopicFilter: AccessName}
Access rules to restrict access to topics for publishers. By default there are no restrictions.

access_subscribe: {TopicFilter: AccessName}
Access rules to restrict access to topics for subscribers. By default there are no restrictions.

cache_life_time: timeout()
Same as top-level cache life time option, but applied to this module only.

cache_missed: true | false
Same as top-level cache missed option, but applied to this module only.

cache_size: pos_integer() | infinity
Same as top-level cache size option, but applied to this module only.

db_type: mnesia | sql
Same as top-level default db option, but applied to this module only.

match_retained_limit: pos_integer() | infinity
The option limits the number of retained messages returned to a client when it subscribes to some topic filter. The default
value is 1000 .

max_queue: Size
Maximum queue size for outgoing packets. The default value is 5000 .

max_topic_aliases: 0..65535
The maximum number of aliases a client is able to associate with the topics. The default value is 100 .

max_topic_depth: pepth
The maximum topic depth, i.e. the number of slashes (/) in the topic. The default value is 8.

queue_type: ram | file
Same as top-level queue type option, but applied to this module only.

ram_db_type: mnesia
Same as top-level default ram db option, but applied to this module only.

session_expiry: timeout()
The option specifies how long to wait for an MQTT session resumption. When o is set, the session gets destroyed when the
underlying client connection is closed. The default value is 5 minutes.

use_cache: true | false
Same as top-level use cache option, but applied to this module only.
mod_maqtt_bridge

This module adds ability to synchronize local MQTT topics with data on remote servers It can update topics on remote servers
when local user updates local topic, or can subscribe for changes on remote server, and update local copy when remote data is
updated. It is available since ejabberd 23.01.

- 168/512 - Copyright © 2008 - 2024 ProcessOne

mod_muc @

Available options:

* replication_user: Jip
Identifier of a user that will be assigned as owner of local changes.

* servers: {ServerUrl: {Key: Value}}
Declaration of data to share for each ServerUrl. Server URLs can use schemas: mqtt, mqtts (mgtt with tls), mqtt5, mqttss
(both to trigger v5 protocol), ws, wss, ws5, wss5. Keys must be:

¢ authentication: {Authkey: Authvalue}
List of authentication information, where AuthKey can be: username and password fields, or certfile pointing to client
certificate. Certificate authentication can be used only with mqtts, mqtt5s, wss, wss5.

* publish: {LocalTopic: RemoteTopic}
Either publish or subscribe must be set, or both.

» subscribe: {RemoteTopic: LocalTopic}
Either publish or subscribe must be set, or both.

Example:

modules:
mod_mqtt_bridge:
replication_user: "mqtt@xmpp.server.com"
servers:
"mqtt://server.com":

authentication:
certfile: "/etc/ejabberd/mqtt_server.pem"
publish:
"localA": "remoteA" # local changes to 'localA' will be replicated on remote server as 'remoteA'
"topicB": "topicB"
subscribe:
"remoteB": "localB" # changes to 'remoteB' on remote server will be stored as 'localB' on local server

mod_muc ()

Q incorporated mod_muc_occupantid in 26.02

This module provides support for Multi-User Chat (MUC). Users can discover existing rooms, join or create them. Occupants of a
room can chat in public or have private chats.

Protocols implemented in this module:

* XEP-0045: Multi-User Chat

* XEP-0249: Direct MUC Invitations

* XEP-0421: Occupant identifiers for semi-anonymous MUCs
* XEP-0486: MUC Avatars

* Muc/Sub: Multi-User Chat Subscriptions

The MUC service allows any Jabber ID to register a nickname, so nobody else can use that nickname in any room in the MUC
service. To register a nickname, open the Service Discovery in your XMPP client and register in the MUC service.

It is also possible to register a nickname in a room, so nobody else can use that nickname in that room. If a nick is registered in
the MUC service, that nick cannot be registered in any room, and vice versa: a nick that is registered in a room cannot be
registered at the MUC service.

This module supports clustering and load balancing. One module can be started per cluster node. Rooms are distributed at
creation time on all available MUC module instances. The multi-user chat module is clustered but the rooms themselves are not
clustered nor fault-tolerant: if the node managing a set of rooms goes down, the rooms disappear and they will be recreated on
an available node on first connection attempt.

- 169/512 - Copyright © 2008 - 2024 ProcessOne

https://xmpp.org/extensions/xep-0045.html
https://xmpp.org/extensions/xep-0045.html
https://xmpp.org/extensions/xep-0249.html
https://xmpp.org/extensions/xep-0421.html
https://xmpp.org/extensions/xep-0486.html
https://docs.ejabberd.im/developer/xmpp-clients-bots/extensions/muc-sub/

mod_muc @

Available options:

-170/512 - Copyright © 2008 - 2024 ProcessOne

mod_muc @

® access: AccessName
You can specify who is allowed to use the Multi-User Chat service. By default everyone is allowed to use it.

* access_admin: AccessName
This option specifies who is allowed to administrate the Multi-User Chat service. The default value is none , which means that
only the room creator can administer their room. The administrators can send a normal message to the service JID, and it will
be shown in all active rooms as a service message. The administrators can send a groupchat message to the JID of an active
room, and the message will be shown in the room as a service message.

access_create: AccessName
To configure who is allowed to create new rooms at the Multi-User Chat service, this option can be used. The default value is
all, which means everyone is allowed to create rooms.

access_mam: AccessName
To configure who is allowed to modify the mam room option. The default value is all, which means everyone is allowed to
modify that option.

access_persistent: AccessName
To configure who is allowed to modify the persistent room option. The default value is all, which means everyone is allowed
to modify that option.

access_register: AccessName

Q improved in 23.10 This option specifies who is allowed to register nickname within the Multi-User Chat service and rooms.
The default is all for backward compatibility, which means that any user is allowed to register any free nick in the MUC
service and in the rooms.

* cleanup_affiliations_on_start: true | false
Q added in 22.05 Remove affiliations for non-existing local users on startup. The default value is false .

e db_type: mnesia | sql
Same as top-level default db option, but applied to this module only.

-171/512 - Copyright © 2008 - 2024 ProcessOne

mod_muc @

» default_room_options: options
Define the default room options. Note that the creator of a room can modify the options of his room at any time using an XMPP
client with MUC capability. The options are:

-172/512 - Copyright © 2008 - 2024 ProcessOne

mod_muc @

allow_change_subj: true | false
Allow occupants to change the subject. The default value is true.

allow_private_messages_from_visitors: anyone | moderators | nobody Visitors can send private messages to other
occupants. The default value is anyone which means visitors can send private messages to any occupant.

allow_query_users: true | false
Occupants can send IQ queries to other occupants. The default value is true.

allow_subscription: true | false
Allow users to subscribe to room events as described in Multi-User Chat Subscriptions. The default value is false.

allow_user_invites: true | false
Allow occupants to send invitations. The default value is false.

allow_visitor_nickchange: true | false
Allow visitors to change nickname. The default value is true .

allow_visitor_status: true | false
Allow visitors to send status text in presence updates. If disallowed, the status text is stripped before broadcasting the
presence update to all the room occupants. The default value is true.

allow_voice_requests: true | false
Allow visitors in a moderated room to request voice. The default value is true.

allowpm: anyone | participants | moderators | none
Who can send private messages. The default value is anyone .

anonymous: true | false
The room is anonymous: occupants don’t see the real JIDs of other occupants. Note that the room moderators can always see
the real JIDs of the occupants. The default value is true.

captcha_protected: true | false
When a user tries to join a room where they have no affiliation (not owner, admin or member), the room requires them to fill a
CAPTCHA challenge (see section CAPTCHA in order to accept their join in the room. The default value is false.

description: Room Description
Short description of the room. The default value is an empty string.

enable_hats: true | false
Note about this option: improved in 25.10. Allow extended roles as defined in XEP-0317: Hats. For ejabberd older than 25.10
see the MUC Hats page. The default value is true .

lang: Language
Preferred language for the discussions in the room. The language format should conform to RFC 5646. There is no value by
default.

logging: true | false
The public messages are logged using mod muc log. The default value is false.

mam: true | false

Enable message archiving. Implies mod mam is enabled. The default value is false.

max_users: Number
Maximum number of occupants in the room. The default value is 200 .

members_by default: true | false
The occupants that enter the room are participants by default, so they have "voice". The default value is true.

members_only: true | false
Only members of the room can enter. The default value is false.

moderated: true | false
Only occupants with "voice" can send public messages. The default value is true.

* password: Password
Password of the room. Implies option password_protected set to true. There is no default value.

» password_protected: true | false
The password is required to enter the room. The default value is false.

-173/512 - Copyright © 2008 - 2024 ProcessOne

https://xmpp.org/extensions/xep-0317.html

mod_muc @

* persistent: true | false
The room persists even if the last participant leaves. The default value is false.

» presence_broadcast: [Role]
List of roles for which presence is broadcasted. The list can contain one or several of: moderator, participant, visitor . The
default value is shown in the example below:

Example:

presence_broadcast:
- moderator
- participant
- visitor

public: true | false
The room is public in the list of the MUC service, so it can be discovered. MUC admins and room participants will see private
rooms in Service Discovery if their XMPP client supports this feature. The default value is true .

public_list: true | false
The list of participants is public, without requiring to enter the room. The default value is true .

pubsub: Pubsub Node
XMPP URI of associated Publish/Subscribe node. The default value is an empty string.

title: Room Title
A human-readable title of the room. There is no default value

vcard: vcard
A custom vCard for the room. See the equivalent mod muc option.The default value is an empty string.

vcard_xupdate: undefined | external | AvatarHash
Set the hash of the avatar image. The default value is undefined .

voice_request_min_interval: Number
Minimum interval between voice requests, in seconds. The default value is 1860 .

hibernation_timeout: infinity | Seconds
Timeout before hibernating the room process, expressed in seconds. The default value is infinity .

history_size: size

A small history of the current discussion is sent to users when they enter the room. With this option you can define the number
of history messages to keep and send to users joining the room. The value is a non-negative integer. Setting the value to o
disables the history feature and, as a result, nothing is kept in memory. The default value is 20 . This value affects all rooms on
the service. NOTE: modern XMPP clients rely on Message Archives (XEP-0313), so feel free to disable the history feature if
you're only using modern clients and have mod mam module loaded.

host
Deprecated. Use hosts instead.

hosts: [Host, ...]
This option defines the Jabber IDs of the service. If the hosts option is not specified, the only Jabber ID will be the hostname of
the virtual host with the prefix "conference.". The keyword @HosT@ is replaced with the real virtual host name.

max_captcha_whitelist: number
Q added in 21.01 This option defines the maximum number of characters that Captcha Whitelist can have when configuring
the room. The default value is infinity .

max_password: Number
Q added in 21.01 This option defines the maximum number of characters that Password can have when configuring the

room. The default value is infinity .

max_room_desc: Number
This option defines the maximum number of characters that Room Description can have when configuring the room. The
default value is infinity .

max_room_id: Number
This option defines the maximum number of characters that Room ID can have when creating a new room. The default value is

infinity .

-174/512 - Copyright © 2008 - 2024 ProcessOne

mod_muc @

°* max_room_name: Number
This option defines the maximum number of characters that Room Name can have when configuring the room. The default

value is infinity .

max_rooms_discoitems: Number
When there are more rooms than this Number , only the non-empty ones are returned in a Service Discovery query. The default
value is 100 .

max_user_conferences: Number

This option defines the maximum number of rooms that any given user can join. The default value is 1ee . This option is used to
prevent possible abuses. Note that this is a soft limit: some users can sometimes join more conferences in cluster
configurations.

max_users: Number
This option defines at the service level, the maximum number of users allowed per room. It can be lowered in each room
configuration but cannot be increased in individual room configuration. The default value is 200 .

max_users_admin_threshold: nNumber
This option defines the number of service admins or room owners allowed to enter the room when the maximum number of
allowed occupants was reached. The default limit is 5.

max_users_presence: Number

This option defines after how many users in the room, it is considered overcrowded. When a MUC room is considered
overcrowded, presence broadcasts are limited to reduce load, traffic and excessive presence "storm" received by participants.
The default value is 1000 .

min_message_interval: Number

This option defines the minimum interval between two messages send by an occupant in seconds. This option is global and
valid for all rooms. A decimal value can be used. When this option is not defined, message rate is not limited. This feature can
be used to protect a MUC service from occupant abuses and limit number of messages that will be broadcasted by the service.
A good value for this minimum message interval is 0.4 second. If an occupant tries to send messages faster, an error is send
back explaining that the message has been discarded and describing the reason why the message is not acceptable.

min_presence_interval: nNumber

This option defines the minimum of time between presence changes coming from a given occupant in seconds. This option is
global and valid for all rooms. A decimal value can be used. When this option is not defined, no restriction is applied. This
option can be used to protect a MUC service for occupants abuses. If an occupant tries to change its presence more often than
the specified interval, the presence is cached by ejabberd and only the last presence is broadcasted to all occupants in the
room after expiration of the interval delay. Intermediate presence packets are silently discarded. A good value for this option is
4 seconds.

name: string()
The value of the service name. This name is only visible in some clients that support XEP-0030: Service Discovery. The default

is chatrooms .

preload_rooms: true | false

Whether to load all persistent rooms in memory on startup. If disabled, the room is only loaded on first participant join. The
default is true. It makes sense to disable room preloading when the number of rooms is high: this will improve server startup
time and memory consumption.

queue_type: ram | file
Same as top-level queue type option, but applied to this module only.

ram_db_type: mnesia | sql
Same as top-level default ram db option, but applied to this module only.

regexp_room_id: string()

This option defines the regular expression that a Room ID must satisfy to allow the room creation. The default value is the
empty string.

* room_shaper: none | ShaperName

This option defines shaper for the MUC rooms. The default value is none .

* user_message_shaper: none | ShaperName
This option defines shaper for the users messages. The default value is none .

-175/512 - Copyright © 2008 - 2024 ProcessOne

https://xmpp.org/extensions/xep-0030.html

mod muc admin

* user_presence_shaper: none | ShaperName
This option defines shaper for the users presences. The default value is none .

» vcard: vcard
A custom vCard of the service that will be displayed by some XMPP clients in Service Discovery. The value of vcard is a YAML
map constructed from an XML representation of vCard. Since the representation has no attributes, the mapping is
straightforward.

Example:

This XML representation of vCard:
<vCard xmlns='vcard-temp'>

<FN>Conferences</FN>

<ADR>

<WORK/>

<STREET>Elm Street</STREET>
</ADR>

</vCard>

#
1is translated to:
veard:
fn: Conferences
adr:

work: true
street: Elm Street

mod_muc_admin

This module provides commands to administer local MUC services and their MUC rooms. It also provides simple WebAdmin
pages to view the existing rooms.

This module depends on mod muc.
Available options:

* subscribe_room_many max_users: Number
Q added in 22.05 How many users can be subscribed to a room at once using the subscribe room many API. The default

value is 50.

API Tags: muc, muc room, muc sub

mod_muc_log

This module enables optional logging of Multi-User Chat (MUC) public conversations to HTML. Once you enable this module,
users can join a room using a MUC capable XMPP client, and if they have enough privileges, they can request the configuration
form in which they can set the option to enable room logging.

Features:

* Room details are added on top of each page: room title, JID, author, subject and configuration.

e The room JID in the generated HTML is a link to join the room (using XMPP URI).

* Subject and room configuration changes are tracked and displayed.

* Joins, leaves, nick changes, kicks, bans and /me are tracked and displayed, including the reason if available.
* Generated HTML files are XHTML 1.0 Transitional and CSS compliant.

» Timestamps are self-referencing links.

» Links on top for quicker navigation: Previous day, Next day, Up.

* CSS is used for style definition, and a custom CSS file can be used.

* URLs on messages and subjects are converted to hyperlinks.

* Timezone used on timestamps is shown on the log files.

* A custom link can be added on top of each page.

-176/512 - Copyright © 2008 - 2024 ProcessOne

mod muc rtbl

The module depends on mod muc.

Available options:

* access_log: AccessName
This option restricts which occupants are allowed to enable or disable room logging. The default value is muc_admin . NOTE: for
this default setting you need to have an access rule for muc_admin in order to take effect.

cssfile: pPath | URL

With this option you can set whether the HTML files should have a custom CSS file or if they need to use the embedded CSS.
Allowed values are either path to local file or an URL to a remote file. By default a predefined CSS will be embedded into the
HTML page.

dirname: room_jid | room_name
Configure the name of the room directory. If set to room_jid, the room directory name will be the full room JID. Otherwise, the
room directory name will be only the room name, not including the MUC service name. The default value is room_jid .

dirtype: subdirs | plain
The type of the created directories can be specified with this option. If set to subdirs, subdirectories are created for each year
and month. Otherwise, the names of the log files contain the full date, and there are no subdirectories. The default value is

subdirs .

file_format: html | plaintext
Define the format of the log files: html stores in HTML format, plaintext stores in plain text. The default value is html.

file_permissions: {mode: Mode, group: Group}
Define the permissions that must be used when creating the log files: the number of the mode, and the numeric id of the group
that will own the files. The default value is shown in the example below:

Example:

file_permissions:
mode: 644
group: 33

outdir: path
This option sets the full path to the directory in which the HTML files should be stored. Make sure the ejabberd daemon user
has write access on that directory. The default value is www/muc .

spam_prevention: true | false
If set to true, a special attribute is added to links that prevent their indexation by search engines. The default value is true,
which mean that nofollow attributes will be added to user submitted links.

timezone: local | universal
The time zone for the logs is configurable with this option. If set to 1local, the local time, as reported to Erlang emulator by the
operating system, will be used. Otherwise, UTC time will be used. The default value is local.

top_link: {URL: Text}
With this option you can customize the link on the top right corner of each log file. The default value is shown in the example
below:

Example:

top_link:
/: Home

url: urL
A top level urRL where a client can access logs of a particular conference. The conference name is appended to the URL if
dirname option is set to room_name or a conference JID is appended to the urL otherwise. There is no default value.

mod_muc_rtbl

() added in 23.04

This module implement Real-time blocklists for MUC rooms.

-177/512 - Copyright © 2008 - 2024 ProcessOne

It works by observing remote pubsub node conforming with specification described in https://xmppbl.org/.

Available options:

e rtbl_node: PubsubNodeName
Name of pubsub node that should be used to track blocked users. The default value is muc_bans_sha256 .

* rtbl_server: pomain
Domain of xmpp server that serves block list. The default value is xmppbl.org

mod_multicast

This module implements a service for XEP-0033: Extended Stanza Addressing.

Available options:

® access: Access
The access rule to restrict who can send packets to the multicast service. Default value: all.

* host
Deprecated. Use hosts instead.

¢ hosts: [Host, ...]

mod_multicast

This option defines the Jabber IDs of the service. If the hosts option is not specified, the only Jabber ID will be the hostname of
the virtual host with the prefix "multicast.". The keyword @HosT@ is replaced with the real virtual host name. The default value

is multicast.@HOST@ .

¢ limits: sender: Stanza: Number

Specify a list of custom limits which override the default ones defined in XEP-0033. Limits are defined per sender type and

stanza type, where:

* sender can be: local or remote .
* stanza can.be: message OI' presence .
* number can be a positive integer or infinite.

Example:

Default values:
local:
message: 100
presence: 100
remote:
message: 20
presence: 20

* name

Service name to provide in the Info query to the Service Discovery. Default is "Multicast" .

* vcard
vCard element to return when queried. Default value is undefined .

Example:

Only admins can send packets to multicast service
access_rules:
multicast:
- allow: admin

If you want to allow all your users:
access_rules:
multicast:
- allow

This allows both admins and remote users to send packets
but does not allow local users
acl
allservers:
server_glob: "*"
access_rules:
multicast:

- 178/512 - Copyright © 2008 - 2024 ProcessOne

https://xmppbl.org/
https://xmpp.org/extensions/xep-0033.html

mod offline

- allow: admin
- deny: local
- allow: allservers

modules:
mod_multicast:
host: multicast.example.org
access: multicast
limits:
local:
message: 40
presence: infinite
remote:
message: 150

mod_offline

This module implements XEP-0160: Best Practices for Handling Offline Messages and XEP-0013: Flexible Offline Message
Retrieval. This means that all messages sent to an offline user will be stored on the server until that user comes online again.
Thus it is very similar to how email works. A user is considered offline if no session presence priority > 0 are currently open.

The delete expired messages API allows to delete expired messages, and delete old messages API deletes older ones.

Available options:

° access_max_user_messages: AccessName
This option defines which access rule will be enforced to limit the maximum number of offline messages that a user can have
(quota). When a user has too many offline messages, any new messages that they receive are discarded, and a <resource-
constraint/> error is returned to the sender. The default value is max_user_offline_messages .

bounce_groupchat: true | false

This option is use the disable an optimization that avoids bouncing error messages when groupchat messages could not be
stored as offline. It will reduce chat room load, without any drawback in standard use cases. You may change default value
only if you have a custom module which uses offline hook after mod_offline . This option can be useful for both standard MUC
and MucSub, but the bounce is much more likely to happen in the context of MucSub, so it is even more important to have it
on large MucSub services. The default value is false, meaning the optimization is enabled.

cache_life_time: timeout()
Same as top-level cache life time option, but applied to this module only.

cache_size: pos_integer() | infinity
Same as top-level cache size option, but applied to this module only.

db_type: mnesia | sql
Same as top-level default db option, but applied to this module only.

store_empty body: true | false | unless_chat_state

Whether or not to store messages that lack a <body/> element. The default value is unless_chat_state , which tells ejabberd to
store messages even if they lack the <body/> element, unless they only contain a chat state notification (as defined in
XEP-0085: Chat State Notifications.

store_groupchat: true | false
Whether or not to store groupchat messages. The default value is false.

use_cache: true | false
Same as top-level use cache option, but applied to this module only.

use_mam_for_storage: true | false

This is an experimental option. By enabling the option, this module uses the archive table from mod mam instead of its own
spool table to retrieve the messages received when the user was offline. This allows client developers to slowly drop XEP-0160
and rely on XEP-0313 instead. It also further reduces the storage required when you enable MucSub. Enabling this option has
a known drawback for the moment: most of flexible message retrieval queries don’t work (those that allow retrieval/deletion of
messages by id), but this specification is not widely used. The default value is false to keep former behaviour as default.

Examples:

-179/512 - Copyright © 2008 - 2024 ProcessOne

https://xmpp.org/extensions/xep-0160.html
https://xmpp.org/extensions/xep-0013.html
https://xmpp.org/extensions/xep-0013.html
https://xmpp.org/extensions/xep-0085.html

mod _ping

This example allows power users to have as much as 5000 offline messages, administrators up to 2000, and all the other users up
to 100:

acl:
admin:
user:
- adminli@localhost
- admin2@example.org
poweruser :
user:
- bob@example.org
- jane@example.org

shaper_rules:
max_user_offline_messages:
- 5000: poweruser
- 2000: admin
- 100

modules:

mod_offline:
access_max_user_messages: max_user_offline_messages

API Tags: offline

mod_ping

This module implements support for XEP-0199: XMPP Ping and periodic keepalives. When this module is enabled ejabberd
responds correctly to ping requests, as defined by the protocol.

Available options:

* ping_ack_timeout: timeout()
How long to wait before deeming that a client has not answered a given server ping request. NOTE: when mod stream mgmt
is loaded and stream management is enabled by a client, this value is ignored, and the ack_timeout applies instead. The default
value is undefined .

ping_interval: timeout()
How often to send pings to connected clients, if option send_pings is set to true. If a client connection does not send or
receive any stanza within this interval, a ping request is sent to the client. The default value is 1 minute.

send_pings: true | false
If this option is set to true, the server sends pings to connected clients that are not active in a given interval defined in
ping_interval option. This is useful to keep client connections alive or checking availability. The default value is false.

timeout_action: none | kill

What to do when a client does not answer to a server ping request in less than period defined in ping_ack_timeout option: kill
means destroying the underlying connection, none means to do nothing. NOTE: when mod stream mgmt is loaded and stream
management is enabled by a client, killing the client connection doesn’t mean killing the client session - the session will be
kept alive in order to give the client a chance to resume it. The default value is none .

Example:

modules:
mod_ping:
send_pings: true
ping_interval: 4 min
timeout_action: kill

mod_pres_counter

This module detects flood/spam in presence subscriptions traffic. If a user sends or receives more of those stanzas in a given time
interval, the exceeding stanzas are silently dropped, and a warning is logged.

- 180/512 - Copyright © 2008 - 2024 ProcessOne

https://xmpp.org/extensions/xep-0199.html

mod _privacy

Available options:

e count: Number
The number of subscription presence stanzas (subscribe, unsubscribe, subscribed, unsubscribed) allowed for any direction
(input or output) per time defined in interval option. Please note that two users subscribing to each other usually generate 4
stanzas, so the recommended value is 4 or more. The default value is 5.

e interval: timeout()
The time interval. The default value is 1 minute.

Example:

modules:
mod_pres_counter:
count: 5
interval: 30 secs

mod_privacy

This module implements XEP-0016: Privacy Lists.

l(ote

Nowadays modern XMPP clients rely on XEP-0191: Blocking Command which is implemented by mod blocking. However, you still
need mod_privacy loaded in order for mod_blocking to work.

Available options:

* cache_life_time: timeout()
Same as top-level cache life time option, but applied to this module only.

* cache_missed: true | false
Same as top-level cache missed option, but applied to this module only.

* cache_size: pos_integer() | infinity
Same as top-level cache size option, but applied to this module only.

* db_type: mnesia | sql
Same as top-level default db option, but applied to this module only.

* use_cache: true | false
Same as top-level use cache option, but applied to this module only.

mod_private

This module adds support for XEP-0049: Private XML Storage.

Using this method, XMPP entities can store private data on the server, retrieve it whenever necessary and share it between
multiple connected clients of the same user. The data stored might be anything, as long as it is a valid XML. One typical usage is
storing a bookmark of all user’s conferences (XEP-0048: Bookmarks).

It also implements the bookmark conversion described in XEP-0402: PEP Native Bookmarks, see bookmarks to pep API.

-181/512 - Copyright © 2008 - 2024 ProcessOne

https://xmpp.org/extensions/xep-0016.html
https://xmpp.org/extensions/xep-0191.html
https://xmpp.org/extensions/xep-0049.html
https://xmpp.org/extensions/xep-0048.html
https://xmpp.org/extensions/xep-0402.html

mod _privilege

Available options:

* cache_life_time: timeout()
Same as top-level cache life time option, but applied to this module only.

* cache_missed: true | false
Same as top-level cache missed option, but applied to this module only.

» cache_size: pos_integer() | infinity
Same as top-level cache size option, but applied to this module only.

* db_type: mnesia | sql
Same as top-level default db option, but applied to this module only.

* use_cache: true | false
Same as top-level use cache option, but applied to this module only.

API Tags: private

mod_privilege
Q improved in 24.10

This module is an implementation of XEP-0356: Privileged Entity. This extension allows components to have privileged access to
other entity data (send messages on behalf of the server or on behalf of a user, get/set user roster, access presence information,
etc.). This may be used to write powerful external components, for example implementing an external PEP or MAM service.

By default a component does not have any privileged access. It is worth noting that the permissions grant access to the
component to a specific data type for all users of the virtual host on which mod_privilege is loaded.

Make sure you have a listener configured to connect your component. Check the section about listening ports for more
information.

ﬁrning

Security issue: Privileged access gives components access to sensitive data, so permission should be granted carefully, only if you
trust a component.

-
l(ote

This module is complementary to mod delegation, but can also be used separately.

-182/512 - Copyright © 2008 - 2024 ProcessOne

https://xmpp.org/extensions/xep-0356.html
https://xmpp.org/extensions/xep-0163.html
https://xmpp.org/extensions/xep-0313.html

mod_providers

Available options:

e iq: {Namespace: Options}
This option defines namespaces and their IQ permissions. By default no permissions are given. The options are:

¢ both: AccessName
Allows sending IQ stanzas of type get and set. The default value is none .

¢ get: AccessName

Allows sending IQ stanzas of type get . The default value is none .

set: AccessName

Allows sending IQ stanzas of type set . The default value is none .

message: Options
This option defines permissions for messages. By default no permissions are given. The options are:

outgoing: AccessName
The option defines an access rule for sending outgoing messages by the component. The default value is none .

presence: Options
This option defines permissions for presences. By default no permissions are given. The options are:

managed_entity: Accessname
An access rule that gives permissions to the component to receive server presences. The default value is none .

roster: AccessName
An access rule that gives permissions to the component to receive the presence of both the users and the contacts in their
roster. The default value is none .

roster: options
This option defines roster permissions. By default no permissions are given. The options are:

both: AccessName
Sets read/write access to a user’s roster. The default value is none .

get: AccessName
Sets read access to a user’s roster. The default value is none .

set: AccessName

Sets write access to a user’s roster. The default value is none .

Example:

modules:
mod_privilege:
iq:
http://jabber.org/protocol/pubsub:
get: all
roster:
get: all
presence:
managed_entity: all
message:
outgoing: all

mod_providers

© addedin25.08
This module serves JSON provider files API v2 as described by XMPP Providers.

It attempts to fill some properties gathering values automatically from your existing ejabberd configuration. Try enabling the
module, check what values are displayed, and then customize using the options.

To use this module, in addition to adding it to the modules section, you must also enable it in listen — ejabberd_http —
request handlers. Notice you should set in ejabberd http the option tls enabled.

- 183/512 - Copyright © 2008 - 2024 ProcessOne

https://providers.xmpp.net/provider-file-generator/

mod_providers

Available options:

* alternativeJids: [string()]
List of JIDs (XMPP server domains) a provider offers for registration other than its main JID. The default value is [] .

¢ busFactor: integer()
Bus factor of the XMPP service (i.e., the minimum number of team members that the service could not survive losing) or -1 for
n/a. The default value is -1.

freeOfCharge: true | false
Whether the XMPP service can be used for free. The default value is false.

languages: [string()]

List of language codes that your pages are available. Some options define URL where the keyword @LANGUAGE_URL@ will be
replaced with each of those language codes. The default value is a list with the language set in the option language, for
example: [en] .

legalNotice: string()
Legal notice web page (per language). The keyword @LANGUAGE_URL@ is replaced with each language. The default value is "" .

maximumHttpFileUploadStorageTime: integer()
Maximum storage duration of each shared file (number in days, o for no limit or -1 for less than 1 day). The default value is
the same as option max_days from module mod http upload quota, or o otherwise.

maximumHttpFileUploadTotalSize: integer()

Maximum size of all shared files in total per user (number in megabytes (MB), o for no limit or -1 for less than 1 MB).
Attention: MB is used instead of MiB (e.g., 104,857,600 bytes = 100 MiB H 104 MB). This property is not about the maximum
size of each shared file, which is already retrieved via XMPP. The default value is the value of the shaper value of option
access_hard_quota from module mod http upload quota, or o otherwise.

maximumMessageArchiveManagementStorageTime: integer()
Maximum storage duration of each exchanged message (number in days, e for no limit or -1 for less than 1 day). The default
value is o.

organization: string()
Type of organization providing the XMPP service. Allowed values are: company, "commercial person", "private person",
governmental, "non-governmental" or "".The default value is "".

passwordReset: string()

Password reset web page (per language) used for an automatic password reset (e.g., via email) or describing how to manually
reset a password (e.g., by contacting the provider). The keyword @LANGUAGE_URL@ is replaced with each language. The default
value is an URL built automatically if mod register web is configured as a request_handler , or "" otherwise.

professionalHosting: true | false
Whether the XMPP server is hosted with good internet connection speed, uninterruptible power supply, access protection and
regular backups. The default value is false.

¢ serverLocations: [string()]
List of language codes of Server/Backup locations. The default value is an empty list: [].
» serverTesting: true | false

Whether tests against the provider’s server are allowed (e.g., certificate checks and uptime monitoring). The default value is

false.

e since: string()
Date since the XMPP service is available. The default value is an empty string: "".

* website: string()
Provider website. The keyword @LANGUAGE_URL@ is replaced with each language. The default value is "" .

Example:

listen:

port: 443

module: ejabberd_http

tls: true

request_handlers:
/.well-known/xmpp-provider-v2.json: mod_providers

-184/512 - Copyright © 2008 - 2024 ProcessOne

mod_proxy65

modules:

mod_providers:
alternativeJids: ["examplel.com", "example2.com"]
busFactor: 1
freeofCharge: true
languages: [ag, ao, bg, en]
legalNotice: "http://@HOST@/legal/@LANGUAGE_URL@/"
maximumHttpFileUploadStorageTime: @
maximumHttpFileUploadTotalSize: 0
maximumMessageArchiveManagementStorageTime: @
organization: "non-governmental"
passwordReset: "http://@HOST@/reset/@LANGUAGE_URL@/"
professionalHosting: true
serverLocations: [ao0, bg]
serverTesting: true
since: "2025-12-31"
website: "http://@HOST@/website/@LANGUAGE_URL@/"

mod_proxy65

This module implements XEP-0065: SOCKS5 Bytestreams. It allows ejabberd to act as a file transfer proxy between two XMPP
clients.

-185/512 - Copyright © 2008 - 2024 ProcessOne

https://xmpp.org/extensions/xep-0065.html

mod_proxy65

Available options:

® access: AccessName
Defines an access rule for file transfer initiators. The default value is all. You may want to restrict access to the users of your
server only, in order to avoid abusing your proxy by the users of remote servers.

auth_type: anonymous | plain
SOCKS5 authentication type. The default value is anonymous . If set to plain, ejabberd will use authentication backend as it
would for SASL PLAIN.

host
Deprecated. Use hosts instead.

hostname: Host

Defines a hostname offered by the proxy when establishing a session with clients. This is useful when you run the proxy behind
a NAT. The keyword @HosT@ is replaced with the virtual host name. The default is to use the value of ip option. Examples:
proxy.mydomain.org, 200.150.100.50 .

hosts: [Host, ...]
This option defines the Jabber IDs of the service. If the hosts option is not specified, the only Jabber ID will be the hostname of
the virtual host with the prefix "proxy.". The keyword @HosT@ is replaced with the real virtual host name.

ip: IPAddress
This option specifies which network interface to listen for. The default value is an IP address of the service’s DNS name, or, if
fails, 127.0.0.1.

max_connections: pos_integer() | infinity
Maximum number of active connections per file transfer initiator. The default value is infinity .

name: Name
The value of the service name. This name is only visible in some clients that support XEP-0030: Service Discovery. The default
is "SOCKS5 Bytestreams".

port: 1..65535
A port number to listen for incoming connections. The default value is 7777 .

ram_db_type: mnesia | redis | sql
Same as top-level default ram db option, but applied to this module only.

recbuf: size
A size of the buffer for incoming packets. If you define a shaper, set the value of this option to the size of the shaper in order to
avoid traffic spikes in file transfers. The default value is 65536 bytes.

shaper: shaper
This option defines a shaper for the file transfer peers. A shaper with the maximum bandwidth will be selected. The default is
none , i.e. no shaper.

sndbuf: size
A size of the buffer for outgoing packets. If you define a shaper, set the value of this option to the size of the shaper in order to
avoid traffic spikes in file transfers. The default value is 65536 bytes.

vcard: vcard

A custom vCard of the service that will be displayed by some XMPP clients in Service Discovery. The value of vcard is a YAML
map constructed from an XML representation of vCard. Since the representation has no attributes, the mapping is
straightforward.

Example:

acl:
admin:
user: admin@example.org
proxy_users:
server: example.org

access_rules:
proxy65_access:

allow: proxy_users

shaper_rules:
proxy65_shaper:

- 186/512 - Copyright © 2008 - 2024 ProcessOne

https://xmpp.org/extensions/xep-0030.html

none: admin
proxyrate: proxy_users

shaper:
proxyrate: 10240

modules:
mod_proxy65:

host: proxyl.example.org
name: "File Transfer Proxy"

ip: 200.150.100.1
port: 7778
max_connections: 5
access: proxy65_access
shaper: proxy65_shaper
recbuf: 10240

sndbuf: 10240

mod_pubsub

mod pubsub

This module offers a service for XEP-0060: Publish-Subscribe. The functionality in mod_pubsub can be extended using plugins. The
plugin that implements PEP (XEP-0163: Personal Eventing via Pubsub) is enabled in the default ejabberd configuration file, and it

requires mod caps.

-187/512 -

Copyright © 2008 - 2024 ProcessOne

https://xmpp.org/extensions/xep-0060.html
https://xmpp.org/extensions/xep-0163.html

mod_pubsub

Available options:

-188/512 - Copyright © 2008 - 2024 ProcessOne

mod pubsub

* access_createnode: AccessName
This option restricts which users are allowed to create pubsub nodes using acl and access. By default any account in the local
ejabberd server is allowed to create pubsub nodes. The default value is: all.

db_type: mnesia | sql
Same as top-level default db option, but applied to this module only.

default_node_config: List of Key:Vvalue
To override default node configuration, regardless of node plugin. Value is a list of key-value definition. Node configuration still
uses default configuration defined by node plugin, and overrides any items by value defined in this configurable list.

force_node_config: List of Node and the list of its Key:Value
Define the configuration for given nodes. The default value is: [].

Example:

force_node_config:
Avoid buggy clients to make their bookmarks public
storage:bookmarks:
access_model: whitelist

host
Deprecated. Use hosts instead.

hosts: [Host, ...]
This option defines the Jabber IDs of the service. If the hosts option is not specified, the only Jabber ID will be the hostname of
the virtual host with the prefix "pubsub.". The keyword @HosT@ is replaced with the real virtual host name.

ignore_pep_from_offline: false | true
To specify whether or not we should get last published PEP items from users in our roster which are offline when we connect.
Value is true or false. If not defined, pubsub assumes true so we only get last items of online contacts.

last_item_cache: false | true

To specify whether or not pubsub should cache last items. Value is true or false. If not defined, pubsub does not cache last
items. On systems with not so many nodes, caching last items speeds up pubsub and allows you to raise the user connection
rate. The cost is memory usage, as every item is stored in memory.

max_item_expire_node: timeout() | infinity
© addedin21.12 Specify the maximum item epiry time. Default value is: infinity .

max_items_node: non_neg_integer() | infinity
Define the maximum number of items that can be stored in a node. Default value is: 1000 .

max_nodes_discoitems: pos_integer() | infinity
The maximum number of nodes to return in a discoitem response. The default value is: 100 .

max_subscriptions_node: Maxsubs
Define the maximum number of subscriptions managed by a node. Default value is no limitation: undefined .

name: Name
The value of the service name. This name is only visible in some clients that support XEP-0030: Service Discovery. The default

is vcard User Search.

nodetree: Nodetree
To specify which nodetree to use. If not defined, the default pubsub nodetree is used: tree. Only one nodetree can be used per
host, and is shared by all node plugins.

tree nodetree store node configuration and relations on the database. flat nodes are stored without any relationship, and
hometree nodes can have child nodes.

virtual nodetree does not store nodes on database. This saves resources on systems with tons of nodes. If using the virtual
nodetree, you can only enable those node plugins: [flat, pep] or [flat]; any other plugins configuration will not work. Also,
all nodes will have the default configuration, and this can not be changed. Using virtual nodetree requires to start from a
clean database, it will not work if you used the default tree nodetree before.

pep_mapping: List of Key:value
In this option you can provide a list of key-value to choose defined node plugins on given PEP namespace. The following
example will use node_tune instead of node_pep for every PEP node with the tune namespace:

- 189/512 - Copyright © 2008 - 2024 ProcessOne

https://xmpp.org/extensions/xep-0030.html

mod pubsub

Example:

modules:

mod_pubsub:
pep_mapping:
http://jabber.org/protocol/tune: tune

* plugins: [Plugin, ...]
To specify which pubsub node plugins to use. The first one in the list is used by default. If this option is not defined, the default
plugins list is: [flat] . PubSub clients can define which plugin to use when creating a node: add type='plugin-
name ' attribute to the create stanza element.

e flat plugin handles the default behaviour and follows standard XEP-0060 implementation.

* pep plugin adds extension to handle Personal Eventing Protocol (XEP-0163) to the PubSub engine. When enabled, PEP is
handled automatically.

e vcard: vcard
A custom vCard of the server that will be displayed by some XMPP clients in Service Discovery. The value of vcard is a YAML
map constructed from an XML representation of vCard. Since the representation has no attributes, the mapping is
straightforward.

Example:

This XML representation of vCard:
<vCard xmlns='vcard-temp'>
<FN>Conferences</FN>
<ADR>
<WORK/>
<STREET>Elm Street</STREET>
</ADR>
</vCard>
#
is translated to:
veard:
fn: Conferences
adr:

work: true
street: Elm Street

Examples:
Example of configuration that uses flat nodes as default, and allows use of flat, hometree and pep nodes:

modules:
mod_pubsub:

access_createnode: pubsub_createnode

max_subscriptions_node: 100

default_node_config:
notification_type: normal
notify_retract: false
max_items: 4

plugins:
- flat
- pep

Using relational database requires using mod pubsub with db type sql. Only flat, hometree and pep plugins supports SQL. The
following example shows previous configuration with SQL usage:

modules:
mod_pubsub:
db_type: sql
access_createnode: pubsub_createnode
ignore_pep_from_offline: true
last_item cache: false
plugins:
- flat
- pep

API Tags: purge

- 190/512 - Copyright © 2008 - 2024 ProcessOne

mod_pubsub serverinfo

mod_pubsub_serverinfo

© addedin25.07
This module adds support for XEP-0485: PubSub Server Information to expose S2S information over the Pub/Sub service.
Active S2S connections are published to a local PubSub node. Currently the node name is hardcoded as "serverinfo" .

Connections that support this feature are exposed with their domain names, otherwise they are shown as anonymous nodes. At
startup a list of well known public servers is fetched. Those are not shown as anonymous even if they don’t support this feature.

Please note that the module only shows S2S connections established while the module is running. If you install the module at
runtime, run stop s2s connections API or restart ejabberd to force S2S reconnections that the module will detect and publish.

This module depends on mod pubsub and mod disco.
Available options:

* pubsub_host: undefined | string()
Use this local PubSub host to advertise S2S connections. This must be a host local to this service handled by mod pubsub. This
option is only needed if your configuration has more than one host in mod pubsub’s hosts option. The default value is the first
host defined in mod pubsub hosts option.

Example:

modules:
mod_pubsub_serverinfo:
pubsub_host: custom.pubsub.domain.local

mod_push

This module implements the XMPP server’s part of the push notification solution specified in XEP-0357: Push Notifications. It
does not generate, for example, APNS or FCM notifications directly. Instead, it’s designed to work with so-called "app servers"
operated by third-party vendors of mobile apps. Those app servers will usually trigger notification delivery to the user’s mobile
device using platform-dependent backend services such as FCM or APNS.

- 191/512 - Copyright © 2008 - 2024 ProcessOne

https://xmpp.org/extensions/xep-0485.html
https://xmpp.org/extensions/xep-0357.html

mod_push keepalive

Available options:

cache_life_time: timeout()
Same as top-level cache life time option, but applied to this module only.

cache_missed: true | false
Same as top-level cache missed option, but applied to this module only.

cache_size: pos_integer() | infinity
Same as top-level cache size option, but applied to this module only.

db_type: mnesia | sql
Same as top-level default db option, but applied to this module only.

include_body: true | false | Text

If this option is set to true, the message text is included with push notifications generated for incoming messages with a body.
The option can instead be set to a static Text, in which case the specified text will be included in place of the actual message
body. This can be useful to signal the app server whether the notification was triggered by a message with body (as opposed to
other types of traffic) without leaking actual message contents. The default value is "New message".

include_sender: true | false
If this option is set to true, the sender’s JID is included with push notifications generated for incoming messages with a body.
The default value is false.

notify on: messages | all

Q added in 23.10 If this option is set to messages, notifications are generated only for actual chat messages with a body text
(or some encrypted payload). If it’s set to all, any kind of XMPP stanza will trigger a notification. If unsure, it’s strongly
recommended to stick to all, which is the default value.

use_cache: true | false
Same as top-level use cache option, but applied to this module only.

API Tags: purge

mod_push_keepalive

This module tries to keep the stream management session (see mod stream mgmt) of a disconnected mobile client alive if the
client enabled push notifications for that session. However, the normal session resumption timeout is restored once a push
notification is issued, so the session will be closed if the client doesn’t respond to push notifications.

The module depends on mod push.

Available options:

* resume_timeout: timeout()
This option specifies the period of time until the session of a disconnected push client times out. This timeout is only in effect
as long as no push notification is issued. Once that happened, the resumption timeout configured for mod stream mgmt is
restored. The default value is 72 hours.

* wake_on_start: true | false
If this option is set to true, notifications are generated for all registered push clients during server startup. This option should
not be enabled on servers with many push clients as it can generate significant load on the involved push services and the
server itself. The default value is false.

* wake_on_timeout: true | false
If this option is set to true, a notification is generated shortly before the session would time out as per the resume_timeout
option. The default value is true.

-192/512 - Copyright © 2008 - 2024 ProcessOne

mod _register

mod_register
This module adds support for XEP-0077: In-Band Registration. This protocol enables end users to use an XMPP client to:

* Register a new account on the server.
* Change the password from an existing account on the server.

* Delete an existing account on the server.

This module reads also the top-level registration timeout option defined globally for the server, so please check that option
documentation too.

Available options:

® access: AccessName
Specify rules to restrict what usernames can be registered. If a rule returns deny on the requested username, registration of
that user name is denied. There are no restrictions by default. If AccessName is none, then registering new accounts using In-
Band Registration is disabled and the corresponding stream feature is not announced to clients.

access_from: AccessName

By default, ejabberd doesn’t allow the client to register new accounts from s2s or existing c2s sessions. You can change it by
defining access rule in this option. Use with care: allowing registration from s2s leads to uncontrolled massive accounts
creation by rogue users.

access_remove: AccessName
Specify rules to restrict access for user unregistration. By default any user is able to unregister their account.

allow_modules: all | [Module, ...]
Q added in 21.12 List of modules that can register accounts, or all. The default value is all, which is equivalent to

something like \[mod_register, mod_register_web] .

captcha_protected: true | false
Protect registrations with CAPTCHA. The default is false.

ip_access: AccessName
Define rules to allow or deny account registration depending on the IP address of the XMPP client. The Accessname should be
of type ip . The default value is all.

password_strength: Entropy
This option sets the minimum Shannon entropy for passwords. The value Entropy is a number of bits of entropy. The
recommended minimum is 32 bits. The default is o, i.e. no checks are performed.

redirect_url: urL
This option enables registration redirection as described in XEP-0077: In-Band Registration: Redirection.

registration_watchers: [JID, ...]
This option defines a list of JIDs which will be notified each time a new account is registered.

welcome_message: {subject: Subject, body: Body}
Set a welcome message that is sent to each newly registered account. The message will have subject subject and text Body .

Example:

modules:
mod_register:
welcome_message:
subject: "welcome!"
body: |-
Hi
Welcome to this XMPP server

- 193/512 - Copyright © 2008 - 2024 ProcessOne

https://xmpp.org/extensions/xep-0077.html
https://en.wikipedia.org/wiki/Entropy_(information_theory)
https://xmpp.org/extensions/xep-0077.html#redirect

mod register web

mod_register_web
This module provides a web page where users can:

* Register a new account on the server.
* Change the password from an existing account on the server.

* Unregister an existing account on the server.

This module supports CAPTCHA to register a new account. To enable this feature, configure the top-level captcha cmd and top-
level captcha url options.

As an example usage, the users of the host localhost can visit the page: https://localhost:5280/register/ It is important to
include the last / character in the URL, otherwise the subpages URL will be incorrect.

This module is enabled in listen — ejabberd_http — request handlers.

There is no need to enable this module in modules, but it adds a link to the register page in WebAdmin menu. The module
depends on mod register where all the configuration is performed.

The module has no options.
Example:

listen:
port: 5280
module: ejabberd_http
request_handlers:

/register: mod_register_web

modules:
mod_register: {}

mod_roster

This module implements roster management as defined in RFC6121 Section 2. The module also adds support for XEP-0237:
Roster Versioning.

- 194/512 - Copyright © 2008 - 2024 ProcessOne

https://tools.ietf.org/html/rfc6121#section-2
https://xmpp.org/extensions/xep-0237.html
https://xmpp.org/extensions/xep-0237.html

mod_s2s_bidi

Available options:

® accCess: AccessName
This option can be configured to specify rules to restrict roster management. If the rule returns deny on the requested user
name, that user cannot modify their personal roster, i.e. they cannot add/remove/modify contacts or send presence
subscriptions. The default value is all, i.e. no restrictions.

e cache_life_time: timeout()
Same as top-level cache life time option, but applied to this module only.

* cache_missed: true | false
Same as top-level cache missed option, but applied to this module only.

» cache_size: pos_integer() | infinity
Same as top-level cache size option, but applied to this module only.

* db_type: mnesia | sql
Same as top-level default db option, but applied to this module only.

» store_current_id: true | false
If this option is set to true, the current roster version number is stored on the database. If set to false, the roster version
number is calculated on the fly each time. Enabling this option reduces the load for both ejabberd and the database. This
option does not affect the client in any way. This option is only useful if option versioning is set to true. The default value is
false . IMPORTANT: if you use mod shared roster or mod shared roster ldap, you must set the value of the option to false.

* use_cache: true | false
Same as top-level use cache option, but applied to this module only.

* versioning: true | false
Enables/disables Roster Versioning. The default value is false .

Example:

modules:
mod_roster:
versioning: true
store_current_id: false

API Tags: roster

mod_s2s_bidi
© addedin24.10

The module adds support for XEP-0288: Bidirectional Server-to-Server Connections that allows using single s2s connection to
communicate in both directions.

The module has no options.
Example:

modules:
mod_s2s_bidi: {}

mod_s2s_dialback

The module adds support for XEP-0220: Server Dialback to provide server identity verification based on DNS.

- 195/512 - Copyright © 2008 - 2024 ProcessOne

https://xmpp.org/extensions/xep-0288.html
https://xmpp.org/extensions/xep-0220.html

mod_scram_upgrade

ﬁarning

DNS-based verification is vulnerable to DNS cache poisoning, so modern servers rely on verification based on PKIX certificates. Thus
this module is only recommended for backward compatibility with servers running outdated software or non-TLS servers, or those
with invalid certificates (as long as you accept the risks, e.g. you assume that the remote server has an invalid certificate due to poor
administration and not because it’s compromised).

Available options:

* access: AccessName

An access rule that can be used to restrict dialback for some servers. The default value is all.

Example:

modules:
mod_s2s_dialback:
access:
allow:
server: legacy.domain.tld
server: invalid-cert.example.org
deny: all

mod_scram_upgrade

Q added in 24.10

The module adds support for XEP-0480: SASL Upgrade Tasks that allows users to upgrade passwords to more secure

representation.

Available options:

 offered_upgrades: list(sha256, sha512)
List with upgrade types that should be offered

Example:

modules:
mod_scram_upgrade:
offered_upgrades:
- sha256
- sha512

mod_service_log

This module forwards copies of all stanzas to remote XMPP servers or components. Every stanza is encapsulated into

<forwarded/> element as described in XEP-0297: Stanza Forwarding.

Available options:

* loggers: [Domain, ...]

A list of servers or connected components to which stanzas will be forwarded.

Example:

modules:
mod_service_log:
loggers:
- xmpp-server.tld
- component.domain.tld

mod_shared_roster

This module enables you to create shared roster groups: groups of accounts that can see members from (other) groups in their

rosters.

-196/512 -

Copyright © 2008 - 2024 ProcessOne

https://en.wikipedia.org/wiki/DNS_spoofing
https://xmpp.org/extensions/xep-0480.html
https://xmpp.org/extensions/xep-0297.html

mod_shared roster

The big advantages of this feature are that end users do not need to manually add all users to their rosters, and that they cannot
permanently delete users from the shared roster groups. A shared roster group can have members from any XMPP server, but
the presence will only be available from and to members of the same virtual host where the group is created. It still allows the
users to have / add their own contacts, as it does not replace the standard roster. Instead, the shared roster contacts are merged
to the relevant users at retrieval time. The standard user rosters thus stay unmodified.

Shared roster groups can be edited via the Web Admin, and some API commands called srg_, for example srg add API. Each
group has a unique name and those parameters:

e Label: Used in the rosters where this group is displayed.
* Description: of the group, which has no effect.

* Members: A list of JIDs of group members, entered one per line in the Web Admin. The special member directive @all@
represents all the registered users in the virtual host; which is only recommended for a small server with just a few hundred
users. The special member directive @online@ represents the online users in the virtual host. With those two directives, the
actual list of members in those shared rosters is generated dynamically at retrieval time.

» Displayed: A list of groups that will be in the rosters of this group’s members. A group of other vhost can be identified with
groupid@vhost .

This module depends on mod roster. If not enabled, roster queries will return 503 errors.

Available options:

* cache_life_time: timeout()
Same as top-level cache life time option, but applied to this module only.

* cache_missed: true | false
Same as top-level cache missed option, but applied to this module only.

» cache_size: pos_integer() | infinity

Same as top-level cache size option, but applied to this module only.

e db_type: mnesia | sql
Same as top-level default db option, but applied to this module only.

* use_cache: true | false
Same as top-level use cache option, but applied to this module only.

Examples:

Take the case of a computer club that wants all its members seeing each other in their rosters. To achieve this, they need to
create a shared roster group similar to this one:

Name: club_members

Label: Club Members

Description: Members from the computer club

Members: memberl@example.org, member2@example.org, member3@example.org
Displayed Groups: club_members

In another case we have a company which has three divisions: Management, Marketing and Sales. All group members should see
all other members in their rosters. Additionally, all managers should have all marketing and sales people in their roster.
Simultaneously, all marketeers and the whole sales team should see all managers. This scenario can be achieved by creating
shared roster groups as shown in the following lists:

First list:

Name: management

Label: Management

Description: Management

Members: managerl@example.org, manager2@example.org
Displayed: management, marketing, sales

Second list:

Name: marketing

Label: Marketing

Description: Marketing

Members: marketeerl@example.org, marketeer2@example.org, marketeer3@example.org
Displayed: management, marketing

- 197/512 - Copyright © 2008 - 2024 ProcessOne

mod_shared roster ldap

Third list:

Name: sales

Label: Sales

Description: Sales

Members: salesmanl@example.org, salesman2@example.org, salesman3@example.org
Displayed: management, sales

mod_shared_roster_ldap

This module lets the server administrator automatically populate users' rosters (contact lists) with entries based on users and
groups defined in an LDAP-based directory.

-
l(ote

mod_shared_roster_ldap depends on mod_roster being enabled. Roster queries will return 503 errors if mod_roster is not enabled.

The module accepts many configuration options. Some of them, if unspecified, default to the values specified for the top level of
configuration. This lets you avoid specifying, for example, the bind password in multiple places.

e Filters: ldap_rfilter, ldap_ufilter, ldap_gfilter, ldap_filter . These options specify LDAP filters used to query for shared
roster information. All of them are run against the ldap base.

 Attributes: ldap_groupattr, ldap_groupdesc, ldap_memberattr, ldap_userdesc, ldap_useruid. These options specify the names of
the attributes which hold interesting data in the entries returned by running filters specified with the filter options.

* Control parameters: ldap_auth_check, ldap_group_cache_validity, ldap_memberattr_format, ldap_memberattr_format_re,
ldap_user_cache_validity . These parameters control the behaviour of the module.

* Connection parameters: The module also accepts the connection parameters, all of which default to the top-level parameter of
the same name, if unspecified. See LDAP Connection section for more information about them.

Check also the Configuration examples section to get details about retrieving the roster, and configuration examples including
Flat DIT and Deep DIT.

-198/512 - Copyright © 2008 - 2024 ProcessOne

mod_shared roster ldap

Available options:

-199/512 - Copyright © 2008 - 2024 ProcessOne

mod_shared roster ldap

* cache_life_time
Same as top-level cache life time option, but applied to this module only.

* cache_missed
Same as top-level cache missed option, but applied to this module only.

* cache_size
Same as top-level cache size option, but applied to this module only.

* ldap_auth_check: true | false
Whether the module should check (via the ejabberd authentication subsystem) for existence of each user in the shared LDAP
roster. Set to false if you want to disable the check. Default value is true .

ldap_backups
Same as top-level ldap backups option, but applied to this module only.

ldap_base
Same as top-level ldap base option, but applied to this module only.

ldap_deref_aliases
Same as top-level ldap deref aliases option, but applied to this module only.

ldap_encrypt
Same as top-level ldap encrypt option, but applied to this module only.

ldap_filter
Additional filter which is AND-ed together with "User Filter" and "Group Filter". For more information check the LDAP Filters
section.

ldap_gdfilter

"Group Filter", used when retrieving human-readable name (a.k.a. "Display Name") and the members of a group. See also the
parameters ldap_groupattr, ldap_groupdesc and ldap_memberattr . If unspecified, defaults to the top-level parameter of the same
name. If that one also is unspecified, then the filter is constructed exactly like "User Filter".

ldap_groupattr
The name of the attribute that holds the group name, and that is used to differentiate between them. Retrieved from results of
the "Roster Filter" and "Group Filter". Defaults to cn.

ldap_groupdesc
The name of the attribute which holds the human-readable group name in the objects you use to represent groups. Retrieved
from results of the "Group Filter". Defaults to whatever 1ldap_groupattr is set.

ldap_memberattr
The name of the attribute which holds the IDs of the members of a group. Retrieved from results of the "Group Filter". Defaults
to memberuid . The name of the attribute differs depending on the objectClass you use for your group objects, for example:

posixGroup — memberuUid; groupOfNames — member ; groupOfUniqueNames — uniqueMember .

ldap_memberattr_format

A globbing format for extracting user ID from the value of the attribute named by ldap_memberattr . Defaults to %u, which
means that the whole value is the member ID. If you change it to something different, you may also need to specify the User
and Group Filters manually; see section Filters.

ldap_memberattr_format_re
A regex for extracting user ID from the value of the attribute named by 1dap_memberattr . Check the LDAP Control Parameters
section.

ldap_password
Same as top-level ldap password option, but applied to this module only.

ldap_port
Same as top-level ldap port option, but applied to this module only.

ldap_rfilter

So called "Roster Filter". Used to find names of all "shared roster" groups. See also the 1ldap_groupattr parameter. If
unspecified, defaults to the top-level parameter of the same name. You must specify it in some place in the configuration, there
is no default.

- 200/512 - Copyright © 2008 - 2024 ProcessOne

mod _sic

* ldap_rootdn
Same as top-level ldap rootdn option, but applied to this module only.

* ldap_servers
Same as top-level ldap servers option, but applied to this module only.

* ldap_tls_cacertfile
Same as top-level ldap tls cacertfile option, but applied to this module only.

* ldap_tls_certfile

Same as top-level ldap tls certfile option, but applied to this module only.
* ldap_tls_depth

Same as top-level ldap tls depth option, but applied to this module only.

* ldap_tls_verify
Same as top-level ldap tls verify option, but applied to this module only.

* ldap_ufilter
"User Filter", used for retrieving the human-readable name of roster entries (usually full names of people in the roster). See
also the parameters 1ldap_userdesc and ldap_useruid. For more information check the LDAP Filters section.

* ldap_uids
Same as top-level ldap uids option, but applied to this module only.

* ldap_userdesc
The name of the attribute which holds the human-readable user name. Retrieved from results of the "User Filter". Defaults to
cn.

* ldap_userjidattr
The name of the attribute which is used to map user id to XMPP jid. If not specified (and that is default value of this option),
user jid will be created from user id and this module host.

* ldap_useruid
The name of the attribute which holds the ID of a roster item. Value of this attribute in the roster item objects needs to match
the ID retrieved from the ldap_memberattr attribute of a group object. Retrieved from results of the "User Filter". Defaults to
cn.

* use_cache
Same as top-level use cache option, but applied to this module only.

mod_sic

This module adds support for XEP-0279: Server IP Check. This protocol enables a client to discover its external IP address.

ﬁrning

The protocol extension is deferred and seems like there are no clients supporting it, so using this module is not recommended and,
furthermore, the module might be removed in the future.

The module has no options.

mod_sip

This module adds SIP proxy/registrar support for the corresponding virtual host.

\J
l(ote

It is not enough to just load this module. You should also configure listeners and DNS records properly. For details see the section
about the ejabberd sip listen module in the ejabberd Documentation.

-201/512 - Copyright © 2008 - 2024 ProcessOne

https://xmpp.org/extensions/xep-0279.html

mod_stats

Available options:

* always_record_route: true | false
Always insert "Record-Route" header into SIP messages. With this approach it is possible to bypass NATs/firewalls a bit more
easily. The default value is true.

 flow_timeout_tcp: timeout()
The option sets a keep-alive timer for SIP outbound TCP connections. The default value is 2 minutes.

* flow_timeout_udp: timeout()
The options sets a keep-alive timer for SIP outbound UDP connections. The default value is 29 seconds.

* record_route: URI
When the option always record route is set to true or when SIP outbound is utilized, ejabberd inserts "Record-Route" header
field with this urI into a SIP message. The default is a SIP URI constructed from the virtual host on which the module is
loaded.

* routes: [URI, ...]
You can set a list of SIP URIs of routes pointing to this SIP proxy server. The default is a list containing a single SIP URI
constructed from the virtual host on which the module is loaded.

evia: [URI, ...]
A list to construct "Via" headers for inserting them into outgoing SIP messages. This is useful if you're running your SIP proxy
in a non-standard network topology. Every url element in the list must be in the form of "scheme://host:port", where
"transport" must be tls, tcp, or udp, "host" must be a domain name or an IP address and "port" must be an internet port
number. Note that all parts of the UrRI are mandatory (e.g. you cannot omit "port" or "scheme").

Example:

modules:
mod_sip:
always_record_route: false
record_route: "sip:example.com;lr"
routes:

- "sip:example.com; lr"

- "sip:sip.example.com; lr"
flow_timeout_udp: 30 sec
flow_timeout_tcp: 1 min
via:

- tls://sip-tls.example.com:5061

- tcp://sip-tcp.example.com:5060

- udp://sip-udp.example.com:5060

mod_stats

This module adds support for XEP-0039: Statistics Gathering. This protocol allows you to retrieve the following statistics from
your ejabberd server:

» Total number of registered users on the current virtual host (users/total).
 Total number of registered users on all virtual hosts (users/all-hosts/total).
» Total number of online users on the current virtual host (users/online).

¢ Total number of online users on all virtual hosts (users/all-hosts/online).

\J
l(ote

The protocol extension is deferred and seems like even a few clients that were supporting it are now abandoned. So using this
module makes very little sense.

The module has no options.

-202/512 - Copyright © 2008 - 2024 ProcessOne

https://tools.ietf.org/html/rfc5626
https://tools.ietf.org/html/rfc5626
https://tools.ietf.org/html/rfc5626
https://xmpp.org/extensions/xep-0039.html

mod_stream mgmt

mod_stream_mgmt

This module adds support for XEP-0198: Stream Management. This protocol allows active management of an XML stream
between two XMPP entities, including features for stanza acknowledgments and stream resumption.

Available options:

* ack_timeout: timeout()
A time to wait for stanza acknowledgments. Setting it to infinity effectively disables the timeout. The default value is 1
minute.

cache_life_time: timeout()
Same as top-level cache life time option, but applied to this module only. The default value is 48 hours .

cache_size: pos_integer() | infinity
Same as top-level cache size option, but applied to this module only.

max_ack_queue: Size

This option specifies the maximum number of unacknowledged stanzas queued for possible retransmission. When the limit is
exceeded, the client session is terminated. The allowed values are positive integers and infinity . You should be careful when
setting this value as it should not be set too low, otherwise, you could kill sessions in a loop, before they get the chance to
finish proper session initiation. It should definitely be set higher that the size of the offline queue (for example at least 3 times
the value of the max offline queue and never lower than 1600). The default value is 5000 .

max_resume_timeout: timeout()

A client may specify the period of time until a session times out if the connection is lost. During this period of time, the client
may resume its session. This option limits the period of time a client is permitted to request. It must be set to a timeout equal
to or larger than the default resume_timeout . By default, it is set to the same value as the resume_timeout option.

queue_type: ram | file
Same as top-level queue type option, but applied to this module only.

resend_on_timeout: true | false | if_offline

If this option is set to true, any message stanzas that weren’t acknowledged by the client will be resent on session timeout.
This behavior might often be desired, but could have unexpected results under certain circumstances. For example, a message
that was sent to two resources might get resent to one of them if the other one timed out. Therefore, the default value for this
option is false, which tells ejabberd to generate an error message instead. As an alternative, the option may be set to

if _offline. In this case, unacknowledged messages are resent only if no other resource is online when the session times out.
Otherwise, error messages are generated.

resume_timeout: timeout()

This option configures the (default) period of time until a session times out if the connection is lost. During this period of time,
a client may resume its session. Note that the client may request a different timeout value, see the max_resume_timeout option.
Setting it to o effectively disables session resumption. The default value is 5 minutes.

mod_stun_disco

Q added in 20.04

This module allows XMPP clients to discover STUN/TURN services and to obtain temporary credentials for using them as per
XEP-0215: External Service Discovery.

- 203/512 - Copyright © 2008 - 2024 ProcessOne

https://xmpp.org/extensions/xep-0198.html
https://xmpp.org/extensions/xep-0215.html

mod_stun_disco

Available options:

-204/512 - Copyright © 2008 - 2024 ProcessOne

mod_stun disco

® access: AccessName
This option defines which access rule will be used to control who is allowed to discover STUN/TURN services and to request
temporary credentials. The default value is local.

credentials_lifetime: timeout()

The lifetime of temporary credentials offered to clients. If ejabberd’s built-in TURN service is used, TURN relays allocated
using temporary credentials will be terminated shortly after the credentials expired. The default value is 12 hours . Note that
restarting the ejabberd node invalidates any temporary credentials offered before the restart unless a secret is specified (see
below).

offer local_services: true | false

This option specifies whether local STUN/TURN services configured as ejabberd listeners should be announced automatically.
Note that this will not include TLS-enabled services, which must be configured manually using the services option (see
below). For non-anonymous TURN services, temporary credentials will be offered to the client. The default value is true.

secret: Text

The secret used for generating temporary credentials. If this option isn’t specified, a secret will be auto-generated. However, a
secret must be specified explicitly if non-anonymous TURN services running on other ejabberd nodes and/or external TURN
services are configured. Also note that auto-generated secrets are lost when the node is restarted, which invalidates any
credentials offered before the restart. Therefore, it’s recommended to explicitly specify a secret if clients cache retrieved
credentials (for later use) across service restarts.

services: [Service, ...]

The list of services offered to clients. This list can include STUN/TURN services running on any ejabberd node and/or external
services. However, if any listed TURN service not running on the local ejabberd node requires authentication, a secret must
be specified explicitly, and must be shared with that service. This will only work with ejabberd’s built-in STUN/TURN server
and with external servers that support the same REST API For Access To TURN Services. Unless the offer_local_services is
set to false, the explicitly listed services will be offered in addition to those announced automatically.

host: Host

The hostname or IP address the STUN/TURN service is listening on. For non-TLS services, it’'s recommended to specify an IP
address (to avoid additional DNS lookup latency on the client side). For TLS services, the hostname (or IP address) should
match the certificate. Specifying the host option is mandatory.

port: 1..65535
The port number the STUN/TURN service is listening on. The default port number is 3478 for non-TLS services and 5349 for
TLS services.

restricted: true | false
This option determines whether temporary credentials for accessing the service are offered. The default is false for STUN/
STUNS services and true for TURN/TURNS services.

transport: tcp | udp
The transport protocol supported by the service. The default is udp for non-TLS services and tcp for TLS services.

type: stun | turn | stuns | turns
The type of service. Must be stun or turn for non-TLS services, stuns or turns for TLS services. The default type is stun.

Example:

services:

host: 203.0.113.3
port: 3478

type: stun
transport: udp
restricted: false

host: 203.0.113.3
port: 3478

type: turn
transport: udp
restricted: true

host: 2001:db8::3
port: 3478

type: stun
transport: udp
restricted: false

host: 2001:db8::3

- 205/512 - Copyright © 2008 - 2024 ProcessOne

https://tools.ietf.org/html/draft-uberti-behave-turn-rest-00

mod_time

port: 3478

type: turn
transport: udp
restricted: true

host: server.example.com
port: 5349

type: turns

transport: tcp
restricted: true

mod_time

This module adds support for XEP-0202: Entity Time. In other words, the module reports server’s system time.

The module has no options.

mod_vcard

This module allows end users to store and retrieve their vCard, and to retrieve other users vCards, as defined in XEP-0054:
vcard-temp. The module also implements an uncomplicated Jabber User Directory based on the vCards of these users. Moreover,
it enables the server to send its vCard when queried.

-206/512 - Copyright © 2008 - 2024 ProcessOne

https://xmpp.org/extensions/xep-0202.html
https://xmpp.org/extensions/xep-0054.html
https://xmpp.org/extensions/xep-0054.html

mod_vcard

Available options:

e allow_return_all: true | false
This option enables you to specify if search operations with empty input fields should return all users who added some
information to their vCard. The default value is false.

cache_life_time: timeout()
Same as top-level cache life time option, but applied to this module only.

cache_missed: true | false
Same as top-level cache missed option, but applied to this module only.

cache_size: pos_integer() | infinity
Same as top-level cache size option, but applied to this module only.

db_type: mnesia | sql | ldap
Same as top-level default db option, but applied to this module only.

host
Deprecated. Use hosts instead.

hosts: [Host, ...]
This option defines the Jabber IDs of the service. If the hosts option is not specified, the only Jabber ID will be the hostname of
the virtual host with the prefix "vjud.". The keyword @HosT@ is replaced with the real virtual host name.

matches: pos_integer() | infinity
With this option, the number of reported search results can be limited. If the option’s value is set to infinity, all search
results are reported. The default value is 30.

name: Name
The value of the service name. This name is only visible in some clients that support XEP-0030: Service Discovery. The default

is vcard User Search.

search: true | false
This option specifies whether the search functionality is enabled or not. If disabled, the options hosts, name and vcard will be
ignored and the Jabber User Directory service will not appear in the Service Discovery item list. The default value is false.

use_cache: true | false
Same as top-level use cache option, but applied to this module only.

vcard: vcard

A custom vCard of the server that will be displayed by some XMPP clients in Service Discovery. The value of vcard is a YAML
map constructed from an XML representation of vCard. Since the representation has no attributes, the mapping is
straightforward.

Example:

This XML representation of vCard:

#

#

<vCard xmlns='vcard-temp'>

<FN>Conferences</FN>

<ADR>

<WORK/>

<STREET>Elm Street</STREET>
</ADR>

</vCard>

#

is translated to:
#
veard:
fn: Conferences
adr:

work: true
street: Elm Street

- 207/512 - Copyright © 2008 - 2024 ProcessOne

https://xmpp.org/extensions/xep-0030.html

mod_vcard

Available options for 1dap backend:

-208/512 - Copyright © 2008 - 2024 ProcessOne

mod_vcard

* ldap_backups
Same as top-level ldap backups option, but applied to this module only.

* ldap_base
Same as top-level ldap base option, but applied to this module only.

* ldap_deref_aliases
Same as top-level ldap deref aliases option, but applied to this module only.

* ldap_encrypt
Same as top-level ldap encrypt option, but applied to this module only.

* ldap_filter
Same as top-level ldap filter option, but applied to this module only.

* ldap_password
Same as top-level ldap password option, but applied to this module only.

* ldap_port
Same as top-level ldap port option, but applied to this module only.

* ldap_rootdn
Same as top-level ldap rootdn option, but applied to this module only.

* ldap_search_fields: {Name: Attribute, ...}
This option defines the search form and the LDAP attributes to search within. nName is the name of a search form field which
will be automatically translated by using the translation files (see msgs/*.msg for available words). Attribute is the LDAP
attribute or the pattern %u .

Examples:

The default is:

User: "%u"

"Full Name": displayName
"Given Name": givenName
"Middle Name": initials
"Family Name": sn
Nickname: "%u"
Birthday: birthDay
Country: ¢

City: 1

Email: mail
"Organization Name": o
"Organization Unit": ou

ldap_search_reported: {searchField: VcardField}, ...}

This option defines which search fields should be reported. searchrield is the name of a search form field which will be
automatically translated by using the translation files (see msgs/*.msg for available words). vcardrield is the vCard field name
defined in the 1ldap_vcard_map option.

Examples:

The default is:

"Full Name": FN

"Given Name": FIRST

"Middle Name": MIDDLE
"Family Name": LAST
"Nickname": NICKNAME
"Birthday": BDAY

"Country": CTRY

"City": LOCALITY

"Email": EMAIL

"Organization Name": ORGNAME
"Organization Unit": ORGUNIT

* ldap_servers
Same as top-level ldap servers option, but applied to this module only.

* ldap_tls_cacertfile
Same as top-level ldap tls cacertfile option, but applied to this module only.

* ldap_tls_certfile
Same as top-level ldap tls certfile option, but applied to this module only.

- 209/512 - Copyright © 2008 - 2024 ProcessOne

mod vcard xupdate

* ldap_tls_depth
Same as top-level ldap tls depth option, but applied to this module only.

* ldap_tls_verify
Same as top-level ldap tls verify option, but applied to this module only.

* ldap_uids
Same as top-level ldap uids option, but applied to this module only.

* ldap_vcard_map: {Name: {Pattern, LDAPattributes}, ...}
With this option you can set the table that maps LDAP attributes to vCard fields. name is the type name of the vCard as defined
in RFC 2426. pattern is a string which contains pattern variables %u, %d or %s. LDAPattributes is the list containing LDAP
attributes. The pattern variables %s will be sequentially replaced with the values of LDAP attributes from
List_of LDAP_attributes, %u will be replaced with the user part of a JID, and %d will be replaced with the domain part of a JID.

Examples:

The default is:

NICKNAME: {"%u": []}

FN: {"%s": [displayName]}
LAST: {"%s": [sn]}

FIRST: {"%s": [givenName]}
MIDDLE: {"%s": [initials]}
ORGNAME: {"%s": [0]}
ORGUNIT: {"%s": [ou]}

CTRY: {"%s": [c]}

LOCALITY: {"%s": [1]}
STREET: {"%s": [street]}
REGION: {"%s": [st]}

PCODE: {"%s": [postalCode]}
TITLE: {"%s": [title]}

URL: {"%s": [labeleduri]}
DESC: {"%s": [description]}
TEL: {"%s": [telephoneNumber]}
EMAIL: {"%s": [mail]}

BDAY: {"%s": [birthDay]}
ROLE: {"%s": [employeeType]}
PHOTO: {"%s": [jpegPhoto]}

Available options for mnesia backend:

* search_all_hosts: true | false
Whether to perform search on all virtual hosts or not. The default value is true.

mod_vcard_xupdate

The user’s client can store an avatar in the user vCard. The vCard-Based Avatars protocol (XEP-0153) provides a method for
clients to inform the contacts what is the avatar hash value. However, simple or small clients may not implement that protocol.

If this module is enabled, all the outgoing client presence stanzas get automatically the avatar hash on behalf of the client. So,
the contacts receive the presence stanzas with the update pata described in XEP-0153 as if the client would had inserted it itself.
If the client had already included such element in the presence stanza, it is replaced with the element generated by ejabberd.

By enabling this module, each vCard modification produces a hash recalculation, and each presence sent by a client produces
hash retrieval and a presence stanza rewrite. For this reason, enabling this module will introduce a computational overhead in
servers with clients that change frequently their presence. However, the overhead is significantly reduced by the use of caching,
so you probably don’t want to set use_cache to false.

The module depends on mod vcard.

-
Pﬂ‘)te

Nowadays XEP-0153 is used mostly as "read-only", i.e. modern clients don’t publish their avatars inside vCards. Thus in the majority
of cases the module is only used along with mod avatar for providing backward compatibility.

- 210/512 - Copyright © 2008 - 2024 ProcessOne

https://tools.ietf.org/html/rfc2426
https://xmpp.org/extensions/xep-0153.html
https://xmpp.org/extensions/xep-0153.html
https://xmpp.org/extensions/xep-0153.html

mod _version

Available options:

* cache_life_time: timeout()
Same as top-level cache life time option, but applied to this module only.

* cache_missed: true | false
Same as top-level cache missed option, but applied to this module only.

» cache_size: pos_integer() | infinity
Same as top-level cache size option, but applied to this module only.

* use_cache: true | false
Same as top-level use cache option, but applied to this module only.

mod_version

This module implements XEP-0092: Software Version. Consequently, it answers ejabberd’s version when queried.
Available options:

* show_os: true | false
Should the operating system be revealed or not. The default value is true.

-21 1/512 - Copyright © 2008 - 2024 ProcessOne

https://xmpp.org/extensions/xep-0092.html

Advanced

Advanced

Advanced ejabberd Administration

¢ Clustering ejabberd

¢ Managing an ejabberd server
* MQTT Support

* Securing ejabberd

* Troubleshooting ejabberd

-212/512 - Copyright © 2008 - 2024 ProcessOne

Architecture

Architecture

This section contains information to help your understand ejabberd architecture and will explain how to integrate ejabberd

properly into your overall infrastructure.

Overview

ejabberd is a configurable system where modules can be enabled or disabled based on customer requirements. Users can
connect not only from a regular PC but also from mobile devices and from the web. User data can be stored internally in Mnesia
or in one of the support SQL or NoSQL backend. Users can be totally managed by your own backend through a ReST interface.

ejabberd internal architecture is organised around its router. Most of the other elements are plugins that can be adapted,
enhanced or replaced to build a custom solution tailored to your needs.

ejabberd support a core concept of XMPP: Federation. Federation is a mechanism allowing different independent XMPP servers

and clusters to communicate with each other.

Here is a high level diagram of ejabberd internal architecture:

[,)
Data Modules ‘Authentication)
one or several backends ““m;;n;g:‘m e ejabberd node

) = - SOL (MySQL, Postgres)

Profile - VCards Message archive 2k a‘os’ SQOLL;&,“-"“’ - NoSQL (Riak) - -
- Mnesia - Mnesia _LDAP - LDAP =
T R oo St - Rt AP 228 5
: gres) (federation) 2
3
\ J]

Features Modules ["
2
Multi-User Chat Offiine Last activity Logging f 11l2
3
Pubsub Personal events Anonymous access Media transfer router “?
\ J >
- . : ‘B
Reliability & Security Modules - HE
Carbon copy Stream management Message traceabllity Shaping / anti DOS session manager
c2s
Message acks Ping Privacy Audit L)
. J

Typical large scale deployments

Here is a diagram for a typical ejabberd large scale deployment. It can scale massively and rely on several back-ends.

-213/512 -

Copyright © 2008 - 2024 ProcessOne

Virtual hosting

(Mobile - Desktop - Web Browser | Rest of the XMPP
T domains in the world
(! \

XHTTP 80 / Your company

”"PS “ infrastructure
c
‘ ‘ wee | S
5269 ©
Load balancers o
¥ 8
XMPP - 5222 g
.8
&

= = =
P P P I
& & &

ejabberd Instant Messaging ejabberd Instant Messag
ejabberd cluster — other ejabberd clusler

ejabberd data access layer
select one or several backends
/ 4 \

saL Riak \ ReST

Protocol LDAP

4 \ .
= =
: = Al

Webservices

Database Instant Messaging
MySQL - Postgres

Typical large scale ejabberd deployment

Note that ejabberd ejabberd support a core concept of XMPP: Federation. Federation is a mechanism allowing different
independent XMPP servers and clusters to communicate with each other. This is a purely optional layer, but it can help integrate
with the rest of the world. It is also sometimes internally by companies to group users in subsidiaries or regions.

Virtual hosting

If you need to manage several small XMPP domains, ejabberd supports virtual hosting. It means you can host as many domain as

you want on a single ejabberd deployment.

Instances can be made to be totally independent and invisible for each other if needed (or they can communicate as they would

through federation).

-214/512 - Copyright © 2008 - 2024 ProcessOne

Clustering

Clustering

Purpose

The purpose of ejabberd clustering is to be able to use several servers for a single or small group of large domains, for fault-
tolerance and scalability.

Note that you do not necessarily need clustering if you want to run two large domains independently. You may simply want to run
two different independent servers.

However, to build reliable service and support large user base, clustering is a must have feature.

How it Works

A XMPP domain is served by one or more ejabberd nodes. These nodes can be run on different machines that are connected via a
reliable network.

Those ejabberd nodes get connected between them using Erlang Distribution, and then those nodes exchange information about
connected users, s2s connections, registered services, etc...

Each ejabberd node has the following modules:

e router
¢ local router
* session manager

* s2s manager

Router

This module is the main router of XMPP packets on each node. It routes them based on their destination’s domains. It uses a
global routing table. The domain of the packet’s destination is searched in the routing table, and if it is found, the packet is
routed to the appropriate process. If not, it is sent to the s2s manager.

Local Router

This module routes packets which have a destination domain equal to one of this server’s host names. If the destination JID has a
non-empty user part, it is routed to the session manager, otherwise it is processed depending on its content.

Session Manager

This module routes packets to local users. It looks up to which user resource a packet must be sent via a presence table. Then
the packet is either routed to the appropriate c2s process, or stored in offline storage, or bounced back.

s2s Manager

This module routes packets to other XMPP servers. First, it checks if an opened s2s connection from the domain of the packet’s
source to the domain of the packet’s destination exists. If that is the case, the s2s manager routes the packet to the process
serving this connection, otherwise a new connection is opened.

-215/512 - Copyright © 2008 - 2024 ProcessOne

Managing nodes in a cluster

Managing nodes in a cluster
Before you setup clustering, there are a few things you need to take into account:

 Cluster should be set up in a single data center: The clustering in ejabberd Community Server relies on low latency
networking. While it may work across regions, it is recommended that you run an ejabberd cluster in a single Amazon region.

* Clustering ejabberd relies on Erlang Distribution and Mnesia shared schemas. Before getting started, it is best to get familiar
with the Erlang environment as this guide will heavily reference Erlang terms.

Preparation

Make sure all the nodes that you plan to group in the cluster have the same cookie file. You can simply copy the file
.erlang.cookie from one of the nodes to all the other nodes.

Then check that each ejabberd node has a different erlang node name set in the option ERLANG_NODE in the file ejabberdctl.cfg.
For example, let's assume in a machine named machine1 you configure:

ERLANG_NODE=ejabberdi@machinel

and in machine2 you configure:

ERLANG_NODE=ejabberd2@machine2

Make sure your new ejabberd node is properly configured. Usually, you want to have the same ejabberd.yml config file on the
new node that on the other cluster nodes.

Adding a node to a cluster

Let's assume the ejabberd server running in ejabberdi@machine1l already contains a database with accounts and other content,
and let's consider that node as the initial cluster.

Now let's add to that cluster a new node ejabberd2@machine2 which has no valuable information in its database (the contents of its
Mnesia database will get removed and overwritten).

Go to machine2, check that you are accessing the second node, tell it to join the cluster of the first node, and check the list of
nodes in the cluster:

$ ejabberdctl status
The node ejabberd2@machine2 is started with status: started
ejabberd 25.12 is running in that node

$ ejabberdctl --no-timeout join_cluster ejabberdi@machinel
Trying to join that cluster, wait a few seconds and check the list of nodes.

$ ejabberdctl list_cluster
ejabberdi@machinel
ejabberd2@machine2

This enables ejabberd's internal replications to be launched across all nodes so new nodes can start receiving messages from
other nodes and be registered in the routing tables.

Removing a node from the cluster

To remove a node from the cluster, it just needs to be shut down. There is no specific delay for the cluster to figure out that the
node is gone, the node is immediately removed from other router entries. All clients directly connected to the stopped node are
disconnected, and should reconnect to other nodes.

If the cluster is used behind a load balancer and the node has been removed from the load balancer, no new clients should be
connecting to that node but established connections should be kept, thus allowing to remove a node smoothly, by stopping it after
most clients disconnected by themselves. If the node is started again, it's immediately attached back to the cluster until it has
been explicitly removed permanently from the cluster.

-216/512 - Copyright © 2008 - 2024 ProcessOne

Service Load-Balancing

To permanently remove a running node from the cluster, the leave cluster command must be run as the ejabberd daemon user,
from one node of the cluster:

ejabberdctl leave_cluster 'ejabberd2@machine2'

The removed node must be running while calling leave cluster to make it permanently removed. It's then immediately stopped.

Restarting cluster nodes

Ejabberd Community Server uses mnesia internal database to manage cluster and internode synchronization. As a result, you
may restart ejabberd nodes as long as there is at least one running node. If you stop the last running node of a cluster, you MUST
restart that node first in order to get a running service back.

Service Load-Balancing

Domain Load-Balancing Algorithm

ejabberd includes an algorithm to load balance the components that are plugged on an ejabberd cluster. It means that you can
plug one or several instances of the same component on each ejabberd cluster and that the traffic will be automatically
distributed.

The default distribution algorithm attempts to deliver to a local instance of a component. If several local instances are available,
one instance is chosen at random. If no instance is available locally, one instance is randomly chosen among the remote
component instances.

If you need a different behaviour, you can change the load balancing behaviour with the domain balancing option.

Load-Balancing Buckets

When there is a risk of failure for a given component, domain balancing can cause service trouble. If one component is failing the
service will not work correctly unless the sessions are rebalanced.

In this case, it is best to limit the problem to the sessions handled by the failing component. This is what the component_number
option does, making the load balancing algorithm not dynamic, but sticky on a fix number of component instances. Check
domain balancing top-level option documentation for details.

-217/512 - Copyright © 2008 - 2024 ProcessOne

Understanding ejabberd and its dependencies

Overview

Understanding ejabberd and its dependencies

We wanted to make sure that ejabberd is modular and that parts that can be of interest for other Erlang projects can be reused.

Not only we are massive open source contributors to Erlang community and ecosystem, but we are also trying to help even more

by reviewing your pull requests. Do not hesitate to submit some on any of the many repositories mentioned here.

ejabberd codebase is split among several repositories, so effectively ejabberd code is much more than what is in its primary

repository. And each of those repositories is now a dependency of ejabberd.

Build tools

The dependencies are managed differently depending on the build tool being used:

Elixir Mix
reads dependencies from file mix.exs (package version or git commit):

{:fast_tls, ">= 1.1.18"}

{:yconf, git: "https://github.com/processone/yconf",
ref: "9898754f16chd4585a1c2061d72fa441ech2e938",
override: true}

downloads package from hex.pm, or git repository
caches package in $HOME/.hex/
and compiles in deps/

Rebar3

reads dependencies from file rebar.config (package version or git commit):

{fast_tls, "~> 1.1.19", ...}
{yconf, ".*", {git, "https://github.com/processone/yconf",
"'9898754f16chd4585a1c2061d72fa441ech2e938"}}

downloads package from hex.pm, or git repository
caches package in $HOME/.cache/rebar3/hex/

and compiles in _build/default/lib/

Rebar2

reads dependencies from file rebar.config (git tag or git commit):

{fast_tls, ..., {git, "https://github.com/processone/fast_t1ls",
{tag, "1.1.24"}}}
{yconf, ..., {git, "https://github.com/processone/yconf",

"9898754f16chd4585a1c2061d72fad441ech2e938"}}

downloads from the corresponding git repository
does not cache it

and compiles in deps/

The dependencies are automatically downloaded from Internet, if not already cached on your machine. Alternatively, you can

copy the cache directory from another machine.

Mandatory

The main ejabberd repository is processone/ejabberd. There is hundreds of forks, but we actively maintain ejabberd to make it

the most reliable and up to date version. This is thus your best starting point.

-218/512 -

Copyright © 2008 - 2024 ProcessOne

https://hexdocs.pm/mix/Mix.html
https://hex.pm/
https://rebar3.org/
https://hex.pm/
https://github.com/rebar/rebar/wiki
https://github.com/processone/ejabberd

Optional

When you build ejabberd yourself, the build chain will download a few Erlang dependencies:

» processone/cache tab: Flexible in-memory Erlang caching module.

» processone/fast tls: Erlang native driver for TLS / SSL. It is build for performance and is more scalable that Erlang SSL driver.
If your Erlang server is handling heavy load and is using TLS, we strongly recommend you check / compare with this driver.

» processone/fast xml: Fast native Expat based Erlang XML parsing library. XML is the core of XMPP so we needed to provide
the fast and more robust XML parsing stack as possible. It means that if you are looking for a great XML parser, reusing
pl xml is probably a great idea.

e processone/fast yaml: Native Erlang interface to libyaml, for fast robust YAML parsing. This is needed by our new config file
format.

» processone/iconv: Native iconv driver for Erlang. This is use for fast character encoding conversion.
» processone/pl utils: This is extra Erlang modules developed for ejabberd but that can be useful in other Erlang applications.

» processone/stringprep: Fast and efficient Erlang Stringprep native driver. Stringprep is heavily used in XMPP to define
encoding rules of various XMPP objects.

* basho/lager: Erlang logger module.

Optional

Then, we use a few other dependent repositories that may be used if you have enabled support in the ./configure script:

» processone/epam: epam helper for Erlang / Elixir PAM authentication support

» processone/erlang-sqlite3: Sqlite gen server port for Erlang.

e processone/esip: ProcessOne SIP protocol support to add SIP-based voice capabilities to ejabberd.
» processone/ezlib: Native zlib driver for Erlang. Used for fast / efficient stream compression.

» processone/mysql: Pure Erlang MySQL driver.

» processone/pgsql: Pure Erlang PostgreSQL driver

» processone/stun: Implementation of Session Traversal Utilities for NAT. It is used for XMPP and SIP media capabilities, to help
client discover their visible IP address and allow them to get in touch through NAT. This is basically useful for voice and file
transfers.

» Nordix/eredis: Erlang Redis client

e rvirding/luerl: Lua in Erlang

On the other hand, you can install additional ejabberd modules from the ejabberd-contrib repository.

- 219/512 - Copyright © 2008 - 2024 ProcessOne

https://github.com/processone/cache_tab
https://github.com/processone/fast_tls
https://github.com/processone/fast_xml
https://github.com/processone/fast_yaml
https://github.com/processone/iconv
https://github.com/processone/p1_utils
https://github.com/processone/stringprep
https://github.com/basho/lager
https://github.com/processone/epam
https://github.com/processone/erlang-sqlite3
https://github.com/processone/esip
https://github.com/processone/ezlib
https://github.com/processone/mysql
https://github.com/processone/pgsql
https://github.com/processone/stun
https://en.wikipedia.org/wiki/STUN
https://github.com/Nordix/eredis
https://github.com/rvirding/luerl

Erlang Distribution

Erlang Distribution

Overview
ejabberd uses the Distributed Erlang feature for two purposes:

e ejabberdctl shell script that connects to your running ejabberd node to allow you executing API commands in it, opening an
interactive erlang shell, ...

* clustering several ejabberd nodes that you deploy in separate machines to serve a large XMPP domain with fault-tolerance and
scalability.

There are three topics involved in erlang distribution:

* Cookie, automatically generated, shared by your ejabberd nodes, and secret to the world
* Node Name that you pick for each ejabberd node to identify them in a cluster

* Port number to use, determined using either:

* ERL DIST PORT environment variable that lets you assign your desired port number

e epmd program that assigns a random port number and maps names with ports

Cookie

.)kie

Random alphanumeric string assigned to each erlang node used to secure connections between erlang nodes. See Security in

distributed erlang.

An Erlang node reads the cookie at startup from the command-line parameter -setcookie . If not indicated, the cookie is read
from the file $HOME/.erlang.cookie .

If this file does not exist, it is created immediately with a random cookie in the user $HoMeE path. This means the user running
ejabberd must have a s$HoMeE , and have write access to that path. So, when you create a new account in your system for running
ejabberd, either allow it to have a $HOME, or set as $HoME a path where ejabberd will have write access. Depending on your setup,
examples could be:

adduser --home /usr/local/var/lib/ejabberd ejabberd

or

adduser --home /var/lib/ejabberd ejabberd

Two Erlang nodes communicate only if they have the same cookie. Setting a cookie on the Erlang node allows you to structure
your Erlang network and define which nodes are allowed to connect to which.

Thanks to Erlang cookies, you can prevent access to the Erlang node by mistake, for example when there are several Erlang
nodes running different programs in the same machine.

Setting a secret cookie is a simple method to difficult unauthorized access to your Erlang node. However, the cookie system is
not ultimately effective to prevent unauthorized access or intrusion to an Erlang node. The communication between Erlang nodes
are not encrypted, so the cookie could be read sniffing the traffic on the network. The recommended way to secure the Erlang
node is to block the port 4369.

- 220/512 - Copyright © 2008 - 2024 ProcessOne

https://www.erlang.org/doc/system/distributed.html
https://www.erlang.org/doc/system/distributed#security
https://www.erlang.org/doc/system/distributed#security

Node Name

Node Name

-ang node

A node in erlang connected to a cluster. See Erlang node name

Variable in ejabberdctl.cfg Corresponding argument in Erlang/OTP

ERLANG_NODE=ejabberd@localhost -name ejabberd@localhost

-sname ejabberd

An Erlang node may have a node name. The name can be short (if indicated with the command-line parameter -sname) or long (if
indicated with the parameter -name). Starting an Erlang node with -sname limits the communication between Erlang nodes to the
LAN.

Using the argument -sname instead of -name is a simple method to difficult unauthorized access to your Erlang node. However, it
is not ultimately effective to prevent access to the Erlang node, because it may be possible to fake the fact that you are on
another network using a modified version of Erlang epmd. The recommended way to secure the Erlang node is to block the port
4369.

ERL_DIST_PORT

Variable in ejabberdctl.cfg Corresponding argument in Erlang/OTP
INET_DIST_INTERFACE -kernel inet dist use interface
ERL_DIST_PORT=5210 -erl epmd port 5210 -start epmd false

The TCP port where your Erlang node listens for Erlang distribution connections can be set with the environment variable
ERL_DIST_PORT in the file ejabberdctl.cfg. When attempting to connect to other remote nodes, it will also try to connect to that
port number.

By default this variable is set to 5216, but you can set any number you prefer as long as it isn't used in the machine, and it is the
same for all the other ejabberd nodes that will build the cluster.

When building a cluster of several Erlang nodes, all of them must have the same ERL_DIST_PORT, because this is used for listening
and also for connecting. Consequently, if you want to build a cluster of several nodes in the same machine, each node must have
a different IP address in INET_DIST_INTERFACE .

Just as a small note: since Erlang/OTP 27.2, the argument -erl_epmd_port is obsoleted by -kernel erl epmd node listen port.
However, ejabberd does not yet use the new argument because ejabberd supports Erlang/OTP 25+.

epmd
Variable in ejabberdctl.cfg Corresponding argument in Erlang/OTP
INET_DIST_INTERFACE -kernel inet dist use interface
FIREWALL_WINDOW=XX-YY -kernel inet_dist listen min xx inet dist listen_max Yy
ERL_EPMD_ADDRESS ERL EPMD ADDRESS

W

Small name server included in Erlang/OTP and used by Erlang programs when establishing distributed Erlang communications. See
epmd (Erlang Port Mapper Daemon)

-221/512 - Copyright © 2008 - 2024 ProcessOne

https://www.erlang.org/doc/apps/erts/erl_cmd#name
https://www.erlang.org/doc/apps/erts/erl_cmd#sname
https://www.erlang.org/doc/apps/kernel/kernel_app.html#inet_dist_use_interface
https://www.erlang.org/docs/28/apps/erts/erl_cmd#erl_epmd_port
https://www.erlang.org/docs/28/apps/erts/erl_cmd.html#start_epmd
https://www.erlang.org/docs/28/apps/kernel/kernel_app#erl_epmd_node_listen_port
https://www.erlang.org/doc/apps/kernel/kernel_app.html#inet_dist_use_interface
https://www.erlang.org/doc/apps/kernel/kernel_app.html#inet_dist_listen
https://www.erlang.org/doc/apps/erts/epmd_cmd.html#environment-variables
https://www.erlang.org/doc/apps/erts/epmd_cmd.html
https://www.erlang.org/doc/apps/erts/epmd_cmd.html

epmd

When ERL DIST PORT is not set in ejabberdctl.cfg, Erlang starts the epmd program (which listens in port 4369), and connects
to that program to ask for a random port number to use.

You should block the port 4369 in the firewall in such a way that only the programs in your machine can access it, or configure
the environment variable ERL_EPMD_ADDRESS in the file ejabberdctl.cfg.

When building a cluster of several ejabberd nodes, if you don't set ERL DIST PORT with the same port number in
ejabberdctl.cfg in all the nodes, then you must open the port 4369 for all the machines involved in the cluster so their epmd
programs can be accessed. Remember to block the port so Internet doesn't have access to it.

Once an Erlang node solved the node name of another Erlang node using EPMD and port 4369, the nodes communicate directly.
The ports used in this case by default are random, and can be restricted with the environment variable FIREWALL_wInDOw in the file
ejabberdctl.cfg.

The network interface where the Erlang node will listen and accept connections can be configured with the environment variable
INET_DIST_INTERFACE in the file ejabberdctl.cfg.

- 222/512 - Copyright © 2008 - 2024 ProcessOne

Managing an ejabberd server

Managing an ejabberd server

ejabberdctl

!bberdctl

Command line administration script to start/stop ejabberd and execute API commands.

With ejabberdctl you can execute:

» ejabberdctl commands like start and stop an ejabberd server

» ejabberd API commands for everyday administrative tasks in your running ejabberd servers

ejabberdctl can connect to a local ejabberd server, and even remote ones if you properly set the erlang cookie and provide the
argument -node NODENAME .

The ejabberdctl script can be configured in the file ejabberdctl.cfg . This file includes detailed information about each
configurable option. See section Erlang Runtime System.

The ejabberdctl script returns a numerical status code. Success is represented by o, error is represented by 1, and other codes
may be used for specific results. This can be used by other scripts to determine automatically if a command succeeded or failed,
for example using: echo $?

To restrict what commands can be executed; see API Permissions.

Bash Completion
If you use Bash, you can get Bash completion for ejabberdctl commands names.
Some methods to enable that feature:
* Copy the file tools/ejabberdctl.bc to the directory /etc/bash_completion.d/ (in Debian, Ubuntu, Fedora and maybe others)
e Or add to your $HOME/.bashrc a line similar to:

source /path/to/ejabberd/tools/ejabberdctl.bc

When ejabberd is running in the machine, type ejabberdctl in a console and press the 1AB key.

The first time this is used, the list of commands is extracted from ejabberd and stored in a file in /tmp/ . The next time, that file is
reused for faster responses.

ejabberdctl Commands

When ejabberdctl is executed without any parameter, it displays the available options. If there isn't an ejabberd server running,
the available parameters are:

e start : Start ejabberd in background mode. This is the default method.

e debug : Attach an Erlang shell to an already existing ejabberd server. This allows to execute commands interactively in the
ejabberd server.

* live: Start ejabberd in live mode: the shell keeps attached to the started server, showing log messages and allowing to
execute interactive commands.

If there is an ejabberd server running in the system, ejabberdctl shows the ejabberdctl commands described below and all the
API commands available in that server (see the full list of API Commands).

- 223/512 - Copyright © 2008 - 2024 ProcessOne

ejabberdctl

The ejabberdctl commands are:

* help: Get help about ejabberdctl or any available command. Try ejabberdctl help help.
* status : Check the status of the ejabberd server.

* stop: Stop the ejabberd server.

* restart : Restart the ejabberd server.

* mnesia : Get information about the Mnesia database.

CTL_OVER_HTTP
© addedin25.03
The ejabberdctl script can execute ejabberd API commands inside the running ejabberd node.

By default this is done by starting another erlang virtual machine and connecting it to the already existing one that is running
ejabberd. That method is acceptable for performing a few administrative tasks (reload configuration, register an account, etc).
However, ejabberdctl is noticeably slow for performing multiple calls, for example to register 1000 accounts.

An alternative method is to configure ejabberdctl to use curl and send ReST queries over HTTP to mod_http api. This is way
faster than starting an erlang node, around 20 times faster.

To enable this feature, first configure in ejabberd.yml :

listen:

port: "unix:ctl_over_http.sock"
module: ejabberd_http
tag: "ctl_over_http"
unix_socket:

mode: '0600'
request_handlers:

/ctl: ejabberd_ctl

api_permissions:
"console commands over http":
from:
- tag: "ctl_over_http"
who: all
what: "*"

Then enable CTL_ OVER HTTP in ejabberdctl.cfg:

CTL_OVER_HTTP=ctl_over_http.sock

Let's register 100 accounts using the standard method and CTL OVER HTTP:

This is CTL_OVER_HTTP disabled
$ time for ((i=100 ; i ; i=i-1)) ; do ejabberdctl register user$i localhost pass; done

real om43,929s
user om41,878s
sys om10, 558s

This is CTL_OVER_HTTP=ctl_over_http.socket
$ time for ((i=100 ; i ; i=i-1)) ; do ejabberdctl register user$i localhost pass; done

real om2,144s

user om1,377s
sys omo, 566s

Erlang Runtime System

ejabberd is an Erlang/OTP application that runs inside an Erlang runtime system. This system is configured using environment
variables and command line parameters. The ejabberdctl administration script uses many of those possibilities. You can
configure some of them with the file ejabberdctl.cfg, which includes detailed description about them. This section describes for
reference purposes all the environment variables and command line parameters.

- 224/512 - Copyright © 2008 - 2024 ProcessOne

Web Admin

The environment variables:

* EJABBERD_CONFIG_PATH : Path to the ejabberd configuration file.

* EJABBERD_MSGS_PATH : Path to the directory with translated strings.

* EJABBERD_LOG_PATH : Path to the ejabberd service log file.

* EJABBERD_SO_PATH : Path to the directory with binary system libraries.

* EJABBERD_PID_PATH : Path to the PID file that ejabberd can create when started.

* HoME : Path to the directory that is considered ejabberd’s home. This path is used to read the file .erlang.cookie .

* ERL_CRASH_DUMP : Path to the file where crash reports will be dumped.

* ERL_EPMD_ADDRESS : IP address where epmd listens for connections (see epmd).

e ERL_INETRC : Indicates which IP name resolution to use. If using -sname, specify either this option or -kernel inetrc filepath.
* ERL_MAX_PORTS : Maximum number of simultaneously open Erlang ports.

* ERL_MAX_ETS_TABLES : Maximum number of ETS and Mnesia tables.
The command line parameters:

e -sname ejabberd: The Erlang node will be identified using only the first part of the host name, i.e. other Erlang nodes outside
this domain cannot contact this node. This is the preferable option in most cases.

* -name ejabberd: The Erlang node will be fully identified. This is only useful if you plan to setup an ejabberd cluster with nodes
in different networks.

e -kernel inetrc ’/etc/ejabberd/inetrc’ : Indicates which IP name resolution to use. If using -sname, specify either this option or
ERL_INETRC .

e -kernel inet_dist listen_min 4200 inet_dist_listen_min 4210 : Define the first and last ports that epmd can listen to (see epmd).

* -kernel inet_dist_use_interface { 127,0,0,1 }: Define the IP address where this Erlang node listens for other nodes
connections (see epmd).

e -detached : Starts the Erlang system detached from the system console. Useful for running daemons and background
processes.

* -noinput : Ensures that the Erlang system never tries to read any input. Useful for running daemons and background
processes.

e -pa /var/lib/ejabberd/ebin : Specify the directory where Erlang binary files (*.beam) are located.
e -s ejabberd: Tell Erlang runtime system to start the ejabberd application.
* -mnesia dir ’/var/lib/ejabberd/’ : Specify the Mnesia database directory.

* -sasl sasl_error_logger {file, /var/log/ejabberd/erlang.log}: Path to the Erlang/OTP system log file. SASL here means
“System Architecture Support Libraries” not “Simple Authentication and Security Layer”.

e +K [true|false] : Kernel polling.

e -smp [auto|enable|disable] : SMP support.

e +P 250000 : Maximum number of Erlang processes.

* -remsh ejabberd@localhost : Open an Erlang shell in a remote Erlang node.

e -hidden : The connections to other nodes are hidden (not published). The result is that this node is not considered part of the
cluster. This is important when starting a temporary ctl or debug node.

Note that some characters need to be escaped when used in shell scripts, for instance " and {}. You can find other options in
the Erlang manual page (erl -man erl).

Web Admin

The ejabberd Web Admin allows to administer some parts of ejabberd using a web browser: accounts, Shared Roster Groups,
manage the Mnesia database, create and restore backups, view server statistics, ...

- 225/512 - Copyright © 2008 - 2024 ProcessOne

Web Admin

Basic Setup

1. If not done already, register a Jabber/XMPP account in ejabberd:
ejabberdctl register adminl example.org sOmePass

2. Define an Access Control List (ACL) called admin (or any name you prefer) and include the account in that ACL:

acl:
admin:
user: adminl@example.org

3. Grant administration rights to that account using the configure access rule (see Administration Account):

access_rules:
configure:
allow: admin

4. Make sure ejabberd_web_admin is available in request handlers of a ejabberd http listener. If you want to use HTTPS, enable tls. For

example:
listen:
port: 5443
spg Tggt
module: ejabberd_http
tls: true

request_handlers:
/admin: ejabberd_web_admin

5. Grant permission to that ACL to execute all API Commands in WebAdmin using api permissions:

api_permissions:
"webadmin commands":
from: ejabberd_web_admin
who: admin
what: "*"

6. Open the Web Admin page in your favorite web browser. The exact address depends on your configuration; in this example the
address is: https://example.org:5443/admin/

7. In the login window provide the full Jabber ID: admini@example.org and password. If the web address hostname is the same that
the account JID, you can provide simply the username instead of the full JID: admin1.

Additional Security
For security reasons, you can serve the Web Admin on a secured connection and bind it to the internal LAN IP.
In this example, the Web Admin will be available in the address https://192.168.1.1:5282/admin/ :
hosts:
- example.org
listen:
ip: "192.168.1.1"
port: 5282
module: ejabberd_http
certfile: "/usr/local/etc/server.pem"
tls: true

request_handlers:
/admin: ejabberd_web_admin

Vhost permissions

As you may have noticed in the previous examples, the configure access rule determines what ACL can access the Web Admin.
And then you can add specific accounts to that ACL.

It is possible to define specific ACL for individual vhosts, this allows you to grant administrative privilege to certain accounts only
to one or some vhosts.

- 226/512 - Copyright © 2008 - 2024 ProcessOne

ejabberd Commands

In this example different accounts have different privileges in WebAdmin:

* adminglobal@example.net can administer all virtual hosts in http://example.net:5280/admin/

* admincom@example.com can administer only example.com in http://example.com:5280/admin/

hosts:
- example.net
- example.com

listen:
port: 5280
module: ejabberd_http
request_handlers:
/admin: ejabberd_web_admin
acl:
admin:
user:
- adminglobal: example.net
access_rules:
configure:
allow: admin
host_config:
example.com:
acl:
admin:
user:

- adminglobal: example.net
- admincom: example.com

Commands permissions
© added in24.06

TODO

Developer: Add Pages

TODO

Developer: Use Commands
© added in24.06

TODO

ejabberd Commands

Please go to the API section.

Ad-hoc Commands

If you enable mod configure and mod adhoc, you can perform several administrative tasks in ejabberd with an XMPP client. The
client must support Ad-Hoc Commands (xep-0050), and you must login in the XMPP server with an account with proper

privileges.

Change Computer Hostname

ejabberd uses the distributed Mnesia database. Being distributed, Mnesia enforces consistency of its file, so it stores the name of
the Erlang node in it (see section Erlang Node Name). The name of an Erlang node includes the hostname of the computer. So,
the name of the Erlang node changes if you change the name of the machine in which ejabberd runs, or when you move ejabberd
to a different machine.

- 227/512 - Copyright © 2008 - 2024 ProcessOne

https://xmpp.org/extensions/xep-0050.html
https://xmpp.org/extensions/xep-0050.html

10.

Change Computer Hostname

You have two ways to use the old Mnesia database in an ejabberd with new node name: put the old node name in
ejabberdctl.cfg, or convert the database to the new node name.

Those example steps will backup, convert and load the Mnesia database. You need to have either the old Mnesia spool dir or a
backup of Mnesia. If you already have a backup file of the old database, you can go directly to step 5. You also need to know the
old node name and the new node name. If you don’t know them, look for them by executing ejabberdctl or in the ejabberd log
files.

Before starting, setup some variables:

OLDNODE=ejabberd@oldmachine
NEWNODE=ejabberd@newmachine
OLDFILE=/tmp/old.backup
NEWFILE=/tmp/new.backup

. Start ejabberd enforcing the old node name:

ejabberdctl --node $OLDNODE start

. Generate a backup file:

ejabberdctl --node $OLDNODE backup $OLDFILE

. Stop the old node:

ejabberdctl --node $OLDNODE stop

. Make sure there aren't files in the Mnesia spool dir. For example:

mkdir /var/lib/ejabberd/oldfiles
mv /var/lib/ejabberd/*.* /var/lib/ejabberd/oldfiles/

. Start ejabberd. There isn't any need to specify the node name anymore:

ejabberdctl start

. Convert the backup to new node name using mnesia change nodename:

ejabberdctl mnesia_change_nodename $OLDNODE $NEWNODE $OLDFILE $NEWFILE

. Install the backup file as a fallback using install fallback:

ejabberdctl install_fallback $NEWFILE

. Stop ejabberd:

ejabberdctl stop

You may see an error message in the log files, it’s normal, so don’t worry:

Mnesia(ejabberd@newmachine):

** ERROR ** (ignoring core)

** FATAL ** A fallback is installed and Mnesia must be restarted.
Forcing shutdown after mnesia_down from ejabberd@newmachine...

. Now you can finally start ejabberd:

ejabberdctl start

Check that the information of the old database is available: accounts, rosters... After you finish, remember to delete the temporary
backup files from public directories.

-228/512 - Copyright © 2008 - 2024 ProcessOne

Get More Modules

Get More Modules

ejabberd-modules

ejabberd starts automatically modules installed in .ejabberd-modules, in addition to all the modules included with ejabberd. There
are API commands to compile, install, upgrade and uninstall those additional modules.

gabberd-modules path in your system

By default it is $HOME/.ejabberd-modules, being that the home path of the system account running ejabberd. The exact path in your
ejabberd installation may be:

¢ /home/youraccount/.ejabberd-modules when compiling source code or using binary installers

¢ /opt/ejabberd/.ejabberd-modules in the ejabberd and the ecs container images

¢ /home/ejabberd/.ejabberd-modules in the ecs container image

e /var/lib/ejabberd/.ejabberd-modules when installed from Debian package

That path can be modified using the variable CONTRIB MODULES PATH in the ejabberdctl.cfg configuration file.

To get new modules in ejabberd-modules :

e If you develop your own module, you can add your module to ejabberd-modules and let ejabberd compile, install and start it.

« Tell ejabberd to download the ejabberd-contrib git repository, which contains many additional ejabberd modules written in
Erlang/Elixir.

ejabberd-contrib

ejabberd-contrib is a git repository that hosts a collection of contributed modules for ejabberd written in Erlang/Elixir. Check the
ejabberd-contrib GitHub page.

Furthermore, in the extra directory of that repository there are references to other modules hosted in other git repositories.
First of all, let's get/update the modules source code:

ejabberdctl modules_update_specs

Modules Management

Once you have placed the modules source code in ejabberd-modules, you can:

« list modules
¢ install a module
e uninstall a module, or upgrade it

» configure install contrib modules toplevel option so ejabberd installs the module automatically at start time

List Modules

Get a list of all the modules available to install:

ejabberdctl modules_available

mod_cron Execute scheduled commands

mod_default_contacts Auto-add roster contacts on registration
mod_default_rooms Auto-bookmark rooms on registration

-229/512 - Copyright © 2008 - 2024 ProcessOne

https://github.com/processone/ejabberd/blob/master/ejabberdctl.cfg.example#L180
https://github.com/processone/ejabberd-contrib

Install Module

mod_deny_omemo Prevent OMEMO sessions from being established
mod_ecaptcha Generate CAPTCHAs using ecaptcha

What modules are currently installed:

ejabberdctl modules_installed

Install Module

Let’s install a module:

ejabberdctl module_install mod_cron

Module mod_cron has been installed and started.

It's configured in the file:
/home/ejabberd/.ejabberd-modules/mod_cron/conf/mod_cron.yml

Configure the module in that file, or remove it

and configure in your main ejabberd.yml

& not found?

Installing a module with dependencies requires git or mix installed in the system, otherwise compilation fails with errors like:

/bin/sh: mix: not found
/bin/sh: git: not found

If you are using an ejabberd container image, see the solution in Install git for dependencies.

The command module_install performs several tasks:

* downloads any Erlang/Elixir dependencies specified in the modules's rebar.config file
» compiles the module and its dependencies (if not yet already compiled)

¢ installs it (inside ejabberd-modules)

* copies the default module configuration file (if any)

* and starts the module (if there was a default configuration file

As a result, now .ejabberd-modules contains a new directory mod_cron/ with the binary *.beam files and the default module
configuration.

The default module configuration file, if it exists, will be read by ejabberd when it starts. If you prefer to keep all the
configuration in your main ejabberd.yml file, move the content of that file, but remember that the file will be overwritten if you
install or upgrade the module.

Uninstall Module

And finally, you can uninstall the module:

ejabberdctl module_uninstall mod_cron

By the way, you can upgrade the module, which essentially uninstalls and installs the same module with one single command call:

ejabberdctl module_upgrade mod_cron

-230/512 - Copyright © 2008 - 2024 ProcessOne

Securing ejabberd

Securing ejabberd

Firewall Settings

You need to take the following ports in mind when configuring your firewall. The ports may change depending on your ejabberd
configuration. Their protocol is mostly TCP, except some UDP that are explicitely mentioned:

Port Number Description

5222 Jabber/XMPP client connections, plain or STARTTLS (ejabberd c2s)
5223 Jabber client connections, using the old SSL method (ejabberd c2s)
5269 Jabber/XMPP incoming server connections (ejabberd s2s in)
5280/5443 HTTP/HTTPS for Web Admin and many more (ejabberd http)

1880 HTTP for Web Admin in container images, useful for desktop container apps
1883/8883 MQTT/MQTTS service (mod mqtt)

5478/5349 STUN+TURN/STUNS+TURNS service (ejabberd_stun)

UDP

49152-65535 STUN+TURN service (ejabberd stun),

UDP configure with turn_min_port and turn_max_port

5060/5061 SIP/SIPS service (ejabberd sip)

7777 SOCKSS file transfer proxy (mod proxy65)

5210 Erlang Distribution,

configure with ERL DIST PORT
4369 epmd listens for Erlang node name requests

random Erlang Distribution, assigned by epmd,
restrict with FIREWALL WINDOW

Sensitive Files

ejabberd stores sensitive data in the file system either in plain text or binary files. The file system permissions should be set to
only allow the proper user to read, write and execute those files and directories.

* ejabberd configuration file: /etc/ejabberd/ejabberd.yml

Contains the JID of administrators and passwords of external components. The backup files probably contain also this
information, so it is preferable to secure the whole /etc/ejabberd/ directory.

* ejabberd service log: /var/log/ejabberd/ejabberd.log

Contains IP addresses of clients. If the loglevel is set to 5, it contains whole conversations and passwords. If a logrotate system
is used, there may be several log files with similar information, so it is preferable to secure the whole /var/log/ejabberd/
directory.

* Mnesia database spool files: /var/lib/ejabberd/

The files store binary data, but some parts are still readable. The files are generated by Mnesia and their permissions cannot
be set directly, so it is preferable to secure the whole /var/lib/ejabberd/ directory.

* Erlang cookie file: /var/lib/ejabberd/.erlang.cookie

See section Erlang Cookie.

- 231/512 - Copyright © 2008 - 2024 ProcessOne

Troubleshooting ejabberd

Troubleshooting ejabberd

Log Files
An ejabberd node writes three log files:

* ejabberd.log : is the ejabberd service log, with the messages reported by ejabberd code
e error.log: is the file accumulating error messages from ejabberd. log

e crash.log: is the Erlang/OTP log, with the crash messages reported by Erlang/OTP using SASL (System Architecture Support
Libraries)

The option loglevel modifies the verbosity of the file ejabberd.log. The syntax:
loglevel: Level: The standard form to set a global log level.
The possible Level are:

* 0: No ejabberd log at all (not recommended)

* 1: Critical

e 2: Error

* 3: Warning

* 4: Info

* 5: Debug

For example, the default configuration is:

loglevel: 4

By default ejabberd rotates the log files when they get grown above a certain size. The exact value is controlled by the
log rotate_size top-level option.

However, you can rotate the log files manually. You can either use an external tool for log rotation and the reopen log API
command to reopen the log files, or the rotate log API command to perform both steps (please refer to section ejabberd
Commands).

The log rotate count toplevel option defines the number of rotated files to keep by the reopen log API command. Every such file
has a numeric suffix.

Debug Console

The Debug Console is an Erlang shell attached to an already running ejabberd server. With this Erlang shell, an experienced
administrator can perform complex tasks.

This shell gives complete control over the ejabberd server, so it is important to use it with extremely care. There are some simple
and safe examples in the article Interconnecting Erlang Nodes

To exit the shell, close the window or press the keys: control+c control+c.

Too many db tables

When running ejabberd, the log shows this error:

** Too many db tables **

The number of concurrent ETS and Mnesia tables is limited. If this error occurs, it means that you have reached this limit.

-232/512 - Copyright © 2008 - 2024 ProcessOne

https://www.ejabberd.im/interconnect-erl-nodes/
https://www.ejabberd.im/interconnect-erl-nodes/

Too many db tables

For a solution, please read the section about ERL. MAX ETS TABLES on the Performance Tuning page.

-233/512 - Copyright © 2008 - 2024 ProcessOne

https://www.ejabberd.im/tuning/#erl_max_ets_tables

—_

~ [©2 o] s W N

Upgrade Procedure for ejabberd

Upgrade Procedure for ejabberd

!Jrade

Install a version of the program newer than the currently installed one. Not to be confused with update or convert schema.

Waoce

Modify your program installation to match the requirements of the new program version. This usually involves updating your
configuration, your database schema, your API client, your custom modules... Not to be confused with upgrade ejabberd or convert

schema.

This document contains administration procedure for each version upgrade. Only upgrade from version N to N+1 is documented
and supported. If you upgrade from an older version than previous one, you have to review all upgrade notes and apply each
steps one by one for the possible database changes. You also have to stop your old ejabberd server, and start the new one.

Until release note explicitly state you must restart the server for upgrade, you should be able to run soft upgrade using a cluster.
If you don't have cluster, upgrade from older release than previous one, or have explicit note soft upgrade does not work, then
you have to fallback to standalone upgrade process.

Generic upgrade process

This is the simplest process, and require service restart.

. read the corresponding upgrade notes

. apply the required changes in database from the upgrade note.

. stop old node

. archive content of mnesia database directory (database, i.e. /opt/ejabberd-xx.YY/database, /usr/local/var/lib/ejabberd, ...)
. install new version

. extract database archive in new path

. if systemctl is used to manage ejabberd, copy the new service file and reload systemctl:

cp ejabberd-21.12/bin/ejabberd.service /etc/systemd/system/
systemctl daemon-reload

. start new node

-234/512 - Copyright © 2008 - 2024 ProcessOne

SO ©W 0 N o U W N e

e e e
B W N e

g o~ W N

Soft upgrade process

This process needs you to run in cluster, with at least two
and will upgrade to version N+1.

. make sure node A is running

. run leave cluster on node B

. stop old node B

. install new version on B's host

. start new node B

. run join cluster on node B, passing node A as parameter
. make sure both nodes are running and working as expected
. run leave cluster on node A

. stop old node A

. install new version on A's host

. start new node A

. run join cluster on node A, passing node B as parameter

Module update process

Soft upgrade process

nodes. In this case, we assume you run node A and B with version N,

. read the corresponding upgrade notes, make sure it does not explicitly states "soft upgrade is not supported".

. apply the required changes in database from the upgrade note.

Instead of upgrading all ejabberd to a brand new version, maybe you just want to update a few modules with bugfixes... in that

case you can update only specific modules.

This process is only recommended for bugfixes that involve functional changes, and do not involve structural or memory changes

(those ones are usually detected and applied at server start only).

How to do this?

. This will load into memory the corresponding *.beam files

. Apply the fixes to your source code, compile and reinstall ejabberd, so the new *.beam files replace the old ones
. In the ejabberd Web Admin go to Nodes -> your node -> Update
. This will detect what *.beam files have changed in the installation

. Select which modules you want to update now, and click update

If you prefer to use commands, check update list + update.

Notice this does not restart modules or any other tasks. If
alternative: restart module.

Note on database schema update

the fix you plan to apply requires a module restart, you can use this

ejabberd automatically updates the Mnesia table definitions at startup when needed. If you also use an external database (like

MySQL, ...) for storage of some modules, check in the corresponding upgrade notes of the new ejabberd version if you need to

update those tables yourself manually.

- 235/512 - Copyright © 2008 - 2024 ProcessOne

Specific version upgrade notes

Specific version upgrade notes

The corresponsing ugprade notes are available in the release notes of each release, and also available in the Archive section:

¢ Upgrading from ejabberd 26.01 to 26.02
* Upgrading from ejabberd 25.10 to 26.01
* Upgrading from ejabberd 25.08 to 25.10
* Upgrading from ejabberd 25.07 to 25.08
* Upgrading from ejabberd 25.04 to 25.07
¢ Upgrading from ejabberd 25.03 to 25.04
¢ Upgrading from ejabberd 24.12 to 25.03
e Upgrading from ejabberd 24.10 to 24.12
* Upgrading from ejabberd 24.07 to 24.10
* Upgrading from ejabberd 24.06 to 24.07
¢ Upgrading from ejabberd 24.02 to 24.06
¢ Upgrading from ejabberd 23.10 to 24.02
* Upgrading from ejabberd 23.04 to 23.10
¢ Upgrading from ejabberd 23.01 to 23.04
* Upgrading from ejabberd 22.10 to 23.01
* Upgrading from ejabberd 22.05 to 22.10
¢ Upgrading from ejabberd 21.12 to 22.05
¢ Upgrading from ejabberd 21.07 to 21.12
* Upgrading from ejabberd 21.04 to 21.07
e Upgrading from ejabberd 21.01 to 21.04
* Upgrading from ejabberd 19.08 to 20.01
* Upgrading from ejabberd 19.05 to 19.08
¢ Upgrading from ejabberd 19.02 to 19.05
¢ Upgrading from ejabberd 18.12 to 19.02
* Upgrading from ejabberd 18.09 to 18.12
* Upgrading from ejabberd 18.06 to 18.09
* Upgrading from ejabberd 18.04 to 18.06
* Upgrading from ejabberd 18.03 to 18.04
¢ Upgrading from ejabberd 18.01 to 18.03
¢ Upgrading from ejabberd 17.11 to 18.01
* Upgrading from ejabberd 17.09 to 17.11
* Upgrading from ejabberd =17.06 and <17.08 to 17.09
* Upgrading from ejabberd 17.03 or 17.04 to 17.06
* Upgrading from ejabberd =16.08 and =17.01 to 17.03
¢ Upgrading from ejabberd 16.06 to 16.08
* Upgrading from ejabberd 16.04 to 16.06
* Upgrading from ejabberd 16.03 to 16.04
* Upgrading from ejabberd 16.02 to 16.03
* Upgrading from ejabberd 15.11 to 16.02

* Upgrading from ejabberd 2.1.1x to 16.02

-236/512 - Copyright © 2008 - 2024 ProcessOne

ejabberd and XMPP tutorials

Learning ejabberd and XMPP through videos and hands-on tutorials.

Text tutorials
In the ProcessOne's blog you will find tutorials about:

* How to setup MariaDB, MQTT, PubSub, STUN/TURN, WebSocket.
e Elixir: Part 1, Part 2, Embed in Phoenix, Embed in Elixir app.

* Useful configuration steps

* Configuration for Office IM

* Configuration for XMPP compliance test

» Using a local development trusted CA on MacOS

In the so-called ejabberd book there are also old archived ejabberd tutorials.

Architecture

* Understanding ejabberd SaaS architecture

Excerpt from XMPP Academy #1 starting at 1m33s.

* What are ejabberd backends? What backends are available in ejabberd and how do they work?

Excerpt from XMPP Academy #2 starting at 2m05s.
* ejabberd backends architecture
Excerpt from XMPP Academy #2 starting at 14m00s.
* What are ejabberd session backends and how to use them to scale?

Excerpt from XMPP Academy #2 starting at 19m42s.

XMPP on mobile devices (smartphones)

* Mobile XMPP support on ejabberd SaaS and Business Edition: Standby, push and detached modes

Excerpt from XMPP Academy #1 starting at 16m44s.

* How does Apple and Google Push support work on ejabberd SaaS and ejabberd Business Edition?

Excerpt from XMPP Academy #3 starting at 1m20s.

* What is the relationship between ejabberd Push support and XEP-0357: Push Notifications?

Excerpt from XMPP Academy #3 starting at 22m34s.

* What are message carbons and how do they work?
Excerpt from XMPP Academy #2 starting at 27m30s.

¢ Demo: learning message carbons with Psi XMPP console

Excerpt from XMPP Academy #2 starting at 29m51s.

XMPP for the Web

* ejabberd roadmap: announcing OAuth2 support

Excerpt from XMPP Academy #1 starting at 27m43s.

-237/512 -

ejabberd and XMPP tutorials

Copyright © 2008 - 2024 ProcessOne

https://www.process-one.net/blog/
https://www.process-one.net/blog/install-and-configure-mariadb-with-ejabberd/
https://www.process-one.net/blog/starting-with-mqtt-protocol-and-ejabberd-mqtt-broker/
https://www.process-one.net/blog/publish-subscribe-pattern-and-pubsub-in-ejabberd/
https://www.process-one.net/blog/how-to-set-up-ejabberd-video-voice-calling/
https://www.process-one.net/blog/getting-started-with-websocket-api-in-ejabberd/
https://www.process-one.net/blog/elixir-sips-ejabberd-with-elixir-part-1/
https://www.process-one.net/blog/ejabberd-with-elixir-packet-filters/
https://www.process-one.net/blog/embedding-ejabberd-into-an-elixir-phoenix-web-application/
https://www.process-one.net/blog/how-to-use-ejabberd-as-an-elixir-application-dependency/
https://www.process-one.net/blog/ejabberd-xmpp-server-useful-configuration-steps/
https://www.process-one.net/blog/how-to-move-the-office-to-real-time-im-on-ejabberd/
https://www.process-one.net/blog/how-to-configure-ejabberd-to-get-100-in-xmpp-compliance-test/
https://www.process-one.net/blog/using-a-local-development-trusted-ca-on-macos/
https://www.ejabberd.im/book/index.html
https://www.ejabberd.im/tutorials/
https://www.youtube.com/watch?v=-dqQfCpw98E&t=1m33s
https://www.youtube.com/watch?v=SbpFgdryyIA&t=2m05s
https://www.youtube.com/watch?v=SbpFgdryyIA&t=14m00s
https://www.youtube.com/watch?v=SbpFgdryyIA&t=19m42s
https://www.youtube.com/watch?v=-dqQfCpw98E&t=16m44s
https://www.youtube.com/watch?v=LToKLTf-N_E&t=1m20s
https://www.youtube.com/watch?v=LToKLTf-N_E&t=22m34s
https://www.youtube.com/watch?v=SbpFgdryyIA&t=27m30s
https://www.youtube.com/watch?v=SbpFgdryyIA&t=29m51s
https://www.youtube.com/watch?v=-dqQfCpw98E&t=27m43s

Multi-User Chat

* What is the impact of Websocket on Web chat performance?

Excerpt from XMPP Academy #3 starting at 25m02s.

Multi-User Chat

* Why do avatars / carbons not work in MUC rooms? What is special about MUC rooms?

Excerpt from XMPP Academy #2 starting at 34m15s.

Developer tools and techniques

* What are the typical tools for quick XMPP prototyping?

ejabberd and XMPP server-side implementation

* How does ejabberd internally store messages which are not yet delivered?
* How are privacy lists managed in ejabberd?
* Why do we seem to find duplicate in Message Archive Management backend?

Excerpt from XMPP Academy #3 starting at 32m20s.

-238/512 - Copyright © 2008 - 2024 ProcessOne

https://www.youtube.com/watch?v=LToKLTf-N_E&t=25m02s
https://www.youtube.com/watch?v=SbpFgdryyIA&t=34m15s
https://www.youtube.com/watch?v=LToKLTf-N_E&t=27m45s
https://www.youtube.com/watch?v=-dqQfCpw98E&t=22m42s
https://www.youtube.com/watch?v=-dqQfCpw98E&t=25m54s
https://www.youtube.com/watch?v=LToKLTf-N_E&t=32m20s

Getting started with MIX

Getting started with MIX

MIX stands for Mediated Information eXchange and defined in MIX-CORE (XEP-0369), MIX-PRESENCE (XEP-0403) and MIX-PAM
(XEP-0405). More concretely, ejabberd supports MIX 0.14.1.

It is a work in progress extension for the XMPP protocol to build a group messaging protocol that does not rely on the presence
mechanism. It is designed to overcome the limitation of Multi-User Chat (XEP-0045) , in a context where most clients are mobile
clients.

To do so, MIX is built on top of PubSub (XEP-0060) and use different nodes per channel to separate event types. There is five
nodes to support five different types of event for each MIX channel:

* Messages

* Presence

« Participant list changes
* Subject update

* Conversion configuration changes

This is a work in progress, but this is a very important task and we are happy to provide the very first server implementation of
the Mix protocol to get up to speed on that specification.

Here is a short walk through what can already be done.

Also note that the specification can (and will) change significantly before it becomes stable. These examples are based on
XEP-0369 v0.1.

Configuration
Configuration is simple:
* Install a recent ejabberd version (19.02 or newer)

* You need to add mod mix and mod mix pam in ejabberd configuration, modules section:

modules:
mod_mix: {}
mod_mix_pam: {}

* Make sure you have PubSub enabled. Default configuration is fine:

modules:
mod_pubsub:
access_createnode: pubsub_createnode
plugins:
- "flat"
- "pep"

* The examples assume you have this virtual host:

hosts:
- shakespeare.example

Usage

There is no client supporting MIX yet so here is how it works directly at XMPP stream level.

Here are real-life examples from playing with our MIX implementation:

- 239/512 - Copyright © 2008 - 2024 ProcessOne

https://xmpp.org/extensions/xep-0369.html
https://xmpp.org/extensions/xep-0403.html
https://xmpp.org/extensions/xep-0405.html
https://xmpp.org/extensions/attic/xep-0369-0.14.1.html
https://xmpp.org/extensions/xep-0045.html
https://xmpp.org/extensions/xep-0060.html
https://xmpp.org/extensions/attic/xep-0369-0.1.html

Creating a MIX Channel
First of all, create a new MIX channel following 7.3.2 Creating a Channel:

<ig id='1x09df27"'
to="'mix.shakespeare.example'

type='set'>
<create channel='coven' xmlns='urn:xmpp:mix:core:@'/>
</ig>

Joining a MIX Channel

Now tell your server that you want your account to join that MIX channel, using MIX-PAM: 2.7 Joining a Channel:

<iq type='set'
to="'hag66@shakespeare.example’
id="'E6E10350-76CF-40C6-B91B-1EAQ8C332FC7"'>
<client-join xmlns='urn:xmpp:mix:pam:0Q'
channel="'coven@mix.shakespeare.example'>
<join xmlns='urn:xmpp:mix:core:0'>
<nick>third witch</nick>
<subscribe node='urn:xmpp:mix:nodes:messages'></subscribe>
<subscribe node='urn:xmpp:mix:nodes:presence'></subscribe>
<subscribe node='urn:xmpp:mix:nodes:participants'></subscribe>
<subscribe node='urn:xmpp:mix:nodes:subject'></subscribe>
<subscribe node='urn:xmpp:mix:nodes:config'></subscribe>
</join>
</client-join>
</ig>

You receive IQ that confirms success:

<iq type="result"
from="hag66@shakespeare.example"
to="hag66@shakespeare.example/MacBook-Pro-de-Mickael"
id="E6E10350-76CF-40C6-B91B-1EA®8C332FC7">
<client-join xmlns='urn:xmpp:mix:pam:0'>
<join xmlns="urn:xmpp:mix:core:0"
jid='d79de11852b97adfaad6#coven@mix.shakespeare.example'>
<nick>third witch</nick>
<subscribe node="urn: :nodes:messages'></subscribe>
<subscribe node="urn: :nodes:presence'"></subscribe>
<subscribe node="urn:xmpp:mix:nodes:participants'></subscribe>
<subscribe node="urn:xmpp:mix:nodes:subject"></subscribe>
<subscribe node="urn:xmpp:mix:nodes:config"></subscribe>
</join>
</client-join>
</ig>

Usage

Subscribers on the participants node for that channel will also receive the new list of participants (so, including ourselves in that

case):

<message from="coven@mix.shakespeare.example"
type="headline"
to="hag66@shakespeare.example/MacBook-Pro-de-Mickael">
<event xmlns="http://jabber.org/protocol/pubsub#event">
<items node="urn:xmpp:mix:nodes:participants">
<item id="3d1766e2bd1b02167104f350f84b0668f850ef92">
<participant xmlns="urn:xmpp:mix:core:@" jid="hag66@shakespeare.example"></participant>
</item>
</items>
</event>
</message>

Setting a nick
You may want to set a nick for this channel (see 7.1.4 Setting a Nick):

<iq type='set'
to="'coven@mix.shakespeare.example'
id="'7nve413p'>
<setnick xmlns='urn:xmpp:mix:core:0'>
<nick>thirdwitch</nick>
</setnick>
</ig>

Note: Support for MIX nickname registration is not implemented in ejabberd.

-240/512 -

Copyright © 2008 - 2024 ProcessOne

https://xmpp.org/extensions/xep-0369.html#usecase-admin-create
https://xmpp.org/extensions/xep-0405.html#usecase-user-join
https://xmpp.org/extensions/xep-0369.html#usecase-setting-nick

Caveats

Sending and receiving messages
You can now start chatting with your peers, by publishing on the message node (see 7.1.6 Sending a Message):

<message to='coven@mix.shakespeare.example'
id='92vax143g’
type='groupchat'>
<body>Harpier cries: 'tis time, 'tis time.</body>
</message>

The message is received by all subscribers on the message node on that MIX channel:

<message
to="hag77@shakespeare.example’
from="'coven@mix.shakespeare.example/19be8c262ed618e078b7"
type='groupchat'
1d="1625493702877370"'>
<mix xmlns='urn:xmpp:mix:core:0'>
<nick>thirdwitch</nick>
<jid>hag66@shakespeare.example</jid>
</mix>
<body>Harpier cries: 'tis time, 'tis time.</body>
</message>

Querying participants list

A participant can always get list of participants with a PubSub query on node items for the channel (see 6.6 Determining the
Participants in a Channel):

<iq type='get'
to="'coven@mix.shakespeare.example'
id='mix4'>
<pubsub xmlns='http://jabber.org/protocol/pubsub'>
<items node='urn:xmpp:mix:nodes:participants'></items>
</pubsub>
</ig>

The channel will reply with list of participants:

<ig to='hag66@shakespeare.example/tkal’
from="'coven@mix.shakespeare.example'
type='result'
id='k12fax27'>
<pubsub xmlns='http://jabber.org/protocol/pubsub'>
<items node='urn:xmpp:mix:nodes:participants'>
<item id='19be8c262ed618e078b7'>
<participant nick='thirdwitch'
jid="hag66@shakespeare.example'
xmlns="urn:xmpp:mix:core:0"'/>
</item>
<item id='6be2b26cbf4d7108f1fb'>
<participant jid='hag77@shakespeare.example’
xmlns="urn:xmpp:mix:core:0"'/>
</item>
</items>
</pubsub>
</ig>

Caveats

At the moment it is unclear from XEP-0369 example how you match a message you receive to a participant. We are going to
improve our implementation in the following way:

1. Add a participant id on the item tag when broadcasting new participant.

2. Add the participant id on the published items.

3. Add the participant id in participants list on the publisher
Another issue is that the current specification and implementation will have trouble scaling and offer plenty of opportunities for
"Denial of Service" attacks. This is something that will change in the future as the specification matures. However, currently, do

not deploy or rely on this implementation for large-scale production services. The work is still an experiment to progress on the
specifications by offering client developers to give real life feedback on a reference implementation of the current specification.

-241/512 - Copyright © 2008 - 2024 ProcessOne

https://xmpp.org/extensions/xep-0369.html#usecase-user-message
https://xmpp.org/extensions/xep-0369.html#find-channel-participants
https://xmpp.org/extensions/xep-0369.html#find-channel-participants

Conclusion

Conclusion

We are only at the beginning of MIX. However, we are excited to have reached a point where it is already usable in some cases.

It is still missing on administrative tasks, right management, user invitations, relationship with MAM archiving and probably a lot
more. And we need consolidations on participants message attribution. However, we want to iterate fast with client developers to
prototype implementation changes and have meaningful and real life feedback to improve XEP-0359.

Send us your feedback !

-242/512 - Copyright © 2008 - 2024 ProcessOne

MQTT Support

MQTT Support

Benefits

ejabberd is a multiprotocol server that supports MQTT out of the box since ejabberd Business Edition 4.0 and ejabberd
Community Server 19.02

There are major benefits in using MQTT service embedded in ejabberd:

1. MQTT service relies on ejabberd infrastructure code, that has been battle tested since 15+ years, like the clustering engine.
ejabberd MQTT service has been tested on large scale and can support millions of concurrent connections highly efficiently.
ejabberd MQTT is rock-solid and highly scalable.

2. The ejabberd APIs and modules can be reused in MQTT. Authentication, virtual hosting, database backends, ... They both work with
XMPP and MQTT. You can also share your security policy, as defined in the configuration file between the two protocols.

3. You can leverage existing skills and plugins you have written for ejabberd, like for example custom authentication.

4. You can deploy services that take advantage of both protocols and have them interoperate with each other, on a single platform,
with a single tool.

5. ejabberd supports MQTT 5: it is a state of the art, modern MQTT server. And it also supports MQTT 3.1.1 in case you want to use
previous clients.

In summary:

* You can switch between XMPP and MQTT as you wish, even use both protocols on the same infrastructure.
* You will save on infrastructure, given the high-performance of the platform.
* You get support on solution design for real-time infrastructure and can get help choosing between XMPP and MQTT, from a

vendor that has no interest in selling one protocol more than another.

ejabberd Business Edition offers a different clustering than eCS. Using MQTT with ejabberd Business Edition means you can
leverage:

* The clustering engine of eBE will be used for the MQTT service. It means that you have a more scalable cluster, that supports
geoclustering. With geoclustering, you can deploy a single MQTT service across different datacenters, spread in different
regions. You can deploy a truly global service.

» The backend integration that are supported in ejabberd Business Edition will be available in MQTT. You have no need to
develop support for new API.

Basic Setup

Maybe you already have MQTT enabled in your ejabberd server, as it comes enabled by default in many distributions.
MQTT support in ejabberd is enabled by adding mod_mqgtt to the list of listen and the list of modules like this:

listen:
port: 1883
module: mod_mgtt
backlog: 1000
modules:

mod_mqtt: {3}

The listener on port 1883 is MQTT over cleartext TCP/IP connection; you can later setup encryption, WebSocket, and encrypted
WebSocket.

For available options you can consult the mod mqtt listener and the mod mqtt module.

-243/512 - Copyright © 2008 - 2024 ProcessOne

https://mqtt.org/

Test Setup

Start ejabberd server and you can connect to ejabberd MQTT service with your preferred MQTT client.

Test Setup

Let's use the clients included with mosquitto, available in Debian, Brew and many others (see mosquitto downloads).

First of all register several accounts and subscribe one to the topic test/i with:

ejabberdctl register author localhost Pass
ejabberdctl register userl localhost Pass

mosquitto_sub -u useri@localhost -P Pass -t "test/1" -d -v

Client (null) sending CONNECT
Client (null) received CONNACK (0)

Client (null) sending SUBSCRIBE (Mid: 1, Topic: test/1, QoS: 0, Options: 0x00)

Client (null) received SUBACK
Subscribed (mid: 1): 0

Then go to another terminal or window and publish something on that topic:

mosquitto_pub -u author@localhost -P Pass -t "test/1" -d -m "ABC"

Client (null) sending CONNECT

Client (null) received CONNACK (0O)

Client (null) sending PUBLISH (d®, @, r®, mi, 'test/1',
Client (null) sending DISCONNECT

You will see the message received and displayed in the mosquitto_sub window:

Client (null) received PUBLISH (d®, g0, rO, mO, 'test/1',
test/1 ABC

Access Control

. (3 bytes))

. (3 bytes))

The mod mqtt module provides two options for access control:

e access_subscribe to restrict access for subscribers,

* and access_publish to restrict access for publishers.

Both options accept mapping filter: rule where filter is an MQTT topic filter and rule is the standard ejabberd Access Rule.

As an example, let's say only author@localhost is allowed to publish to topic "/test/1/" and its subtopics, while only
useri@localhost is allowed to subscribe to this topic and its subtopics, and nobody else can publish or subscribe to anything else.

The configuration will look something like this:

acl
publisher:
user: author@localhost
subscriber:
user: userl@localhost

modules:
mod_mqtt:
access_publish:
"test/1/#":
- allow: publisher
- deny
"H"
- deny
access_subscribe:
"test/1/#":
- allow: subscriber
- deny
"
- deny

Encryption

Self-Signed Certificate

If you have already setup encryption in ejabberd, you can bypass this step.

- 244/512 -

Copyright © 2008 - 2024 ProcessOne

https://mosquitto.org/
https://packages.debian.org/sid/mosquitto-clients
https://formulae.brew.sh/formula/mosquitto
https://mosquitto.org/download/

WebSocket

If you want to use TLS, you may want to create a self-signed certificate (at least to get started). The following page is a nice

guide: Mosquitto SSL Configuration -MQTT TLS Security.
Here is a summary of the steps, adapted for ejabberd MQTT:

openssl genrsa -des3 -out ca.key 4096

openssl req -new -x509 -days 1826 -key ca.key -out ca.crt

openssl genrsa -out server.key 4096

openssl req -new -out server.csr -key server.key

openssl x509 -req -in server.csr -CA ca.crt -CAkey ca.key -CAcreateserial -out server.crt -days 360
cat server.crt server.key > mqtt.pem

Now copy mqtt.pem to the path with ejabberd configuration files, and configure accordingly:

certfiles:
- "/etc/ejabberd/mqtt.pem"

Configure Encryption
Add a new listener with tls option in the port number 8883 (the standard for encrypted MQTT):

listen:

port: 1883
module: mod_mqtt
backlog: 1000

port: 8883
module: mod_mqtt
backlog: 1000
tls: true

The listener on port 1883 is MQTT over cleartext TCP/IP connection. The listener on port 8883 is MQTT over TLS. You can enable

both or only one of them depending on your needs.

Test Encryption

You can repeat the commands from previous test, appending -p 8883 to use the encrypted port. If you are using a self-signed

certificate as explained previously, you will also have to append --cafile server.crt . For example:

mosquitto_sub -u userl@localhost -P Pass -t "test/1" -d -v -p 8883 --cafile server.crt

WebSocket

Setup WS
Add mod_mgtt as a request handler on the ejabberd http listener:

listen:

port: 5280

module: ejabberd_http

request_handlers:
/mqtt: mod_mgtt

This configuration maps the path /mqtt to the MQTT WebSocket handler on the main ejabberd HTTP listener.

You can enable listeners independently, for example enable only the WebSocket listener and not the TCP/IP ones.

- 245/512 - Copyright © 2008 - 2024 ProcessOne

http://www.steves-internet-guide.com/mosquitto-tls/

WebSocket

Test WS

Our beloved mosquitto client does not support MQTT over WebSocket, so you may have to find some capable MQTT client. For
example, in MQTTX, setup in the login window:

* Host: ws:// localhost

» Port: 5280

e Path: /mqtt

If you need an example on how to use MQTT]S library, you can check our small example project: mqttjs-demo

Encrypted WS
To enable encryption on WebSocket, enable tis like this:

listen:

port: 5281

dpe Tgg®

module: ejabberd_http

tls: true

request_handlers:
/mgtt: mod_mgtt

For testing this in the MQTTX client:

* Host: wss:// localhost
 Port: 5281

e Path: /mqtt

e SSL/TLS: true

e Certificate: CA signed server

 If you used a self-signed certificate, you will have to disable SSL Secure

- 246/512 - Copyright © 2008 - 2024 ProcessOne

https://mqttx.app/
https://github.com/processone/mqttjs-demo

MUC Hats

MUC Hats

gase note

This page is useful only for ejabberd versions older than 25.10. If you are using ejabberd 25.10 or newer, please consult XEP-0317
Hats as ejabberd nowadays supports XEP-0317 0.3.1.

Q improved in 25.10
ejabberd 21.12 introduced support for XEP-0317 Hats.

In ejabberd 25.03 support was improved to XEP version 0.2.0, with some minor differences to the examples in the protocol,
which are described in this page.

In ejabberd 25.10 support has been improved to XEP version 0.3.1, strictly following the protocol and all its examples.
Consequently, if you are using ejabberd 25.10 or newer, please use XEP-0317 Hats instead of this page.

Configuration

To test those examples, let's apply some configuration changes to the default ejabberd configuration file:

diff --git a/ejabberd.yml.example b/ejabberd.yml.example
index 0964afa06..ae782dded 100644
- a/ejabberd.yml.example
+++ b/ejabberd.yml.example
@@ -16,6 +16,7 @@

hosts:
- localhost
+ - example.edu

loglevel: info

@@ -188,6 +189,7 @@ modules:
default: always
mod_mqtt: {3}
mod_muc:
+ host: "courses.@HOST@"
access:
- allow
access_admin:
@@ -198,6 +200,8 @@ modules:

- allow
default_room_options:
mam: true
+ enable_hats: true
+ persistent: true

mod_muc_admin: {}
mod_muc_occupantid: {}
mod_offline:

Adding a Hat

When adding a hat as documented in 3.2 Adding a Hat there are a few differences:

* the form provided by ejabberd is slightly different to the examples, consequently the form filling must be updated.

e form submission in example 5 should have in the command element action='complete'

In summary, the flow is:

Admin Requests to Add a Hat
Identical to Example 3:

<iq from='professor@example.edu/office’
id='fdi3n2b6"
to="'physicsforpoets@courses.example.edu'

-247/512 - Copyright © 2008 - 2024 ProcessOne

https://xmpp.org/extensions/xep-0317.html
https://xmpp.org/extensions/xep-0317.html
https://xmpp.org/extensions/xep-0317.html
https://xmpp.org/extensions/xep-0317.html
https://xmpp.org/extensions/xep-0317.html#add
https://xmpp.org/extensions/xep-0317.html#example-3

Adding a Hat

type="'set'
xml:lang="'en'>
<command xmlns="http://jabber.org/protocol/commands’'
action='execute'
node="'urn:xmpp:hats:commands:don'/>
</ig>

Service Returns Form to Admin
The formulary provided by ejabberd is slightly different than the one in Example 4:

<ig from='physicsforpoets@courses.example.edu'
id='fdi3n2b6"
to='professor@example.edu/office’
type='result'
xml:lang="'end'>
<command xmlns="http://jabber.org/protocol/commands’
node="urn:xmpp:hats:commands:don'
sessionid='2025-02-14T12:23:47.445692Z"
status='executing'>
<actions execute='complete'>
<complete/>
</actions>
<x type='form' xmlns='jabber:x:data'>
<title>Add a hat to a user</title>
<field var='jid'
type='jid-single'
label="Jabber ID'>
<required/>
</field>
<field var='hat_title'
type='text-single'
label="Hat title'/>
<field var='hat_uri'
type='text-single'
label="Hat URI'>
<required/>
</field>
</x>
</command>
</ig>

Admin Submits Form

Compared to Example 5, the command element includes action='complete', and the form fields are different:

<iq from="'professor@example.edu/office’
id="9fens61z"'
to="'physicsforpoets@courses.example.edu'
type="'set'
xml:lang="en'>
<command xmlns="http://jabber.org/protocol/commands’'
node="urn:xmpp:hats:commands:don"'
action='complete'
sessionid='2025-02-14T12:23:47.445692Z"'>
<x xmlns='jabber:x:data' type='submit'>
<field type='hidden' var='FORM_TYPE'>
<value>urn:xmpp:hats:commands</value>
</field>
<field var='jid'>
<value>terry.anderson@example.edu</value>
</field>
<field var='hat_title'>
<value>Teacher Assistant title</value>
</field>
<field var="hat_uri'>
<value>http://tech.example.edu/hats#TeacherAssistant</value>
</field>
</x>
</command>
</ig>

Service Informs Admin of Completion
The result stanza is similar to Example 6:

<iq from='physicsforpoets@courses.example.edu'
id='9fens61z"'
to="'professor@example.edu/office’
type='result'
xml:lang='en'>
<command status='completed'
sessionid='2025-02-14T12:23:47.445692Z'

-248/512 - Copyright © 2008 - 2024 ProcessOne

https://xmpp.org/extensions/xep-0317.html#example-4
https://xmpp.org/extensions/xep-0317.html#example-5
https://xmpp.org/extensions/xep-0317.html#example-6

Listing Hats

node="urn:xmpp:hats:commands:don'
xmlns="'http://jabber.org/protocol/commands'/>
</ig>

Listing Hats

It's useful to be able to list the existing room hats, but the XEP doesn't document that possibility, so a custom method is
implemented in ejabberd: sending a command query to node urn:xmpp:hats:commands:dlist :

Admin Requests to List Hats

<ig from='professor@example.edu/office’
id='fdi3n2b6"
to="'physicsforpoets@courses.example.edu'
type="'set'
xml:lang="'en'>
<command xmlns="http://jabber.org/protocol/commands
action='execute'
node="urn:xmpp:hats:commands:dlist'/>
</ig>

Service Returns List of Hats

<ig xml:lang='en'
to="'professor@example.edu/office’
from="'physicsforpoets@courses.example.edu'
type='result'
id='fdi3n2b6'>
<command status='completed'
sessionid='2025-02-14T12:27:33.414328Z"
node="'urn:xmpp:hats:commands:dlist'
xmlns="'http://jabber.org/protocol/commands"'>
<x type='result' xmlns='jabber:x:data'>
<title>List of users with hats</title>
<reported>
<field var='jid' label='Jabber ID'/>
<field var='hat_title' label='Hat title'/>
<field var='hat_uri' label='Hat URI'/>
</reported>
<item>
<field var='jid'>
<value>terry.anderson@example.edu</value>
</field>
<field var='hat_title'>
<value>http://tech.example.edu/hats#TeacherAssistant</value>
</field>
<field var='hat_uri'>
<value>Teacher Assistant title</value>
</field>
</item>
</x>
</command>
</ig>

Including a Hat in Presence

In the previous examples, professor added a hat to terry.anderson. Then let's imagine terry.anderson joins the room. Finally,
when any client joins the room, for example steve, he receives a stanza like the one in Example 1:

<presence from='physicsforpoets@courses.example.edu/Terry'
id='34:271777"'
to='steve@example.edu/tablet"
xml:lang="'es'>
<x xmlns='http://jabber.org/protocol/muc#user'>
<item role='participant' affiliation='none'/>
</x>
<hats xmlns='urn:xmpp:hats:0'>
<hat uri='http://tech.example.edu/hats#TeacherAssistant
title='Teacher Assistant title'/>
</hats>
<status>status useri</status>
</presence>

Removing a Hat

This works similarly to the examples in 3.3 Removing a Hat

-249/512 - Copyright © 2008 - 2024 ProcessOne

https://xmpp.org/extensions/xep-0317.html#example-1
https://xmpp.org/extensions/xep-0317.html#remove

Removing a Hat

Admin Requests to Remove a Hat
Remember that the form for the hat is different than the one in Example 7.

<ig from='professor@example.edu/office'
id='9fens61z"'
to="'physicsforpoets@courses.example.edu'
type="'set'
xml:lang="'en'>
<command xmlns="http://jabber.org/protocol/commands
node="urn:xmpp:hats:commands:doff'
action='complete'
sessionid='2025-02-14T12:23:47.445692Z"'>
<x xmlns='jabber:x:data' type='submit'>
<field type='hidden' var='FORM_TYPE'>
<value>urn:xmpp:hats:commands</value>
</field>
<field var='jid'>
<value>terry.anderson@example.edu</value>
</field>
<field var='hat_title'>
<value>Teacher Assistant title</value>
</field>
<field var="hat_uri'>
<value>http://tech.example.edu/hats#TeacherAssistant</value>
</field>
</x>
</command>
</ig>

Service Informs Admin of Completion
The response is similar to Example 8:

<ig from='physicsforpoets@courses.example.edu'
id='9fens61z"'
to='professor@example.edu/office’
type='result'
xml:lang="'en'>
<command xmlns="http://jabber.org/protocol/commands
node="urn:xmpp:hats:commands:doff"'
sessionid='2025-02-14T12:23:47.4456927"
status='completed'/>
</ig>

-250/512 - Copyright © 2008 - 2024 ProcessOne

https://xmpp.org/extensions/xep-0317.html#example-7
https://xmpp.org/extensions/xep-0317.html#example-8

Setting vCards / Avatars for MUC rooms

Setting vCards / Avatars for MUC rooms

ejabberd supports the ability to set vCard for MUC rooms. One of the most common use case is to be able to define an avatar for
your own MUC room.

How does it work?

To be allowed to set vCard for a given room, you need to be owner of that room.

To set up vCard avatar for your MUC room, you first need to make sure you convert your avatar image to base64 encoding, so
that you can pass it on XMPP stream.

If you want to convert it manually from command line, you can use base64 tool. For example:

base64 muc_logo.png > muc_logo.b64

However, when coding the client, you can more likely directly do the proper image base64 encoding in your code.

Setting up MUC vCard

To set the MUC vCard, you can send a vcard-temp set request, as defined in XEP-0054: vcard-temp, but directly addressed to
your MUC room. For example, assuming my room id is test@conference.localhost :

<iq id='set1'
type="'set'
to="'test@conference. localhost'>
<vCard xmlns='vcard-temp'>
<PHOTO>
<TYPE>image/png</TYPE>
<BINVAL>
1VBORWOKGGOAAAANSUhEUgAAAEAAAABACAYAAACGaXHeAAAABGABTUEAALGPC/
XhBQAAACB] SFINAAB6 JJAAgIQAAPOAAACAGAAAdTAAAOPGAAABMAAAF3CCcU LEBAAAACXBIWXMAAASTAAALEWEAMPWYAAABIWLUWHRYTUW6Y29tLmFkb2J 1Lnht cCAAAAAAAPHg6eG1wbWVOYSB4bWxuczp4PSJh
ZG9iZTpuczptZXRhLyIgeDp4bXBOazOiWEL1QIENvVCMUgNS40LjAiPgogICA8cmRmO LIERiIB4bWxuczpyZGY9ImhOdHAGLY93d3cudzMub3InLzE50TkvMDIVM]ItcmRmLXNSbnRheClucyMiPgogICAgICA8cm
RmOkR1c2NyaxXBOaw9uIHJIkZjphYm91dDOiIgogICAgICAgICAgICB4bWxuczp®awzmPSJodHRWOi8vbnMUuYWRVYmUUY29tL3RpZmYVMS4wLyI+CiAgICAgICAgIDX0aWZmOKNvbXByZXNzaW9uPjE8L3RpZmY6
Q29tcHJ1c3Npb24+CiAgICAgICAgIDX0aWzZmOk9yawVudGFOawOuPjEBL3RpZMY6T3IpZW50YXRpb24+CiAgICAgICAgGIDX0aWZmO 1Bob3RvbWVOCM1jSW50ZXIwcmVOYXRpb24+MjwvdG1lmZjpQaG90b211dH
JpYOludGVycHI 1dGFOaW9uPgogICAgICA8L3IkZjpEZXNjcmlwdG lvbj4KICAGPCOYZGYBUKRGPgo8L3g6eG1wbWVOYT4KAL iABQAADKV IREFUeAHtWGtwVNUZ/
nY3mee22bxIyItAIBBArZRUUbCoKCgVnWJIxxlataOlr IK12ameclurudmrp2KE6nXFgGIWpQGmlzCDaoTDUBWOMVCFCe0QFhDWhCX1sNrub3fT7z713H8kmm4RUWSNI7uvee//zf//r/
OectfSxYBwX6zjGrqBfECD1tID/Be+7rBZgsVgup/yvuIBI4LJawGVX//guUQB8iY®/C56EF 1W]j0Szfi+7+Znow8ThAi5N84GRA1Hek3MVRY/
huJkEg4Eq90GAUWtItVbypFayosCM14bIFoOLqtxTKOZweDfvZr5WHDMAogGAWq3q3W2AWEg33weHrQ6fYgM9OFh80uzHGGEARILKBh84OE2dcXVIBMwem1t7chXn8LVN4LBPNOwWX+4yL0o2+PWNSHfNx8QJi2C
1JuKSXUBrW2syErinx4uWlnYONLbgXPOFNDS34ejJelTVd+Cplbfi9lvKIv1V96ZFuD3nONi8Dc1J03kUIcmRBOdiFhm2hyxGQGSTFO1qgXt9LejoOonOrk/
g7j5AsJIsQCOhWOPZYyx6T8LCj JuKWBF6SZtQAOCA4jVVEPra229k5Uvdfhy L EaHPi®BusPNgM+7BRI8GjEZKVZSGX1A5h7bWkUYPWga3i2INDrR1PLj9UQJIcaUkHAIBXEXU1PMIS316qQ6i26zIYU+c3fX4nzrb
rS1vwevb5+ql+/IGr8tQvV+wCnl18n1pOEBMYy5+meDPchbsQuYGjelHQQEUVFVi/
f3H8Xf9hzFrjfq2IGXhwNZC1109VPOBIx4eelteORbS5DMS01iQDOYJI90U07sqcLK61IIt4RsfgsFapT2IKzYCSUS6FIkZy5Hhmou2jk00 thXopablndvVaz08cdCORVIXXOvXt tKLOyME66Ubmc2IRPNSMSgPi4
aFs0AX74aAXef0sAfrvuCFDrAaY6YS9woCTVDpfDhkO7W4A5Tux+cQUW33qdghkgDatBw8AdupgC60g6hZNVMIKPIViy+F5M30XmAzXxqKBBt1gJY7qwWdzVbKd262reNV6sQqC+j3dSgq2IGC3HtYL7HFfKduh+
8CAt7U+qnKs9j413fxm58fFHKWLEjD5Bkp8NLINAIWILE70bGrHt9/ugzPrFqOqVPyVWICWzZIgNTsxDoTNFqJUEMOFIHYbC7e+wiogfc5vE/g/
SnjY@oFoqgS+P2VyMpcrcDr 12HNG43jCyDS5Ls9Xry54z2sfGYXcLoHhYsy4aAazn16UdsTWLSUBFTWUAUVXry++T7cf+
+tNFcHtaQtxxSg2f lwr6JLEbTWO4UhAiHr FksGr208JIMZIEZOXvopooZWwJ85FUTf531BVTuUtRDXGNIIGiajDBeW9eEF9Zsw/ r fHWZumIDS®hRUU909dL4INPTFORAsqd1l/
A9cvz8cet92Fe2WzVjbiKTWx1BIU2pfFGfaPNN1wloC+GH3kn/Fosibzz8J4RP+91jiDZh1Bi8zCoAEzw4kv/Lq/Csic3onZPK2bekYcL1PapDr/qPD/
ZhgY+t7zfgmdfXIhVjylDbo74rfjnyMHLdzqp4Y1WvVQNr6j2wey3kdF/Flwper TRLhObREWBRIL/9LNTKFuxj LYWxKw7J+CEAZyiRq7DioaabnFHbH/
7Ydxz5wK17cFMXmsoPip LAbH5HbIJWU25krMqjC5xATe1qTCI9+HON29EGt IKZdmIyeZLAre2i9BGHMMIGKE+0+wa®0k510RVN]jD+5dXIhj//wRlt/
1VQVeRXm6j I7CYX5NOYRr4tzF19MQBEQIhWjvXIPqs6SRCHr Jj1UJofOHAWQQ]IrPt7R1YNXzm4EZPpQWOVFBZzUVS0zyRp2Qb0OTZzhw5T8dMwunaLoKn/vF+WFngTAZgAMSGOWp6g+4rSJ/7qZ2eMsXGx/
EbX1m1RzLYR061ECEM2bjG7Y8g/s2VyD2fPT1b9bCZhDri7E3uILIp2Jzh9+fRgHPY430tCvhYBANOGLABgbWrD+T++g+YIOXCKYwco1KV9zQm37eTTBbs9AO4XHOHr xU6070AKQVUL3TZ/
XPJIXZuMsI73k1P3Z7Q70IZNuIGXb2weZiQWU80Qq5i+g5ejodGPnrv248aGX8b2VHDEHUUIBCBhtYZfRC50+v]bGOWWVS+ubX ETpPEUELIAU/
tiolt3fES6QWRXxeHNzGBUStNIK7De 14aUXjuDY8RrVLMFmMU9e21534+56D+PaTr+KepwW/gzLvtmPd1MnPp6h2MnX71phAqGZtKONWOAa3tH/dr I9mEUczAV326Hqs3HOVY70KbT/wINSCCpINS/
gyXHRVBH3bs00RZjAVi6h9wXvD69KPY++fTQKETVY3NRn1zDy4yYZLX+XMt5FPsV/htbdvImeAC30uShBGLFoAIXhg7cqwaqOpAaUkeTnXKwoER+OR1RFE4a0K1BIXr@7HunXLUNa3H2v3ngH3NQEkapi/
ORReHz4teCtJID11B/EUT+67da2pJKSy7m9ryEbs8qpDilLqAht ISEXEKAYhHIWfpZsyUIFL/r7IdlkDsRoy3S4uxdri15wAuvwovSMfhZ0TUcn40SgNVI1tShGIjzYPiEVL1/VQkdmMUOFOOwi+cFEUIDiFPQ9z/
eM154G8RPQwyKnKcNuYd2JaXoYJ00eJgpvTqog+ZTnSWFvP8IGhHaggaD6MyVXS5iS 11B5VQXRFHQMMCX 9Pt SIMLNL t8HHYUwk I0ehinpPjH7enKGZqOKpCOx43w50d+RCG5yWvIFAZUSM50CVHOZFOC JhyAX
4pCTKkF83TtOcVrISmwfvowYdICEtjXpidGDQ1010ABtN2uwO5LoCKWHb151JgjJ73Mel1VEROA2rHOWOIoW14wVXE2Dfxq7j69KINz Fb+a54sNm+
+k3edXx1AECOB40kcONnh32iQYM3UeUCyQm2nHtrE1s4I0dbnDZy5ixkEiNC4LE4T85eXIULGOBDAhMbj 7nmmlsYEebt5dWEDS8IR1Eb64exMARFI10t jCY7VSKZLAqWoqUbZQFSPWVGZHZ ju9PQfLwbeUkU2aii
oVAafQnlAZdsAZwCk4YsgAY5QGWMLOeCLVN5vX4FZGwwiswCZFbmSnXi0fvmA83d6qUOVGQ+zES54HY5SQ3nACBpHOI6+Fa6ZAgNQLY44HGXCE7jJaBImMHBJASMeLFs7Fg09c]jZp9HVzp50qrz0cjG4z03ugv30
1ICYymve7NAiczX0Z22b/i+mBO1PaFahQumb5KLEhxJuGZJ+5m1gBUM7UVVXDriGcJ8]j6FNFyMHebBIUMk8hkIFgZWe/
0GBQRs]jp9YLFYKYgZHqjzSeCTzGE7RsctiuQq+3gruBf6U65RLIAIFMGEKUQKQFip9pd9fM3saldtr5Te7qnIed7 TPIVZPAGGRiIXYSOM4LGZDI HpIcqqyy tw/
8H6YLkJICO5aIGOCNUEeXTw40ZL3CJIIHC3WMovz/
3JuwC5E8aSfcG1C5]jcyK4yGrFPhCKKMAKTQ7jvnY8PmD]jzywF+BBRORyi1V1yBzBFFygOBR6yWvtD1RNkiEAQifQDO09UAKJIOOBARHGQXQYKMY rI7HFOh4SmujNahWwibfvX+StdCirWrMJ/
jhsCXmYPvk15je5McELhUG3XxVRyY Lpbmlm178eAvdyEpPUE Lkj7pJ6KKE317ux9fKU7FKz+7 18Emj TuzvWpFyGWWFKOQUU LxIZK4WaKsSeXjZgu5CmEL/
L2d6HKf5p2SgGLeZnVwUaMSdY3LSEeOKILgcrQyZ5MhFwVWx0/
LURRWhulTtnIzdfqg4P1xeEFEHiKLMCVLW7LCc8e162zB13Xs4wOWNrHQ7WsWWI4pDVNUdQLrTji9z59eZzHR6iBIbvHYygtWhPCHHI+tIAC1buCJ9r10pIAQgvifyyk0Jr5G8ByjmS/
YA7wc+RjwIDVNCNXQa4gNIMmDT38d7ZfRBNnUNESaVEWBMRX01/xsy1Fr1ygmz+AEAHI jpEIUYnNKkJIcoXA2rAzQfSVBbnZ7BSh08yOp1AoczjxKRthTOWV1kQTH78FJIZNYpI/sTXUJIh/
PxXnHFLzqjFPgwpAXEC2tCqqz2H1C7uBualq810wGlyYFovc5ASOpYpfWwkICk28F7GiK/
05x018JB7BUOS4jQI8CLjY 1pvwQhbmPI80wnFgBrx859RhTADIUCYBZH1izdidwvAfTFmdyL5BRWUAZGpWAIRKhTvyrXdbJkTg7MISHYRSh57G6Ud33tRM4+yQf TufD/
LnLI9z7564U44SU4YKXtgMEOIOfHi0o2vbkXr/7uMGYsmYgKrg+gQsAFBJI7CYbGijsNSuURtPPVUGMw3t2H7kQmhOoRUP7VMA+cgG52zISHSOEZKWUUNZ LL1LT/
L7AbGSSKXE7z9qFBDNmxsjsqR915KNyL45U6320CW54TDm4zB4up5j83H+AmNeJrb94mtquPR6/
TjFX4rIXCLFGZ1vx2dj6BZmOHR76r jBBRED8TzGmaIQUBGMLIEAN3SMCCACOUTF3g8+weOPb8LUEieS+IMHWROONHF8r5LAWYRpWT4eX1GGZUvmY FKkXINWE6GoyHKoYk5vI4KMIXgpwkyULAJPhHVr81u3v8rc
8G/k+1Ye4AqVbkMIFdU3EbdcX44ayGewSpy J30t4C129N1kw6owl+J INDXUSQENDHOh8LZb5PCLVZC2v72x91977 jmFmcw2QmlYcL+bmZPLKQKSNIVSNEI8XepMuEa/+/71iAPggASOvUVp9jt/
ykZahfdCiNU+sitLHQWOUWV5QLOGTGBKv(BbDR4IsA3MQaCoICtn/5IgHtj818DUUB4WGSCTryqjOeyJpxdn9FAONM4QPgXrGAASIZZXVXLGCCKXWA3CSWMEAK46z1iP3wnyrgPINtbAAAAAE LFTkSuQmCC
</BINVAL>
</PHOTO>

-251/512 - Copyright © 2008 - 2024 ProcessOne

https://xmpp.org/extensions/xep-0054.html

Retrieving a MUC room vCard

</vCard>
</ig>

Please, note that you have to set the mime type of the image properly to help the client displaying it.
You can of course add other fields to the vCard if needed.
After that IQ set stanza, the server will reply with success:

<iq from="test@conference.localhost"
type="result"
to="owner@localhost/r"

id="set1">
<vCard xmlns="vcard-temp"/>
</ig>

The MUC room also broadcasts a notification about non-privacy related configuration change to users that are currently in the
room:

<message from="test@conference.localhost"
type="groupchat"
to="owner@localhost/r"
1d="17095969463368094420">
<x xmlns="http://jabber.org/protocol/muc#user">
<status code="104"/>
</x>
</message>

Retrieving a MUC room vCard

Any user can retrieve the MUC vCard but sending a vcard-temp get IQ to the room itself:

<iq to='test@conference. localhost'
id='get1'
type="get'>
<vCard xmlns='vcard-temp'/>
</ig>

Server will reply by sending back the vCard:

<iq from="test@conference.localhost"

type="result"

to="user@localhost/r"

id="get1">
<vCard xmlns="vcard-temp">

<PHOTO>

<TYPE>image/png</TYPE>
<BINVAL>

1VBORWOKGYOAAAANSUhEUGAAAEAAAABACAYAAACHaXHeAAAABGABTUEAALGPC/
xhBQAAACBj SFINAAB6 JGAAgIQAAPOAAACABAAAdTAAAOPGAAABMAAAF3CcU LEBAAAACXBIWXMAAAS TAAALEWEAMPWYAAABIWLUWHRY TUWEY29tLmFkb2J 1Lnht cAAAAAAAPHg6eG1wbWVOYSB4bwWxuczp4PSJh
ZG9iZTpuczptZXRhLyIgeDp4bXB0az0iWE1QIENVCMUGNS40LjAiPgogICA8cmRMO1JERiIB4bWxuczpyZGY9ImhOdHAELY93d3cudzMub3JInLzES0TkvMDIVM)ItcmRmLXNSbnRheClucyMiPgogICAgICA8cm
RmOkR1c2NyaXBoaw9uIHJIkZjphYm91dDOiIgogICAgICAgICAgGICB4bwWxuczpO®aWZmPSJodHRWOi8vbnMuYWRVYmUUY29tL3RpZmYvMS4wLyI+CiAgICAgICAgIDX0aWZmOkNvbXByZXNzawW9uPjE8L3RpZmY6
Q29tcHJI1c3Nph24+CiAgICAgICAgIDXx0aWzZmOk9yawVudGFOawOuPjEBL3RpZMY6T3IpZW50YXRpb24+CiAgICAgICAGIDX0aWzZmO 1Bob3RvhWVOCm1jSW50ZXIwcmVOYXRpb24+MjwvdG1lmZjpQaG90b211dH
JpYOludGVycHJI LdGFOaw9uPgogICAgICASL3IkZ pEZXN]cmlwdGlvbj4KICAGPCIyZGY6UKRGPgo8L3g6eG1wbWVOYT4KAL iABQAADKVIREFUEAHtWG twVNUZ/
nY3me022bxIyItAIBBArZRUUbCoOKCgVnWIxxlataOlr lK12ameclurudmrp2KE6nXFgGIWpQGmM1zCDaoTDUBWOMVCFCe0QFhDWhCX1sNrub3fT7z7 13H8kmm4RUWSNI7uvee//zf//r/
OectfSxYBwX6zjGrqBfEcD1tID/Be+7rBZgsVgup/yvuIBI4LJawGVX//guUQB8iY0/C56EF1Wj0Szfi+7+Znow8ThA15N84GRA1Hek3MVRY/
huJKEg4Eq90GAUWtItVbypFayosCM14bIFo0LqtxTKOZweDfvZr5WHDMA0gGAW]3q3W2AWEg33weHrQ6fYgM9OFh80uzHGGEARILKBh84OE2dcXVIBMwem1t7chXn8LVNAL8PNOWX+4yL02+PWNSHFNx8QJi2C
1JUKSXUBrw2syErinx4uwinY®NLbgXPOFNDS34ejJelTVd+Cplbfi9lvKIV1V96ZFuD3nONi8Dc1J03kUIcmRBOdiFhm2hyxGQGsTFO1qgXt9LejoOonOrk/
g7j5AsJIsQCOhWOpzyx6T8LCjJukWBFESZtQAOCA4jVVEpra229k5UvdfhyLEaHPi0BusPngM+7BRI8GjEzKVZzsGX1A5h7bWkUYPWga3i2INDrR1PLj9UQJIcaUkHAIBXEXU1PMIS316qQ6126zJYU+c3fX4nzrb
rsSivwévb5+ql+/IGr8tQV+wCni8n1pOEBMy5+meDPcbsQuYGjelHQQEUVFVi/
f3H8XF9hzFrjfq2IGXhwNZC1109VPOBIx4eelteORbS5DMS01iQDOYJI90U07sqcLK61IIt4RsfFgsFapT2IKzYCSUS56FIkZy5Hhmou2jk00lhXopablndvaz08cdCORVIXXOvXt tKL9yM66Ubmc2IRPNSMSgPi4
aFs0AX74aAXef0OsAfrvuCFDrAaY6YSOwoCTVDpfDhkO7W4A5Tux+cQUW33qdghkgbDatBw8AdupgC6096hZNVMOKPIViy+F5M30XmAZXqKBBt1gJY7qWdzVbKd262reNV6sQqC+j3dSgq2IGC3HtYL7HFfKduh+
8CAt7U+qnKs9j413fxm58fFHKWLE jD5BKp8NLINAIWILt70bGrHt9/ugzPrFq0qVPyVWICWzZIgNTsXDoTNFqQJUEMOFIHYbC7e+wiogfc5vE/g/
SnjY@oFoqgS+P2VyMpcrcDr 12HNG43jCyDS5Ls9Xry54z2sfGYXcLoHhYsy4aAazn16UdsTWLSUBFTWUAUVXry++T7cf+
+tNFcHtaQtxxSg2f lwr6JLEbTWO4UhAiHrFksGr208IMZIEZOXvVopooZWwI85FUf531BVTutRDXGNIIGia]jDBeW9eEF9Zsw/ r fHWZumIDSOhRUU909dL4INPTORASqd1/
A9cvz8cet92Fe2WzVjbiKTWx1BIU2pfFGFfaPNN1wloC+GH3kn/Fosibzz8J4RP+91jiDZh1Bi8zCoAEzw4kv/Lq/Csic3onZPK2bekYcL1PapDr/qPD/
ZhgY+t7zfgmdfXIhVjylDbo74rfjnyMHLdzqp4Y1WvVQNr6j2wey3kdF/Flwper TRLThObREWBRIL/9LNTKFuxj LYWxKw7J+CEAZyiRq7DioaabnFHbH/
7Ydxz5wK17cFMXmsoPip LTAbH5Hb JWU25krMqjC5xATel1qTC9+Hon29EGtIKZdmIyeZLAre2i9BGHMMIGKE+0+wa®0k510RVNjD+5dXIhj//wRlt/
1VQVeRXm63j I7CYX5NOYRr4tzF LOMQBEQIhWjvXIPqs6SRCHr Jj1UJof9HAWQg]IrPt7R1YNXzm4EZPpQWOVFBZzUVS0zyRp2Qb0TZzhw5T8dMwunaLoKn/vF+WFnqTAZgAMSGoWp6g+4rSJ/7qZ2eMsXGx/
EbX1m1RzLYR06 1ECEM2bjG7Y8g/s2VyD2fPT1b9bCZhDri7E3uILIp2Jzh9+fRgHPY430tCvhYB6ANOGLABbWrD+T++g+YIOXCKYwCo1KV9zQm37eTTBbsS9AO4XHOHr XU6070AKQVUL3TZ/
XPjIXZuMsI73k1P3Z7Q70IZNuIGXb2weZiQWU80Qq5i+g5ejodGPnrv248aGX8b2VHD6HUUIBCBhtYzfRCc50+v]jbGOWWVS+UbX1ETpP6UELIAU/
tiolt3fES6QWRXxeHNzGBuUstNIK7Del4aUXjuDY8RrVLMFmMU9e21i534+56D+PaTr+KepW/gzLvtmPd1MNnPp6h2MnX71phAqGZtKONWIAa3tH/dr I9mEUCzAV326Hqs3HOVY70KbT/wiNScCpIN5/
gyXHRVBH3bs00RZjAVi6h9wXvD69KPY++fTQKETVY3NRN1zDy4yYZLX+XMt5FPsV/htbdvImeAC30uShBGLFoAJXhg7cqwaqOpAaUkeTnXKwoER+OR LRFE4a0K1BIXr@7HunXLUNa3H2v3ngH3NQEkapi/
ORReHz4teCtJID11B/EUT+67da2pIKSy7moryEbs8qpDiLgAht ISEXEKAYhH1WfpZsyUIFL/r7IdkDsRoy3S4uxdri5wAuvwovSMFhzOTUCn40SgNVI1tShGIjzYPiEVL1/VQkdmMUGFO9Wi+CFEUIDiFPQ9z/
eM154G8RPQwyKnKcNuYd2JaXoYJ00eJgpvTqOg+ZTnSWFvP8IGbHaggaD6MyVXS5iS11B5VQXRFHQMMCX19PtSIMLNLt8HHYUwkIOehinpPjH7enKGZqOKpCOx43w50d+RCG5yWvIFAZUSM50CVHOZFOCJhyAX
4pCTKF83TtOcVrISmwfvowYdICEtjXpidGDQ1010ABtN2uwd5L0CcKWHb151JgjJ73Me1VEROA2rHOWOoIoW14wVXE2DTxq7j69KINzFb+a54sNm+
+k3edXx LAECOB40kcOnh32iQYM3UeUCYyQm2nHtrE1s4I0dbnDZy5ixkEiNC4LE4T85eXIULGOBDAhMbj7nmmlsYEebt5dWED8IR1Eb64eXMARFI10tjCY7VSKZLAqQWOqUbZQFSPWVGZHZju9PQfLwbeUkU2aii
oVAafQn1AZdsAZwCk4YsqAY5QGWMLOeCLYN5VX4FZGwwiswCZfbmSnXi0fvmA83d6qUOVGQ+zE54HY5SQ3NACBPHOI6+Fa6ZAqNQLY44HGXCE7jJaBIMHBJASMeLFs7Fg09cjZp9HVzp50qrz0c]jG4z03ugv30
1ICYymve7NAiczX0Z22b/i+mB0O1PaFahQumb5KLEhxJuGZJ+5m1gBUM7UVVXDriGcJ8j6FNFyMHebBIJUMk8hkJIFgZWe/
0GBQRsjp9YLFYyKYgZHqjzSeCTzGE7RsctiuQq+3gruBf6U65RLjAIFMGEKUQKQFip9pd9fM3sal3tr5Te7qnIed7TPIVZpAGGRiXYSOM4LqZDJI tHpIcqqyytw/
8H6YLkJICO5aIGOCNUeXTw40ZL3CIIHC3WMovzZ/
3JuWC5E8aSfcG1C5jcyK4yGrFPhCKKMAKTQ7jvnY8PmD] zywF+BBRORy1 1V1yBzBFFygOBR6YyWvtD 1RnkiEAqifQDO0UAK JIOOEARHGQXQYKMYr I7HFOh4SmujNahWWIbfvX+StdCirWrMd/

-252/512 - Copyright © 2008 - 2024 ProcessOne

Retrieving a MUC room vCard

jhsCXmYPvk153je5McELhUG3XxVRyY Lpbmlm178eAvdyEpPUE Lkj7pJ6KKE317ux9fKU7FKz+7 L8Emj TuzvWpFyGWWFKOQUU LxIZK4WaKsSeXjZgu5CmEL/
L2d6HKf5p2SgGLeZnvwUaMSdY3LSEeOKILgcrQyZ5MhFwVWX0/
LURRWhulTtnIzdfqg4P1xeEFEHiKLMCVLW7LCc8ei62zB13Xs4wOWNrHQ7WsWWI4pDVNUdQLrTji9z59eZzHR6iBIbvHYygtWhPCHHI+tIAC1buCJ9r10pIAQgvifyyk0Jr5G8ByjmS/
YA7wc+RjwIDVNCNXQa4gNIMmDT38d7ZfRBNuUNESaVEWBMRX01/xsy1Fr1ygmz+AEAHI jpEIUYnNKkJIcoXA2rAzQfSVBbnZ7BSh08yOp1AoczjxKRthTOWVLkQTH78FJIZNYpI/sTXUJIh/
PxXnHFLzqjFPgwpAXEC2tCqqz2H1C7uBualq810wGlyYFovc5ASOpYpfWkICk28F7GiK/
05X018JB7BUOS4jQI8CL]Yy lpvwQhbmPI80wWNFgBrx859RhTADIUCYBZH1izdidwvAfTFmdyL5BRWUAZGpWAIRKhTvyrXdbJIkTg7MISHYRSh57G6Ud33tRM4+yQf TufD/
LnLI9z7564U44SU4YKXtgMEOIOfHi0o2vbkXr/7uMGYsmYgKrg+gQsAFBJI7CYbG1ijsNSuURtPPVUGMw3t2H7kQmhOoRUP7VmMA+cgG52zISHSOEZKWUUNZ LL1LT/
L7AbGSSKXE7z9gFBDNmxsjsqR915KNyL45U6320CW54TDm4zB4up5j83H+AmNeJrb94mtquPR6/
TjFX4rIXCLFGZ1vx2dj6BZmOHR76r jBBRED8TzGmaIQUBGMLIEAN3SMCCACOUTF39g8+weOPb8LUEi1eS+IMHWROONHF8r5LAWYRpWT4eX1GGZUvmY FKkXINWEGOoYyHKoYk5vI4KMIXgpwkyUTlAJPhHVr81u3v8rc
8G/k+1Ye4AqVbkMIfdU3EbdcX44ayGewSpyJ30t4C129N1kw6owl+J INDXU3QENDHOh8LZb5PCLVZC2v72Xx91977 jmFmcw2QmlYcL+bmZPLKQk5NIVENEI8xepMuEa/+/71iiAPggAS9vUvp9jt/
ykZahfdCiNU+sitLHQwWOUWV5QLI9GTGBKv(BbDR4IsA3MQaCoICtn/5IgHtj818DUUB4WGSCTryqjOeyJpxdn9FAONM4QPgXrGAASIZZXVXLGCCKXWA3CSWMEAK46z1iP3wnyrgPINtbAAAAAE LFTkSuQmCC
</BINVAL>
</PHOTO>
</vCard>
</ig>

-253/512 - Copyright © 2008 - 2024 ProcessOne

Using ejabberd with MySQL

Using ejabberd with MySQL

ejabberd is bundled with a native Erlang driver to use MySQL as a backend for persistent storage. Using MySQL as backend is
thus extremely straightforward.

ejabberd installation

ejabberd packages and binary installers contain all the modules needed to connect to your MySQL server. You have no extra
module to install anymore.

If you are building ejabberd from source, make sure that you configure ejabberd to include MySQL module. It can be done by
passing option --enable-mysql to configure script. For example:

cd ejabberd-source
./configure --enable-mysql

MySQL installation
You need a MySQL server that you can point your ejabberd configuration to. The database does not have to be on the same
server than ejabberd.

Requirements
ejabberd uses FULLTEXT indexes with InnoDB. Thus, you need MySQL 5.6 or greater to use with ejabberd.
Note: If you do not store message archive in database however, you can try using older 5.5 version. You may need to adapt
MySQL database schema to cope with those older MySQL versions.

MySQL on Linux

This documentation will not get into the details of making MySQL running on Linux for production. It is dependent on Linux
distribution and system administrators preferences and habits.

It is also well documented, so it should not be an issue.

Amazon RDS compliance
ejabberd is fully compliant with MySQL on Amazon RDS.

You just need to make sure to use MySQL version 5.6 or greater when you create your database.

MySQL on OSX with Homebrew
For testing / development, it is common to start experimenting with MySQL with Homebrew installation.
Here is how to get started to help with setup up environment.
With Homebrew properly installed, you can use the following command to install MySQL.:
brew install mysql
You can then follow instruction to finish the installation, for example by running mysql_secure_installation .
You can manually start server with:

mysql.server start

-254/512 - Copyright © 2008 - 2024 ProcessOne

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_MySQL.html
https://brew.sh/

MySQL database creation

To connect to your local MySQL server using mysql command-line, assuming you kept the default set up, use:
mysql -uroot
To stop it, use:

mysql.server stop

MySQL on Windows with Bash
On Windows you can install MySQL easily like on Linux using Ubuntu Bash:
sudo apt-get install mysql-server-5.6
After configuration, you can start MySQL with:
sudo /etc/init.d/mysql start

You can connect on the database with your created admin password:

mysql -uroot -ppassword

MySQL database creation
Create ejabberd user and database

MySQL admins should use this procedure and grant rights to a dedicated ejabberd user (replace password with your desired
password):

echo "GRANT ALL ON ejabberd.* TO 'ejabberd'@'localhost' IDENTIFIED BY 'password';" | mysql -h localhost -u root

You can then create a dedicated ejabberd database (use password created earlier):

echo "CREATE DATABASE ejabberd;" | mysql -h localhost -u ejabberd -p

You should now be able to connect to ejabberd database with user ejabberd (use password defined on GRANT command):

mysql -h localhost -u ejabberd -p -D ejabberd

Welcome to the MySQL monitor. Commands end with ; or \g.

Your MySQL connection id is 8

Server version: 5.7.11 Homebrew

Copyright (c) 2000, 2016, Oracle and/or its affiliates. All rights reserved.
Oracle is a registered trademark of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective

owners.

Type 'help;' or '\h' for help. Type '\c' to clear the current input statement

mysql>

Decide which SQL schema to use

Read carefully the Singlehost or Multihost section and decide which schema is preferable in your case: the singlehost or the
multihost schema.

Then modify the ejabberd.yml configuration file to setup your desired option value:

sql_schema_multihost: true

- 255/512 - Copyright © 2008 - 2024 ProcessOne

ejabberd configuration

Use automatic schema update

Since ejabberd 23.10, ejabberd can take care to create the tables automatically the first time it starts with an empty database,
and also takes care to update the database schema when you upgrade ejabberd to a newer version.

That feature works both for default and new SQL schema, for MySQL, PostgreSQL and SQLite.
To enable automatic database schema creation and update, simply add in your ejabberd.yml configuration file:

update_sql_schema: true

In that case, you don't need to load the database schema manually: no need to read the next section.

Load database schema manually

MySQL singlehost schema is defined in a file called mysql.sql, and the multihost schema is mysql.new.sql. Some tables of the
schema are described in: ejabberd SQL database schema documentation.

Those schema files can be found:

 Git repository and source code package: /sql/ directory

* When installed from source code or binary installer, the SQL schemas are copied to PREFIX/lib/ejabberd-VERSION/priv/sql

Load the schema in your ejabberd database with the command:
mysql -h localhost -D ejabberd -u ejabberd -p < mysql.sql
To make sure all looks fine, you can show the list of SQL tables:

echo "SHOW TABLES;" | mysql -h localhost -D ejabberd -u ejabberd -p --table

mysql: [Warning] Using a password on the command line interface can be insecure.

4
@
o
—
@
g
("
2
(o]
[urk
@
o
=3
@
5
aQ

archive |
archive_prefs |
caps_features |
last |
motd |
muc_registered |
muc_room |
privacy_default_list
privacy_list |
privacy_list_data |
private_storage |
pubsub_item |
pubsub_node |
pubsub_node_option
pubsub_node_owner
pubsub_state |
pubsub_subscription_opt |
roster_version |
rostergroups |
rosterusers |
sm |
spool |
sr_group |
sr_user |
users |
veard |
vcard_search |
vcard_xupdate |

Your database is now ready to connect with ejabberd.

ejabberd configuration

Setup MySQL connection

In ejabberd.yml, define your database parameters:

- 256/512 - Copyright © 2008 - 2024 ProcessOne

https://github.com/processone/ejabberd/tree/master/sql
https://github.com/processone/ejabberd/tree/master/sql

Migrating data from internal to MySQL

sql_type: mysql

sql_server: "localhost"
sql_database: "ejabberd"
sql_username: "ejabberd"
sql_password: "password"

If you want to specify the port:
sql_port: 3306

Those parameters are mandatory if you want to use MySQL with ejabberd.

Authentication use MySQL

If you decide to store user password in ejabberd, you need to tell ejabberd to use MySQL instead of internal database for
authentication.

You thus need to change ejabberd configuration auth_method to replace internal authentication with sqtl:

auth_method: sql

If you restart ejabberd, it should connect to your database for authentication. In case it does not work as expected, check your
config file syntax and log files (ejabberd.log, error.log, crash.log)

For example, you can create a user in database with ejabberdct1:

/sbin/ejabberdctl register "testuser" "localhost" "password"

User testuser@localhost successfully registered

You should now be able to connect XMPP users based on MySQL user base.

Modules use MySQL

At this stage, only the authentication / user base has been moved to MySQL. For data managed by modules, ejabberd still uses
the Mnesia internal database by default; you can decide to use MySQL on a module-by-module basis.

For each modules that support SQL backend, you can pass option db_type: sql to use your configured MySQL database. Switch
can be done on a module by module basis. For example, if you want to store contact list in MySQL, you can do:

modules:
mod_roster:
db_type: sql

However, if you want to use MySQL for all modules that support MySQL, you can simply use global option default db: sql:
default_db: sql

Note: even if you move all the persistent data you can to MySQL, Mnesia will still be started and used to manage clustering.

Migrating data from internal to MySQL

To migrate your data, once you have setup your sql service, you can move most of the data to your database.

You need to take precautions before you launch the migration:

1. Before you launch migration from internal database, make sure you have made a proper backup.

2. Always try the migration first on an instance created from your data backup, to make sure the migration script will work fine on
your dataset.

3. Then, when doing final migration, make sure your instance is not accepting connections by blocking incoming connections, for
example with firewall rules (block port 5222, 5269 and 5280 as default).

-257/512 - Copyright © 2008 - 2024 ProcessOne

Converting database from singlehost to multihost schema

When you are ready, you can:

. Connect to a running ejabberd:

./ejabberdctl debug

. Alternatively, use ejabberdctl live to launch ejabberd with an Erlang shell attached.

. Launch the migration command ejd2sql:export/2 from Erlang shell. First parameter is the XMPP domain name you want to
migrate (i.e localhost). Second parameter sql tells ejabberd to export to configured MySQL database. For example:

ejd2sql:export(<<"localhost">>, sql).

You should be set now.

Converting database from singlehost to multihost schema

Please check the section Singlehost or Multihost.

Getting further

To get further you can read the ejabberd Configuration section about Databases.

-258/512 - Copyright © 2008 - 2024 ProcessOne

Development

Development

ejabberd for Developers

As a developer, you can customize ejabberd to design almost every type of XMPP related type of solutions.
As a starting point, we recommend that you get extremely familiar with both the core XMPP protocol itself and its extensions.

From that, once you understand well XMPP, you can tame ejabberd to build your dream messaging system.

Getting started

Source code
ejabberd source is available on Github: ejabberd

You will need to get familiar with it to start learning about ejabberd module writing. The first place to start? You should read the
time module. This is one of the simplest possible module for ejabberd.

Another great source of inspiration and knowledge is to read the source code of the many contributed ejabberd modules. Many of
them are available from ejabberd-contribs repository.

For a complete overview of ejabberd source code and its dependencies, please refer to ejabberd and related repositories

Development Environment

The first step to develop for ejabberd is to install and configure your development environment:

e Check the Source Code Installation section
« If using Emacs, install erlang-mode in your operating system
 If using OSX, check the OSX development environment section

» For Visual Studio Code and alternatives, check the Developing ejabberd with VSCode section

Customizing ejabberd

* ejabberd development guide

* ejabberd modules development

- 259/512 - Copyright © 2008 - 2024 ProcessOne

https://github.com/processone/ejabberd
https://github.com/processone/ejabberd/blob/master/src/mod_time.erl
https://github.com/processone/ejabberd-contrib
https://www.erlang.org/doc/apps/tools/erlang_mode_chapter.html

ejabberd Developer Guide

ejabberd Developer Guide

Introduction

This guide is a brief explanation of ejabberd internals. It is not intended to be a comprehensive ejabberd's internal API
documentation. You still need to read and understand ejabberd's source code.

This guide should help you to understand ejabberd's code faster: it provides entry points from where to start reading relevant
parts of the code and ignore irrelevant ones.

Note that there is absolutely no need to know every line of code of ejabberd, but some parts are crucial to understand.

In order to read and understand the guide you must be pretty fluent with Erlang programming language and understand basics
of the XMPP protocol: there is no detailed explanation of Erlang syntax and/or features and it's assumed that you're familiar with
such terms as xml stream, stanza, c2s, s2s and so on. If you see these words for the first time in your life you're unlikely to
understand the guide.

Coding style convention

NOTE: this section is only relevant for ejabberd contributors. If you're hacking ejabberd for internal needs, you are free to
choose whatever coding style you like.

ejabberd follows Erlang Coding Standards & Guidelines or at least tries to do so: there is still a lot of poorly written legacy code
(which is being leisurely rewritten), but the new code should be written with keeping these rules in mind. In some cases the rules
can be bypassed, but the reason doing so should be really weighty. The rules shouldn't be ignored just because a contributor
doesn't like them.

The typical coding style rules found violated in contributors' code are:

e 100 column per line: in fact we have defined 80 columns as a soft and 100 columns as a hard limit, which means most of your
lines should be no longer than 80 characters and the rest must never be longer than 100 characters.

* no deep nesting

* no boolean parameters in case control

* only CamelCase variables name

* NO Macros

* no case-catch

It's worth noting that the code itself should be indented using Emacs indentation style (that is the standard indentation style for
Erlang programs). If you're not using Emacs for ejabberd development, indent the code using it first before making a PR/commit.

Format
© addedin24.06

You can completely reformat your source code to the standard by surrounding the desired code with directives @format-begin and
@format-end, for example:

%% @format-begin
foo(xx YY) >
XxXyy:
foo(A,B)->
A
+B

%% @format-end

then run make format and it will format and indent all the instructed lines and files. The resulting source code will be:

- 260/512 - Copyright © 2008 - 2024 ProcessOne

https://github.com/inaka/erlang_guidelines/blob/main/README.md
https://github.com/inaka/erlang_guidelines/blob/main/README.md#100-column-per-line
https://github.com/inaka/erlang_guidelines/blob/main/README.md#avoid-deep-nesting
https://github.com/inaka/erlang_guidelines/blob/main/README.md#avoid-boolean-parameters
https://github.com/inaka/erlang_guidelines/blob/main/README.md#variable-names
https://github.com/inaka/erlang_guidelines/blob/main/README.md#no-macros
https://github.com/inaka/erlang_guidelines/blob/main/README.md#dont-use-case-catch

Start-up procedure

%% @format-begin
foo(xx, yy) ->
XXyy;
foo(A, B) ->
A + B.
%% @format-end

This can be applied to any desired part of your module, or all of it, see for example mod adhoc api.erl. In that file, the @format-
begin directive is provided early in the file, and the @format-end directive is not even needed.

You can integrate that step in your development cycle, for example configuring your git to automatically run that procedure
before pushing your changes to the upstream repository. For that, add a file in your local ejabberd git repository named .git/
hooks/pre-push with the following content:

#!/bin/sh

echo "---> Formatting source code..."
./tools/rebar3-format.sh ./rebar3
if git diff --quiet --exit-code; then
exit @
else
echo "---> After formatting ejabberd source code, some files have changed:"
echo ""
git status --short
echo ""
echo "---> Please review those changes and include them in your commit before pushing upstream."
exit 1
fi

Furthermore, you can add an alias in git:
git config --global alias.format '!$(pwd)/.git/hooks/pre-push’

and now you can run the hook easily anytime:

git format

Indent with Emacs

If you are only interested in lines indentation, not in full code formatting, install Emacs and surround the desired code or the
whole file with lines:

%% @indent-begin
foo(A,B) ->

A+B.

%% @indent-end

then run make indent and it will call Emacs to indent all the instructed files.

Start-up procedure

ejabberd is written as a standard OTP application, so the startup module can be found in src/ejabberd.app.src or, if ejabberd is
compiled, in ebin/ejabberd.app file: that is, ejabberd_app.erl module from where start/2 function is called by Erlang application
controller. This function makes some initialization (such as logger, mnesia, configuration file, etc.) and ends up by starting the
main ejabberd supervisor - ejabberd_sup . Thus, for further startup order refer to ejabberd_sup.erl module (this is a simple list-
like module with supervisor childspecs).

WARNING: only "core stuff" should be attached to ejabberd_sup . For attaching modules use gen _mod's supervisor (via
gen_mod:start_child/3,4 functions), for attaching database backend modules use ejabberd_backend_sup supervisor, etc.

Once ejabberd_sup is started, ejabberd application is considered to be started.

Core

The ejabberd core is not well-defined. Moreover, the described core layers are pure abstraction grouping several modules
together by some criteria for better understanding of ejabberd internal processing rules.

-261/512 - Copyright © 2008 - 2024 ProcessOne

https://github.com/processone/ejabberd/blob/master/src/mod_adhoc_api.erl

Network Layer

Network Layer

Once ejabberd is started, some external events should obviously make it doing something. Besides explicit administrative
commands, the most relevant such events are incoming connections. Incoming connections are handled inside Network Layer .
The layer implemented by ejabberd_listener.erl, ejabberd_receiver.erl and ejabberd_socket.erl modules.

NOTE: ejabberd_listner.erl is able to handle raw TCP and UDP connections, however only XMPP connections are described

here.

Once a connection is accepted by ejabberd_listener.erl, an instance (a process) of ejabberd_receiver.erl is started and it
becomes the socket owner, where it performs the following operations:

» Throttles a connection using shapers from shaper.erl module

* Performs TLS decoding using fast tls library

* Performs stream decompression using ezlib library

» Parses incoming raw XML data into #xmlel{} packets using fast xml library

ejabberd_socket.erl does the same but in a reverse order, i.e. it performs stream compression and/or TLS encoding, serializes
#xmlel{} packets into raw XML data and puts them into a socket (note that shapers do not apply for outgoing data).

Once xmlel{} packet is constructed by ejabberd_receiver.erl it's passed to xMPP Stream Layer .

XMPP Stream Layer

XMPP Stream Layer is represented by xmpp_stream_in.erl and xmpp_stream_out.erl modules. An instance (i.e. a process) of
xmpp_stream_in.erl is started along with an instance of ejabberd_receiver.erl and all incoming #xmlel{} packets are passed from
the latter to the former. xmpp_stream_in.erl module does the following:

* Encodes/decodes #xmlel{} packets using xmpp library from/to internal structures (records) defined in xmpp codec.hrl.

* Performs negotiation of inbound XMPP streams

* Performs STARTTLS negotiation (if needed)

* Performs compression negotiation (if needed)

e Performs SASL authentication

NOTE: xMPpP Stream Layer was only introduced in ejabberd 17.03. Prior to this XMPP stream negotiation was handled inside
ejabberd_c2s.erl, ejabberd_s2s_in.erl, ejabberd_service.erl and ejabberd_s2s_out.erl. This has lead to unmaintainable

monolithic spaghetti code with a lot of code duplication between these modules. It's believed introducing xmpp_stream_in.erl and

xmpp_stream_out.erl modules now solves this problem.

During these procedures xmpp_stream_in.erl calls functions from its callback modules, i.e. the modules of xmpp_stream_in
behaviour: ejabberd _c2s.erl, ejabberd s2s_in.erl or ejabberd_ service.erl, depending on the stream namespace.

xmpp_stream_out.erl does the same but for outbound XMPP streams. The only its callback module is ejabberd_s2s out.erl.

NOTE: xmpp_stream_in.erl shares the same process and state with its callback modules, i.e. functions from xmpp_stream_in.erl
and functions from ejabberd_c2s/s2s_in/service.erl modules are evaluated inside the same process. This is also true for
xmpp_stream_out.erl and ejabberd_s2s_out.erl. The state is represented by a map() in both cases.

EJABBERD_C2S, EJABBERD_S2S_IN AND EJABBERD_SERVICE

These are modules of xmpp_stream_in behaviour. The only purpose of these modules is to provide callback functions for
xmpp_stream_in.er1l module. Examples of such callback functions are:

e tls_enabled/1: tells whether or not TLS is enabled in the configuration
* check_password_fun/1 : provides a function for SASL authentication

* handle_authenticated packet/2: what to do with packets after authentication is completed

Roughly, they represent an intermediate (or "glue") code between xMpp Stream Layer and Routing Layer for inbound XMPP

streams.

-262/512 - Copyright © 2008 - 2024 ProcessOne

https://github.com/processone/fast_tls
https://github.com/processone/ezlib
https://github.com/processone/fast_xml
https://github.com/processone/xmpp
https://github.com/processone/xmpp/blob/master/include/xmpp_codec.hrl

Network Layer

ejabberd_s2s_out.erl is described elsewhere

Routing Layer
EJABBERD_ROUTER

ejabberd_router.erl module is the main dispatcher of XMPP stanzas.

It's pretty small and straightforward module whose the only task is to find the "route" for a stanza. ejabberd_router.erl only
operates with #message{}, #presence{} and #iq{} packets (defined in xmpp codec.hrl), so please note, that it is not possible to
route arbitrary #xmlel{} packets or any other Erlang terms through ejabberd router .

The only valid routes are:

¢ local route: stanzas of this route type are destined to the local server itself, i.e. stanzas with to attribute in the form of
domain.com Or domain.com/resource, where domain.com is a virtual host serviced by ejabberd. ejabberd_router passes such
stanzas to ejabberd_local.erl module via ejabberd_local:route/1 function call.

* session manager route: stanzas of this route type are destined to local users, i.e. stanzas with to attribute in the form of
user@domain.com Or user@domain.com/resource where domain.com is a virtual host serviced by ejabberd. ejabberd_router passes
such stanzas to ejabberd_sm.erl module via ejabberd_sm:route/1 function call.

* registered route: if a stanza is not destined to local virtual host, ejabberd first checks if there is a "registered" route for the
stanza, i.e. a domain registered via ejabberd_router:register_route/2 function. For doing this it looks up the routing table and if
there is a process pid registered on this domain, ejabberd routes the stanza as pid ! {route, Stanza} . The routing table is
backend-dependent and is implemented in the corresponding backend module such as ejabberd_router_mnesia.erl.

* s2s route: if a stanza is neither destined to local virtual host nor to registered route, ejabberd_router passes it to
ejabberd_s2s.erl module via ejabberd_s2s:route/1 function call.

Mentioned modules are explained in more details in the following sections. You're encouraged to inspect exported functions of
ejabberd_router.erl, because most likely you will use some of them.

EJABBERD_LOCAL

ejabberd_local.erl handles stanzas destined to the local server itself. For #message{} and #presence{} it only calls hooks, while
for #iq{} it finds the corresponding "IQ handler" by looking up its internal table to find a correspondence between a namespace
of IQ's child element and the handler. Once the handler (an erlang function) is found, it passes further IQ processing to
gen_iq_handler.erl via gen_iq_handler:handle/5 call.

ejabberd_local.erl is also able to send IQ requests and to process responses for them. This is implemented in
ejabberd_local:route_iq/2,3 functions. This is also the most notable function of the module. Calling to other functions is not
recommended.

EJABBERD_SM

ejabberd_sm.erl handles stanzas destined to local users. For #message{}, #presence{} and full-JID #iq{} it looks up its internal
table (aka session table) for the corresponding ejabberd c2s process and, if the process is found, it routes the stanza to this
process via ejabberd_c2s:route/2 call.

Bare-JID #iq{} stanzas are processed in a similar way as in ejabberd_local.erl. The internal session table is backend-dependent
and is implemented in the corresponding backend module: ejabberd_sm_mnesia.erl, ejabberd_sm_redis.erl and so on.

- 263/512 - Copyright © 2008 - 2024 ProcessOne

https://github.com/processone/xmpp/blob/master/include/xmpp_codec.hrl

Adding new functionality

The most notable functions of the module are:

® get_user_resources/2

* dirty_get_sessions_list/0
* dirty_get_my_sessions_list/@
* get_vh_session_list/1

* get_vh_session_number/1

* get_vh_by_ backend/1

® get_session_pid/3

* get_user_info/2

* get_user_info/3

* get_user_ip/3

® is_existing_resource/3

ROUTE-REGISTERED PROCESSES

Any process can register a route to itself. It's done by calling to ejabberd_router:route/2 function. Note that a route should be
unregistered via ejabberd_router:unregister_route/1 function if the registering process terminates or the route is no longer
needed. Once a route is registered to a process, this process will receive Erlang messages in the form of {route, Stanza}.

NOTE: from and to fields are always set in the Stanza, so it's safe to assume that xmpp:get_from(Stanza) and
xmpp:get_to(Stanza) always return #jid{} and never undefined .

Refer to the code of mod_muc.erl or ejabberd_service.erl for an example of a route-registered process.

EJABBERD_S2S AND EJABBERD_S2S_OUT

If a stanza is destined neither to local virtual host not to a route-registered process, it's passed to ejabberd_s2s.erl module via
ejabberd_s2s:route/1 function call. ejabberd_s2s in its turn will look up the internal table (currently it's s2s Mnesia table) for the
ejabberd_s2s_out process and, if found, passes the stanza to this process or, otherwise, will start new ejabberd s2s_out process.

ejabberd_s2s_out.erl handles outbound XMPP S2S streams. This is the only callback module of xmpp_stream_out behaviour.

Adding new functionality

There are two common ways to add new functionality to ejabberd:

» using IQ Handlers

 using hooks
Here is a rule of thumb on which way to choose:

¢ if you want to handle newly introduced IQs (that is, to generate replies for them), use IQ handlers

« if you want to modify ejabberd behaviour along the way of a stanza passing through all layers or want to "listen" for some
internal events (like ejabberd configuration change), use hooks.

1Q Handlers

An 1Q Handler is a function processing an IQ stanza (internally represented as #iq{} record). There are two types of IQ handlers:
local and sm.

* local IQ handler is a function processing IQs coming from ejabberd_local, that is, an IQ destined to the local server itself as
described in ejabberd local.

* sm IQ handler is a function processing IQs coming from ejabberd_sm, that is, a bare-JID IQ destined to a local user as
described in ejabberd sm.

-264/512 - Copyright © 2008 - 2024 ProcessOne

Adding new functionality

An IQ handler is registered as:

gen_ig_handler:add_iq_handler(Type :: ejabberd_local | ejabberd_sm,
Host :: binary(),
Namespace :: binary(),
Module :: module(),
Function :: atom()) -> ok

where:

* Type iS ejabberd local for local handlers or ejabberd sm for sm handlers

* Host is a virtual host for which the IQ is to be processed

e Namespace is an XML namespace of IQ's child element

Once registered, matching 1Q stanzas are handled by calling Module:Function(1Q) . The result should be in the form of #iq{} or

ignore . When #iq{} is returned, it's treated as a reply and routed back to the IQ originator, otherwise, if ignore is returned, the
further processing stops.

NOTE: from and to fields are always set in the 1Q, so it's safe to assume that xmpp:get_from(1Q) and xmpp:get_to(IQ) always
return #jid{} and never undefined .

If a handler is no longer needed it should be unregistered as:

gen_ig_handler:remove_iq_handler(Type :: ejabberd_local | ejabberd_sm,
Host :: binary(),
Namespace :: binary()) -> ok

with the same meaning of the arguments.

Hooks

When ejabberd is processing an arbitrary event (incoming IQ, outgoing presence, configuration change, etc), it is convenient to
consider some of them notable. In order for someone to be notified of such events, ejabberd executes "hooks". A hook is
represented by a unique name. All functions associated with the hook's name will be called in some specified order.

NOTE: The conception of hooking is not ejabberd specific, see Hooking Wikipedia page for a general description.

For example, when a packet is received on a client connection, ejabberd runs user_send_packet hook. Several modules need to
listen for an event represented by this hook (that is, a packet and a C2S state), so they associate their internal functions with it:
mod_ping.erl associates user_send/1 function, mod_privacy.erl associates user_send_packet/1 function and so on. The event is
passed as an argument to the "hooked" functions, thus, the function from mod_ping.erl will be called as
mod_ping:user_send({Stanza,

c2sstate}) , the function from mod_privacy.erl will be called as mod_privacy:user_send_packet({Stanza, C2SState}) and so on.
There are two types of hooks: with an accumulator and without an accumulator.

* a hook with an accumulator, as its name suggests, accumulates some state during execution of a list of associated functions:
the first argument of the hooked function will always be an accumulator and the function must return the new value for the
accumulator (whether it's modified or not) in the form of NewAcc or {stop, NewAcc}.If {stop, NewAcc} is returned, a hook is
considered evaluated and next functions in its associated list are not called. Otherwise, the new value NewAcc is passed to the
next function in the associated list. An example of hooks with accumulator are: disco_info, filter_packet, muc_process_iq and
SO on.

* a hook without accumulator doesn't accumulate anything during execution of a list of associated functions: the returning
values of such functions are simply ignored unless stop is returned. In the latter case, evaluation of next functions in the
associated list is not performed. An example of hooks without accumulator are: config_reloaded, component_init and so on.

Both types of hooks have local or global scope.

* a hook with local scope is associated with particular virtual host and is run only when an event is matching this host. Most of
the hooks have local scope.

» a hook with global scope is not associated with any virtual host and is run for an event matching any hosts. A very few hooks
have global scope.

- 265/512 - Copyright © 2008 - 2024 ProcessOne

https://en.wikipedia.org/wiki/Hooking

Modules

A function gets associated with a local hook as follows (the type of a hook doesn't matter):

ejabberd_hooks:add(Hook :: atom(),
Host :: binary(),
Module :: module(),
Function :: atom(),
Seq :: integer() -> ok

where:

¢ Hook is a hook name

* Host is a virtual host
* seq is a sequence number. This number defines position of the function in the list to maintain execution order. Functions with
lower sequence number are executed before those with bigger sequence number. For functions with the same sequence

number the order is unspecified. A function associated with an accumulating hook is called as Module:Function(Acc, Argi,

Arg2, ...) where Acc is an accumulator value, Argi, Arg2, ... - arguments of the hook. Recall that such function must return a

new accumulator value (whether it's modified or not) in the form of NewAcc or {stop, NewAcc} where NewAcc is the new
accumulator value. A function associated with a hook without an accumulator is called as Module:Function(Argi,

Arg2, ...).All returning values except stop are ignored.
WARNING: a Function with the corresponding arity should be exported by a Module

A function for a global hook gets associated as follows (the type of a hook doesn't matter):

ejabberd_hooks:add(Hook :: atom(),
Module :: module(),
Function :: atom(),
Seq :: integer()) -> ok

with the same meaning of the arguments. Note that Host argument is omitted in this case.

For any types of hooks, if an association is no longer needed, it can be deleted by calling ejabberd_hooks:delete/5,6 functions

with exactly the same arguments used to create an association.

In some cases a new hook should be introduced. There is no need to explicitly register the new hook, one only needs to run a

hook in the required place. The following functions can be used for this:

¢ for local hooks with accumulator: ejabberd_hooks:run_fold(Hook,
Host, Acc, Args) . The function returns a new accumulator value.

« for local hooks without accumulator: ejabberd_hooks:run(Hook, Host,
Args) . The function always returns ok .

« for global hooks with accumulator: ejabberd_hooks:run_fold(Hook,
Acc, Args) . The function returns a new accumulator value.

e for global hooks without accumulator: ejabbed_hooks:run(Hook,
Args) . The function always returns ok .

where Args is a list of arguments (other variables have the same meaning as above).

There is a helper script that you can use to check hook correctness and find mishooked functions. The script also generates a
module src/hooks_type_test.erl from where you can learn about existing hooks and check execution order. You can place your

code inside src directory (if any), and run:

make hooks

Modules

gen_mod behaviour

As you might know, ejabberd is a modular software. The best method to add new functionality to it is to write a new module. For

doing this one should create an Erlang module of gen_mod behaviour:

- 266/512 - Copyright © 2008 - 2024 ProcessOne

Modules

%% file mod_foo.erl
-module(mod_foo).

-behaviour (gen_mod).

Several callbacks should be defined in the module:

* Module:start(Host, Opts) where Host is a virtual host where the module is about to start and opts is an option list (typically
defined in the modules section of ejabberd.yml). The function is executed when a module is being started. It is intended to
initialize a module. This is a good place to register hooks and IQ handlers, as well as to create an initial state of a module (if
needed). The function should return either ok or {ok, pid()}.

* Module:stop(Host) where Host is a virtual host. The function is executed when a module is being stopped. It is intended to
make some module cleanup: most likely unregistering hooks and IQ handlers. The returning value is ignored

* Module:reload(Host, NewOpts, Oldopts) where Newopts and oldopts is the new and old options list respectively. The function is
called every time a module is being reloaded. This is the only optional callback, thus, if undefined, the module will be reloaded
by calling sequentially Module:stop/1 and Module:start/2.

* Module:depends(Host, Opts) where the meaning of the arguments is the same. The function is called to build modules
dependencies on startup. The function must return a list of type [{module(), DependencyType}], where DependencyType is one of

hard or soft.The hard dependency means the module is non-functional if the other module is not loaded. The soft
dependency means the module has suboptimal functionality if the other module is not loaded.

e Module:mod_opt_type(Option) . The function is used to process configuration options of Module . The function has the same
meaning as Module:opt_type/1 callback described in Configuration validation section.

Stateful modules

While some modules don't need to maintain an internal state ("stateless" modules), others are required to do this ("stateful"
modules). The common practice is to implement a stateful module as a gen_server process. There is a couple of helpers to deal

with such modules:

¢ gen_mod:start_child(Module, Host, Opts) where Module is a name of a stateful module. This function should be called as the last
function inside of Module:start/2. It will create a gen_server process with a registered name and will attach it to
ejabberd_gen_mod_sup SUpErvisor.

e gen_mod:stop_child(Module, Host) should be used inside of Module:stop/1 function and will terminate the corresponding
registered gen_server process.

* gen_mod:get_module_proc(Host, Module) can be used to obtain a registered name of a stateful module (i.e. its gen_server 's name).

WARNING: don't forget to set process_flag(trap_exit, true) inside Module:init/1 callback function, otherwise,
Module:terminate/2 callback will never be called when a module is being stopped.

WARNING: keeping module's configuration options in an internal state is not recommended. Use gen_mod:get_module_opt/4,5
functions to retrieve the options: in this case you don't need to re-initialize options in the state inside Module:reload/3 callback.

If a stateful module is intended to maintain a state in the form of a table, ETS can be used for this. In this case there is no need to
implement it as a gen_server process. But make sure you're not calling ets:new/2 several times for several virtual hosts (badarg
will be raised in this case). E.g., the following code is incorrect:

start(Host, Opts) ->

ets:new(some_table, named_table, ...]),

The correct code will look something like that:

start(Host, Opts) ->

try ets:new(some_table, [named_table, ...])
catch _:badarg -> ok end,

There is a plenty of examples of modules: pick up any file starting with mod_ inside src directory.

-267/512 - Copyright © 2008 - 2024 ProcessOne

Configuration

gen_mod module
Module gen_mod.erl has various useful functions to work with modules, the most notable are:

* is loaded/2 : whether or not the module in question is loaded at a given virtual host

e get_opt/3,4: gets a value of an option from module's options list (see description of ejabberd config:get_option/3 function from
Fetching configuration options for details)

* get_module_opt/4,5: the same as above, but an option is referenced by a virtual host and a module.

Configuration

ejabberd has quite powerful configuration processor - ejabberd_config.erl. It performs configuration file parsing and validation.

Validation

In order to validate options ejabberd_config has to install feedback with the rest of the code. For doing this, it provides
ejabberd_config behaviour with a single callback function: Module:opt_type/1. The callback accepts an option name as an atom()
and must return either validating function if an option is known for the Module or a list of available options (as a list of atoms). A
validating function is a fun() of a single argument - the value of the option. The validating function must return any new value
for the option (whether it's modified or not) or should crash if the value doesn't match expected format. Here is an example:

%% file: some.erl
-module(some).

-behaviour (ejabberd_config).
-export([opt_type/1])

opt_type(max_connections_number) ->
%% max_connections_number should be non-negative integer
%% if the condition is satisfied, return this integer
%% fail with function_clause otherwise
fun(I) when is_integer(I), I>=0 -> I end;

opt_type(_) ->
%% only max_connections_number is known
[max_connections_number].

NOTE: gen_mod behaviour defines a very similar callback - Module:mod_opt_type/1 with the same meaning of arguments and
returning values, except the callback is called to validate the Module 's specific options (i.e. options defined in the corresponding
subsection of the modules section of a configuration file).

Fetching options

The most notable function of the module is:

get_option(Option :: atom() | {atom(), binary() | global}
ValidatingFun :: fun(),
Default :: term()) -> Value :: term().

The function is used to get a value value of a configuration option option. The validatingFun is a validating function described in
the previous section and pefault is the default value if the option is not defined in the config.

Using XMPP library

xmpp module

Prior to version 16.12, ejabberd used to operate with #xmlel{} packets directly: fast xml API functions have been used for
manipulating with #xmlel{} packets (such as fast_xml:get_subtag/2, fast_xml:get_attr_s/2, fast xml:get_path_s/2 and so on) as
well as some functions from jlib.erl module.

This is now deprecated and actually not possible. Instead, the new API functions are used from brand new xmpp library.

NOTE: although direct calling of fast_xml API is deprecated, there are still two useful functions: fxml_stream:parse_element/1
and fxml:element_to_binary/1. You can use these functions for (de)serialization of data stored on disc or in a database.

-268/512 - Copyright © 2008 - 2024 ProcessOne

https://github.com/processone/fast_xml
https://github.com/processone/xmpp

Using XMPP library

The library is built on top of xMPp codec : a number of decoding/encoding modules automatically generated by Fast XML
generator from the specification file xmpp codec.spec. The goal is to avoid manual processing of XML trees and, instead, using
well-typed auto-generated structures defined in xmpp codec.hrl. Every particular XML packet within some namespace has to
have a specification defined in xmpp_codec.spec . The advantage of such approach is that you tell the generator what to parse
instead of taming fast_xml library how to parse.

NOTE: describing how to write XMPP codec specification is out of scope of this guide

WARNING: you should never use functions from xmpp_codec.erl module directly: use functions from xmpp.erl module. The same
is true for header files: do NOT include xmpp_codec.hrl -- include xmpp.hrl instead

XMPP CODEC

Once a raw XML packet is parsed by ejabberd_receiver.erl into #xmlel{} record, it's passed to xmpp_stream_in.erl module,
where decoding of #xmlel{} into xmpp_element() format (i.e. into well-known record type defined in xmpp_codec.hrl) is performed
(refer to XMPP Stream Layer section for details). At that level "lazy" decoding is applied: only top-level element is decoded. For
example, an xmlel() packet

#xmlel{name = <<"message">>,
attrs = [{<<"type">>, <<"chat">>}],
children = [#xmlel{name = <<"composing">>,
attrs = [{<<"xmlns">>,
<<"http://jabber.org/protocol/chatstates">>}],
children = []1}]}

is decoded into the following xmpp_element() :

#message{id <<>>, type = chat, lang = <<>>,from = undefined,
to undefined, subject = [],body = [],thread = undefined,
sub_els = [#xmlel{name = <<"composing">>,
attrs = [{<<"xmlns">>,
<<"http://jabber.org/protocol/chatstates">>}],
children = []}1,

meta =

Note that the sub-element is still in xmle1l() format. This "semi-decoded" packet is then passed upstream (at the Routing Layer).
Thus, a programmer should explicitly decode sub-elements if needed. To accomplish this one can use the following function:

xmpp:decode(ELl :: xmlel(), Namespace :: binary(), [Option]) -> xmpp_element()"

where the only supported option is ignore_els: with this option lazy decoding is performed. By default, full decoding is applied,
i.e. all known sub-elements get decoded. Namespace is a "top-level" namespace: it should be provided only if <<"xmlns">> attribute
is omitted in E1, otherwise decoding would fail (see below).

There is also xmpp:decode(ELl :: xmlel()) -> xmpp_element() function, which is a short-hand for xmpp:decode(El, ?NS_CLIENT, [])
(where ?nNs_CLIENT is a predefined namespace for <<"jabber:client">>, see Namespaces section).

Both functions might fail with {xmpp_codec, why} exception. The value of why can be used to format the failure reason into
human readable description using xmpp:format_error/1 function, e.g., using sub-element from example #message{} above, we can
write:

try xmpp:decode(El) of

#chatstate{} = ChatState -> process_chatstate(ChatState)
catch _:{xmpp_codec, Why} ->

Text = xmpp:format_error(why),

?ERROR_MSG("failed to decode element: ~s", [Txt])
end

To apply reverse operation use xmpp:encode/2 functions:
xmpp:encode(Pkt :: xmpp_element(), Namespace :: binary()) -> ELl :: xmlel()

There is also xmpp:encode(Pkt :: xmpp_element()) -> ELl :: xmlel() function which is a short-hand for xmpp:encode(Pkt, <<>>).

Namespace is a "top-level" namespace: it is used to tell the codec whether to include <<"xmlns">> attribute into resulting #xmlel{}
element or not -- if the pkt is within the same Namespace, <<"xmlns">> attribute will be omitted in the result. For example:

> rr(xmpp).

-269/512 - Copyright © 2008 - 2024 ProcessOne

https://github.com/processone/fast_xml/blob/master/src/fxml_gen.erl
https://github.com/processone/fast_xml/blob/master/src/fxml_gen.erl
https://github.com/processone/xmpp/blob/master/specs/xmpp_codec.spec
https://github.com/processone/xmpp/blob/master/include/xmpp.hrl

> Msg.

#message{id = <<>>,type = chat,lang = <<>>,from = undefined,
to = undefined, subject = [],body = [], thread = undefined,
sub_els = [#chatstate{type = composing}],
meta =

> xmpp:encode(Msg).

#xmlel{name = <<"message'">>,

attrs = [{<<"type">>, <<"chat">>},
{<<"xmlns">>, <<"jabber:client">>}],
children = [#xmlel{name = <<"composing">>,
attrs = [{<<"xmlns">>,

<<"http://jabber.org/protocol/chatstates">>}],

children = []1}]1}
> xmpp:encode(Msg, <<"jabber:client">>).
#xmlel{name = <<"message">>,
attrs = [{<<"type">>, <<"chat">>}],
children = [#xmlel{name = <<"composing">>,
attrs = [{<<"xmlns">>,

<<"http://jabber.org/protocol/chatstates">>}],

children = []}13}

Using XMPP library

NOTE: xmpp:encode/1,2 functions would never fail as long as the provided input is a valid xmpp_element() with valid values of its

record fields. Use dialyzer checks of your code for validation.

NOTE: there is no need to explicitly decode a sub-element of an IQ passed into an IQ handler because decoding is performed

inside gen_iq_handler.erl module and a handler actually will never receive malformed sub-elements.

Luckily, there is a helper function for sub-elements decoding, described in the next section and in a lot of cases it's more

convenient to use it.

GETTING SUB-ELEMENTS

Once a programmer gets a stanza in xmpp_element() format, (s)he might want to get its subelement. To accomplish this the

following function can be used:

xmpp:get_subtag(Stanza :: stanza(), Tag :: xmpp_element()) -> Pkt :: xmpp_element()

This function finds a Tag by its well-known record inside sub-elements of the stanza. It automatically performs decoding (if

needed) and returns either found xmpp_element() or false if no elements have matched. Note that the function doesn't fail if

some of sub-elements are invalid.
Example:

> rr(xmpp).
> Msg.
#message{id = <<>>,type = chat, lang = <<>>,from = undefined,
to = undefined, subject = [],body = [], thread = undefined,

sub_els = [#xmlel{name = <<"composing">>,
attrs = [{<<"xmlns">>,

<<"http://jabber.org/protocol/chatstates">>}],

children = []}],

meta =
> xmpp:get_subtag(Msg, #chatstate{type = composing}).
#chatstate{type = composing}
> xmpp:get_subtag(Msg, #chatstate{type = inactive}).
false
> xmpp:get_subtag(Msg, #disco_info{}).
false

SETTING AND REMOVING SUB-ELEMENTS

In order to inject a sub-element into or delete one from arbitrary stanza() one can use xmpp:set_subtag/2 and

xmpp: remove_subtag/2 respectively.

FROM AND TO

Every stanza() element has from and to record fields. In order to get/set them one can manipulate with these record fields

directly, e.g. via Msg#message.from Or Pres#presence.to expressions, or, use xmpp:get_from/1, xmpp:get_to/1, xmpp:set_from/2,

xmpp:set_to/2 and xmpp:set_from_to/3 functions, depending on which approach is more convenient in the current situation.

NOTE: although in general from and to fields may have undefined values, these fields are always filled with correct #jid{}

records at XMPP Stream Layer, thus, it is safe to assume that the fields always possess valid #jid{} values.

-270/512 -

Copyright © 2008 - 2024 ProcessOne

External Authentication

METADATA

Every stanza() element has meta field represented as a map() . It's useful when there is a need to attach some metadata to the
stanza before routing it further. A programmer can manipulate with this field directly using maps module, or use xmpp:get_meta/
1,2,3, xmpp:set_meta/2, xmpp:put_meta/3, xmpp:update_meta/3 and xmpp:del_meta/2 functions, which is almost always more
convenient (except pattern matching).

TEXT ELEMENTS

Some xmpp_element() s has fields defined in [#text{}] format. The example is #message.body and #presence.status fields. To avoid
writing a lot of extracting code the following functions can be used: xmpp:mk_text/1,2 to convert some binary text written in some
language into [#text{}] term, or xmpp:get_text/1,2 to extract binary text from the [#text{}] element by a language.

GENERATING ERRORS
In order to generate stanza errors or stream errors xmpp:err_/0,2 Or xmpp:serr_*/0,2 can be used respectively, such as

xmpp:err_service_unavailable() Or xmpp:serr_not_authorized() . If a stanza should be bounced back with an error, xmpp:make_error/
2 function can be used

NAMESPACES

There are many predefined macros for XML namespaces in ns.hrl. However, this file must NOT be included, as it's already
included in xmpp.hrtl.

A function xmpp:get_ns/1 can be used to retrieve a namespace from xmpp_element() or from xmlel() directly:

> rr(xmpp).
> xmpp:get_ns(#message{}).
<<"jabber:client">>.

> xmpp:get_ns(xmpp:encode(#presence{})).
<<"jabber:client">>.

jid module

jid.erl module provides functions to work with XMPP addresses (aka "JIDs"). There are two common types of internal
representation of JIDs:
* jid() : a JID is represented by a record #jid{} defined in jid.hrl

e 1jid() : a JID is represented by a tuple {user, Server, Resource} where User, Server and Resource are stringprepped version
of a nodepart, namepart and resourcepart of a JID respectively. This representation is useful to use for JIDs comparison and
when a JID should be used as a key (in a Mnesia database, ETS table, etc.)

The most notable functions in this module are:

e decode(Input :: binary()) -> jid() : decodes binary data into jid() . Fails with {bad_jid, Input} otherwise.

* encode(JID :: jid() | 1jid()) -> binary() : encodes JID into binary data

* remove_resource(JID :: jid() | 1ljid()) -> jid() | 1jid() : removes resource part of a JID

* replace_resource(JID :: jid() | 1ljid(), Resource :: binary()) -> jid() | ljid() : replaces resource part of a Jip
* tolower(JID :: jid() | 1jid()) -> 1jid() : transforms Jip into 1jid() representation

* make(LJID :: 1jid() | jid()) -> jid() : transforms LJID into jid() representation
Inspect exported functions of jid.erl for more details.

External Authentication

You can configure ejabberd to use as authentication method an external script, as described in the Administrator section:
External Script.

Let's see the interface between ejabberd and your script, and several example scripts. There are also several old example scripts.

- 271/512 - Copyright © 2008 - 2024 ProcessOne

https://www.erlang.org/doc/apps/stdlib/maps.html
https://github.com/processone/xmpp/blob/master/include/ns.hrl
https://github.com/processone/xmpp/blob/master/include/jid.hrl
https://github.com/processone/xmpp/blob/master/src/jid.erl
https://www.ejabberd.im/extauth/

External Authentication

Extauth Interface
The external authentication script follows the Erlang port driver API.

That script is supposed to do these actions, in an infinite loop:

* read from stdin: AABBBBBBBEB.....
* A: 2 bytes of length data (a short in network byte order)

* B: a string of length found in A that contains operation in plain text operation are as follows:

e auth:User:Server:Password (check if a username/password pair is correct)
e isuser:User:Server (check if it’s a valid user)

e setpass:User:Server:Password (set user’s password)

* tryregister:User:Server:Password (try to register an account)

e removeuser:User:Server (remove this account)

* removeuser3:User:Server:Password (remove this account if the password is correct)

» write to stdout: AABB
e A:the number 2 (coded as a short, which is bytes length of following result)

¢ B: the result code (coded as a short), should be 1 for success/valid, or e for failure/invalid

As you noticed, the : character is used to separate the fields. This is possible because the User and Server fields can't contain
the : character; and Password can have that character, but is always the last field. So it is always possible to parse the input
characters unambiguously.

Perl Example Script

This is a simple example Perl script; for example if the file is copied to the path /etc/ejabberd/check_pass_null.pl then configure
ejabberd like this:

auth_method: [external]
extauth_program: /etc/ejabberd/check_pass_null.pl

Content of check_pass_null.pl:

#1/usr/bin/perl

use Unix::Syslog qw(:macros :subs);

my $domain = $ARGV[O] || "example.com";
while(1)

{

#my $rin = '',$rout;

vec($rin, fileno(STDIN),1) = 1;
$ein = $rin;
my $nfound = select($rout=$rin,undef,undef,undef);

my $buf = "";

syslog LOG_INFO, "waiting for packet";

my $nread = sysread STDIN, $huf,2;

do { syslog LOG_INFO,"port closed"; exit; } unless $nread == 2;
my $len = unpack "n",$buf;

my $nread = sysread STDIN, $buf,$len;

my ($op,$user, $host, $password) = split /:/, $buf;

#$user =~ s/\./\//og;

my $jid = "$user\@$domain";

my $result;

syslog(LOG_INFO, "request (%s)", $op)
SWITCH:
$op eq 'auth' and do

{

$result = 1;

}, last SWITCH;

$op eq 'setpass' and do

-272/512 - Copyright © 2008 - 2024 ProcessOne

https://www.erlang.org/doc/system/c_portdriver.html

$result = 1;
}, last SWITCH;

$op eq 'isuser' and do

{

password is null. Return 1 if the user $user\@$domain exitst.

$result = 1;
}, last SWITCH;

$op eq 'tryregister' and do
{
$result = 1;
}, last SWITCH;

$op eq 'removeuser' and do

{

password is null. Return 1 if the user $user\@$domain exitst.

$result = 1;
}, last SWITCH;

$op eq 'removeuser3' and do
{
$result = 1;
}, last SWITCH;
Y
my $out = pack "nn",2,$result ? 1 : 0;
syswrite STDOUT, $out;
}

closelog;

Python Example Script
Example Python script:

#1/usr/bin/python

import sys
import struct

def read_from_stdin(bytes):
if hasattr(sys.stdin, 'buffer')
return sys.stdin.buffer.read(bytes)
else:
return sys.stdin.read(bytes)

def read():
(pkt_size,) = struct.unpack('>H', read_from_stdin(2))
pkt = sys.stdin.read(pkt_size)
cmd = pkt.split(':')[0]
if cmd == 'auth':
u, s, p=pkt.split(':"', 3)[1:]
if u == "wrong":
write(False)
else:
write(True)
elif cmd == 'isuser':
u, s = pkt.split(':"', 2)[1:]
if u == "wrong":
write(False)
else:
write(True)
elif cmd == 'setpass':
u, s, p=pkt.split(':"', 3)[1:]
write(True)
elif cmd == 'tryregister':
u, s, p=pkt.split(':"', 3)[1:]
write(True)
elif cmd == 'removeuser':
u, s = pkt.split(':"', 2)[1:]
write(True)
elif cmd == 'removeuser3':
u, s, p = pkt.split(':"', 3)[1:]
write(True)
else:
write(False)

def write(result):
if result:
sys.stdout.write('\x00\x02\x00\x01")
else:
sys.stdout.write('\x00\x02\x00\x00")
sys.stdout.flush()

if __name__ == "__main__ ":
try:
while True:
read()

-273/512 -

External Authentication

Copyright © 2008 - 2024 ProcessOne

External Authentication

except struct.error:
pass

-274/512 - Copyright © 2008 - 2024 ProcessOne

PubSub overview

PubSub overview

This document describes ejabberd's PubSub architecture to understand how to write custom plugins.

xep-0060 (PubSub) is more than 100 pages of specifications, with 12 very detailed use cases with many possibles options and
possible situations:

e Subscribe

* Unsubscribe

* Configure subscription
» Retrieve items

* Publish item

* Delete item

* Create node

* Configure node

* Delete node

* Purge node

* Manage subscriptions
* Manage affiliations

xep-0163 (PEP) is based on PubSub XEP-0248 (deprecated) for Collection Nodes and uses generic PubSub functionality, specified
in XEP-0060.

History

Initial implementation made by Aleksey Shchepin, ability to organise nodes in a tree added by Christophe Romain in 2007. First
attempt to create a flexible API for plugins started in 2007, and improved until 2015.

Implementation

PubSub service comes in several parts:

* A poll of iq handlers handled by ejabberd router
* A sending process
* A core router to perform high level actions for every use case

* Plugins to handle nodes, affiliations/subscriptions, and items at lower level and interface with data backend

Nodetree plugins

They handles storage and organisation of PubSub nodes. Called on get, create and delete node. Default implementation includes
three plugins:

¢ tree: (default) both internal and odbc backend.
e virtual: no backend, no configurable nodes.

* dag: handles xep-0248.

If all nodes shares same configuration, I/O on pubsub node can be avoided using virtual nodetree.

-275/512 - Copyright © 2008 - 2024 ProcessOne

https://xmpp.org/extensions/xep-0060.html
https://xmpp.org/extensions/xep-0060.html
https://xmpp.org/extensions/xep-0163.html
https://xmpp.org/extensions/xep-0163.html
https://xmpp.org/extensions/xep-0248.html
https://xmpp.org/extensions/xep-0248.html

Plugin design

Node plugins

They handle affiliations, subscriptions and items. They provide default node configuration and features. Called on every pubsub
use cases. Each plugin is responsible of checks to handle all possibles cases and reply action result to PubSub engine to let it
handle the routing. The most common plugins available in default installation are:

e flat: (default) all nodes are in a flat namespace, there are no parent/child nodes

* hometree: all nodes are organized as in a filesystem under /home/hostname/usery...
* pep: handles xep-0163

* dag: handles xep-0248.

 public, private, ... which are derivate of flat, with different default node configuration.
node_flat

node_flat is the default plugin, without node hierarchy, which handles standard PubSub case. The default node configuration
with this plugin is:

[{deliver_payloads, true},
{notify_config, false},
{notify_delete, false}
{notify_retract, true}
{purge_offline, false},
{persist_items, true},

{max_items, 10},

{subscribe, true}

{access_model, open},

{roster_groups_allowed, []},

{publish_model, publishers},

{notification_type, headline}

{max_payload_size, 60000},
{send_last_published_item, on_sub_and_presence},
{deliver_notifications, true},
{presence_based_delivery, false}].

NODE_HOMETREE

node hometree use exact same features as flat plugin, but organise nodes in a tree following same scheme as path in filesystem.
Every user can create nodes in its own home. Each node can contain items and/or sub-nodes. Example:

/home/user

/home/domain/user
/home/domain/user/my_node
/home/domain/user/my_node/child_node

NODE_PEP

node pep handles XEP-0163: Personal Eventing Protocol It do not persist items, just keeping last item in memory cache. Node
names are raw namespace attached to a given bare JID. Every user can have its own node with a common namespace sharing
with others.

NODE_DAG

node dag handles XEP-0248: PubSub Collection Nodes Contribution from Brian Cully. Every node takes places in a tree and is
either a collection node (have only sub-nodes) or a leaf node (contains only items). No restriction on the tree structure

Plugin design
Due to complexity of XEP-0060, PubSub engine do successive calls to nodetree and node plugins in order to check validity,

perform corresponding action and return result or appropriate error to users. Plugin design follows this requirement and divide
actions by type of data to allow transient backend implementation without any PubSub engine change.

- 276/512 - Copyright © 2008 - 2024 ProcessOne

https://xmpp.org/extensions/xep-0163.html
https://xmpp.org/extensions/xep-0163.html
https://xmpp.org/extensions/xep-0248.html
https://xmpp.org/extensions/xep-0248.html

Create Node

Create Node

create_node _permlslon.

create node

write affiliation

-277/512 -

Plugin design

Copyright © 2008 - 2024 ProcessOne

Plugin design

Delete Node

Delete Node

check allowed

delete _node

"y

broadcast_removed node >

-278/512 - Copyright © 2008 - 2024 ProcessOne

Subscribe

check allowed

last_item

result

Subscribe Node

-279/512 -

Plugin design

Copyright © 2008 - 2024 ProcessOne

Plugin design

Unsubscribe

Unsubscribe Node

unsubscribe node

check subscribed

remove subscription

-280/512 - Copyright © 2008 - 2024 ProcessOne

Publish item

Publish Item

sh_item

check models

write item

remove old item

get_subscriptions

read subscriptions

broadcast_removed ite

tree

-281/512 -

Plugin design

Copyright © 2008 - 2024 ProcessOne

Plugin design

Delete item

Delete Item

check allowed

broadcast_removed_items

.............. T - -

-282/512 - Copyright © 2008 - 2024 ProcessOne

Plugin design

Purge Node

Purge Node

check allowed

- - L

-283/512 - Copyright © 2008 - 2024 ProcessOne

Available backends

Get item

Get Items

check allowed

get_items

read subscriptions
check allowed

read items

Available backends

Flat, hometree and PEP supports mnesia and SQL backends. Any derivated plugin can support the same (public, private, club,
buddy...). Adding backend does not require any PubSub engine change. Plugin just need to comply API. Business Edition also
supports optimized ets and mdb.

Customisation

To write your own plugin, you need to implement needed functions:

[init/3, terminate/2, options/0, features/o,
create_node_permission/6, create_node/2, delete_node/1,
purge_node/2, subscribe_node/8, unsubscribe_node/4,
publish_item/6, delete_item/4, remove_extra_items/3,
get_entity affiliations/2, get_node_affiliations/1,
get_affiliation/2, set_affiliation/3,

get_entity subscriptions/2, get_node_subscriptions/1,
get_subscriptions/2, set_subscriptions/4,
get_pending_nodes/2, get_states/1, get_state/2,
set_state/1, get_items/7, get_items/3, get_item/7,
get_item/2, set_item/1, get_item_name/3, node_to_path/1,
path_to_node/1]

Generic function must call their corresponding partner in node_flat .

-284/512 - Copyright © 2008 - 2024 ProcessOne

Clustering

Simple plugin would just call node_flat and override some defaults such as:

» options/0 and features/0 to match your needs. This triggers the way PubSub controls calls to your plugins.
» create node permission/6 for example to check an LDAP directory against an access flag

» Write your own tests on publish or create node, forbids explicit access to items, etc...

Clustering

ejabberd's implementation tends to cover most generic and standard uses. It's good for common use, but far from optimal for
edges or specific cases. Nodes, affiliations, subscriptions and items are stored in a replicated database. Each ejabberd node have
access to all the data. Each ejabberd node handles part of the load, but keep locking database cluster wide on node records write
(pubsub node) Affiliations, subscriptions and items uses non blocking write (pubsub state and pubsub item)

- 285/512 - Copyright © 2008 - 2024 ProcessOne

Roster versioning

Roster versioning

Roster versioning as implemented currently by ejabberd is a simplified approach to roster versioning.
This is an all-or-nothing approach that does not support the granular diff as explained in RFC-6121.

Our implementation conforms to version 0.6 of XEP-0237, sending the full roster in case of change or empty result if the roster
did not change.

As a result, as a client developer, when implementing support for roster versioning, you should expect both the traditional form
for returning the roster, with version (ig result) and the incremental roster changes (iq set).

Example
As a summary, here is how you should expect it to work.
First, you can check that the feature is advertised in the stream:features as urn:xmpp:features:rosterver :

<stream:features>
<bind xmlns="urn:ietf:params:xml:ns:xmpp-bind"/>
<session xmlns="urn:ietf:params:xml:ns:xmpp-session">
<optional/>
</session>
<c xmlns="http://jabber.org/protocol/caps" node="http://www.process-one.net/en/ejabberd/" ver="/1mQrOllUEtX/pIt+6BDAbNIT/U=" hash="sha-1"/>
<sm xmlns="urn:xmpp:sm:2"/>
<sm xmlns="urn:xmpp:sm:3"/>
<ver xmlns="urn:xmpp:features:rosterver"/>
</stream:features>

You can then bootstrap the use of roster versioning using empty ver attribute when sending your roster get iq:

<iq id='rosterl' to='myuser@domain.com' type='get'>
<query xmlns='jabber:iqg:roster' ver=''/>
</ig>

In return, you get a full roster with the current version:

<iqg from="myuser@domain.com" type="result" xml:lang="en" to="myuser@domain.com/resource" id="roster1">
<query xmlns="jabber:iqg:roster" ver="81cbh523a7b77c7011552be85a3dde55189297590">
<item subscription="both" jid="contact@domain.com">
<group>Test</group>
</item>
</query>
</ig>
The client can store this version to send subsequent roster queries.
If client send a roster query with reference version it received get an empty iq result meaning the roster did not change:

<ig id="roster2" to="myuser@domain.com" type="get">
<query xmlns='jabber:iq:roster' ver='81cbh523a7b77c7011552be85a3dde55189297590"'/>
</ig>

<ig from="myuser@domain.com" type="result" xml:lang="en" to="myuser@domain.com/resource" id="roster2"/>

If client send roster query with any other reference version, it will receive the full roster again in the roster iq result.

-286/512 - Copyright © 2008 - 2024 ProcessOne

https://tools.ietf.org/html/rfc6121#section-2.6
https://xmpp.org/extensions/attic/xep-0237-0.6.html#example-3

ejabberd Stanza Routing

ejabberd Stanza Routing

Message Routing

In case of a message sent from User A to User B, both of whom are served by the same domain, the flow of the message through
the system is as follows:

1. User A's ejabberd_receiver receives the stanza and passes it to ejabberd c2s .

. After some consistency check, user_send packet is called if the stanza is correct.

. The stanza is matched against any privacy lists in use and, in case of being allowed, routed by ejabberd router:route/3.

. ejabberd_router:route/3 runs the filter_packet hook. filter_packet hook can drop of modify the stanza.

g o~ W N

. ejabberd_router will then consult the routing table to know what do to next. It is easier to understand by looking at an example of
actual routing table content:
(ejabberd@localhost)2> ets:tab2list(route).
[{route, <<"pubsub.localhost">>,
{apply_fun, #Fun<ejabberd_router.2.122122122>}},
{route, <<"muc. localhost">>,

{apply_fun, #Fun<mod_muc.2.122122123>}},
{route, <<"localhost">>, {apply, ejabberd_local, route}}]

In that case, user is local so we need to route to same domain (in our case localhost). We then can see that we have to call
ejabberd_local:route to route the message to local user. As both user are local (no server-to-server involved), it matches our
expectations.

1. ejabberd_local routes the stanza to ejabberd_sm given it's got at least a bare JID as the recipient.

2. ejabberd_sm determines the available resources of User B, takes into account their session priorities and whether the message is
addressed to a particular resource or a bare JID and appropriately replicates (or not) the message and sends it to the recipient's
ejabberd_c2s process(es).

In case no resources are available for delivery (hence no ejabberd_c2s processes to pass the message to), offline_message_hook is
run to delegate offline message storage.

1. ejabberd_c2s verifies the stanza against any relevant privacy lists and sends it on the user socket if it does exist. In the case of
ejabberd Business Edition and ejabberd Saas, session can be detached and push notifications can be used as a fallback.
user_receive_packet hook is run to notify the rest of the system about stanza delivery to User B.

Here is a broader diagram, including server-to-server routing:

- 287/512 - Copyright © 2008 - 2024 ProcessOne

Message Routing

[ejabberd_router:route (From, To, Stanza)

i

Tolocal doma:'z/

\Io remote domain
‘mly user@ part

(Processed by server)

Nen-empty user@ part

-288/512 - Copyright © 2008 - 2024 ProcessOne

ejabberd SQL Database Schema

ejabberd SQL Database Schema

We present the tables that might be in use, depending on your server configuration, together with a short explanation of the
fields involved and their intended use. Tables are presented roughly grouped by related functionality.

Consider this document a work in progress, not all tables are documented yet.
Latest version of database schema are available in ejabberd Github repository:

* MySQL schema
* Postgres schema
* SQLite schema

* MS SQL Server schema. This schema need testing / feedback and possibly improvement from SQL Server users.

Authentication

Table users

Contains the information required to authenticate users.

Field Type Usage

username string User

password string User password, can be hashed
created at timestamp When the user account was created

The password are hashed if you use SCRAM authentication. In that case the next fields are also defined

Field Type Usage

serverkey string support for salted passwords

salt string support for salted passwords

iterationcount integer support for salted passwords
Rosters

Table rosterusers

This is a quite complex table, used as a store for a quite complex protocol that is the one defined to manage rosters and
subscriptions on rfc6121.

In the common case of two users adding each other as contacts, entries in the roster table follows a series of steps as they moves
from a subscription request to the final approval and bi-directional subscription being established. This process can be initiated
either by the user, or by the (possible remote) peer. Also need to account for the case where the user, or the contact, might not be
online at the moment of the subscription request is made.

Steps are further complicated by the fact that entries in the roster aren't required to have corresponding subscriptions. For
details of the meaning of the different fields, refer to the protocol itself, as these are mostly a direct mapping of it.

- 289/512 - Copyright © 2008 - 2024 ProcessOne

https://github.com/processone/ejabberd
https://github.com/processone/ejabberd/blob/master/sql/mysql.sql
https://github.com/processone/ejabberd/blob/master/sql/pg.sql
https://github.com/processone/ejabberd/blob/master/sql/lite.sql
https://github.com/processone/ejabberd/blob/master/sql/mssql.sql
https://tools.ietf.org/html/rfc6121
https://tools.ietf.org/html/rfc6121#section-2

Messages

Note: If you manage users contacts from outside the roster workflow of XMPP (for example your site backends perform the

linking between users), it is likely that you only need to care about the username, jid and nick fields, and set the subscription
field to be always 'B' for a mutual link between users.

Field
username
jid

nick
subscription
ask
askmessage
server
subscribe
type

created at

Table rostergroups

Table sr_group

Table sr_user

Messages

Table spool

Type
string
string
string
char
char
string
char
string
string

timestamp

Usage

User

Contact jid

Contact nickname

'B'=both | 'T'=To | 'F'=From | 'N'=none

'S'=subscribe | 'U'=unsubscribe | B="'both' | 'O'=out | 'T'=in | 'N'=none
Message to be displayed on the subscription request

'N' for normal users contacts

"item"

Creation date of this roster entry

Messages sent to users that are offline are stored in this table. Do not confuse this with general message archiving: messages are
only temporarily stored in this table, removed as soon as the target user is back online and the pending messages delivered to it.

Field
username
xml

seq

created_at

Type
string
blob
integer

timestamp

Usage

User

Raw packet

Unique, autoincrement sequence number.

When the message was stored

The seq field is used for sorting, and to easily identify a particular user message.

Table privacy list_data

The table is used to store privacy rules.

The table is a direct translation of the XMPP packet used to set privacy lists. For more details, please read XEP-0016: Privacy

Lists, Syntax and Semantics. Here is an example packet coming from privacy list specification:

<item

type='[jid|group|subscription]"

value='bar"'

action='[allow|deny]'
order="'unsignedInt'>

[<message/>]

- 290/512 - Copyright © 2008 - 2024 ProcessOne

https://xmpp.org/extensions/xep-0016.html#protocol-syntax
https://xmpp.org/extensions/xep-0016.html#protocol-syntax

Multiuser Chat Rooms

[<presence-in/>]
[<presence-out/>]
[<iq/>]

</item>

The table fields are defined as follow:

Field Type Usage
id int Privacy list rule id.
t char Privacy rule type: 'j' for jid, 'g' for group and 's' for subscription.
value string Privacy list value for match, whose content depends on privacy list rule type.
action char Privacy list action: 'd' for deny and 'a' for allow.
ord int Order for applying the privacy list rule.
match all boolean (0 or If true (1), means any packet types will be matched. Other matches should be
1) false (0).
match iq boolean (0 or If true (1), means iq packets will be matched by rule.
1)
match message boolean (0 or If true (1), means message packets type will be matched by rule.
1)
match presence in boolean (0 or If true (1), means inbound presence packets type will be matched by rule.
1)
match presence out boolean (0 or If true (1), means outbound packets type will be matched by rule.
1)

Multiuser Chat Rooms

Table muc_room

It is used to store persistent rooms, that is, rooms that must be automatically started with the server.

Field Type Usage

name string Room name

host string Hostname of the conference component
opts string Room options, encoded as erlang terms
created at timestamp Creation date

The opts field is legible, but not mean to be modified directly. It contents depends on the implementation of mod muc. It contains
the room configuration and affiliations.

-291/512 - Copyright © 2008 - 2024 ProcessOne

Table muc_registered

Multiuser Chat Rooms

Contains a map of user to nicknames. When a user register a nickname with the conference module, that nick is reserved and

can't be used by anyone else, in any room from that conference host.

Field
jid
host
nick

created at

Table room_history

Type

string
string
string

timestamp

Usage

User jid

Hostname of the conference component
Room options, encoded as erlang terms

Creation date

In ejabberd Business Edition, this table is used if persistent room history is enabled. If so, recent room history is saved to the DB

before ejabberd is stopped, allowing the recent history to survive server restarts.

Field

room

nick

packet

have subject
created_at

size

Table muc_online_room

Type
string
string
string
boolean
timestamp

integer

Usage

Room jid

Nickname that sent the message

XML stanza with the message

True if the message stanza had subject
Creation date

Size in bytes of the xml packet

This table is used to store rooms that actually exists in the memory of the server.

Field
name
host
node

pid

Table muc_online users

Type

string
string
string

string

Usage

Room name

Hostname of the conference component
Erlang node where the room is

Pid of the thread running the room

This table is used to store MucSub subscriptions.

Field

username

server

resource

name

host

node

Type

string
string
string
string
string

string

Usage

User

Hostname of the user

User resource

Name of the room

Hostname of the conference component

Erlang node

-292/512 -

Copyright © 2008 - 2024 ProcessOne

VCard

Table muc_room subscribers

This table is used to store MucSub subscriptions.

Field Type Usage
room string Room name
host string Hostname of the conference component
jid string User jid
nick string User nick
nodes string MucSub nodes
created at timestamp Creation date
VCard
Table vcard

The table is used to store raw vCard content for delivery of the vCard "as is".

The table fields are defined as follow:

Field Type Usage

username string Owner of the Vcard
vcard text Raw Vcard

created at timestamp Record creation date

Table vcard_search
The table is used to store vCard index on a few of the Vcard field used for vCard search in users directory.

You can learn more about the vCard specification on Wikipedia vCard page.

- 293/512 - Copyright © 2008 - 2024 ProcessOne

https://en.wikipedia.org/wiki/VCard

The table fields are defined as follow:

Field
username
lusername
fn

Ifn

family
Ifamilly
given
lgiven
middle
Imiddle
nickname
Inickname
bday
Ibday
ctry

Ictry
locality
llocality
email
lemail
orgname
lorgname
orgunit

lorgunit

Others

Table last

Type

string
string
string
string
string
string
string
string
string
string
string
string
string
string
string
string
string
string
string
string
string
string
string

string

Usage

Raw username for display

Lowercase username for search

Raw fullname for display

Lowercase fullname for search

Raw family name for display

Lowercase family name for search

Raw given name for display

Lowercase given name for search

Raw middle name for display

Lowercase middle name for search

Raw nickname for display

Lowercase nickname for search

Raw birthday for display

Lowercase and processed birthday for search
Raw country for display

Lowercase country for search

Raw city for display

Lowercase city for search

Raw email for display

Lowercase email for search

Raw organisation name for display
Lowercase organisation name for search
Raw organisation department name for display

Lowercase organisation department for search

This table is used to store the last time the user was seen online. It is defined as follow:

Field

username

seconds

state

Type
string
string

string

Usage
User
Timestamp for the last time the user was seen online

Why user got disconnected. Usually is empty

Note that the table is not updated while the user has the session open.

-294/512 -

Others

Copyright © 2008 - 2024 ProcessOne

Table caps_features

Ejabberd uses this table to keep a list of the entity capabilities discovered.

Field
node
subnode
feature

created at

Type

string
string
string

timestamp

Usage

Node
Subnode
Entity feature

Creation date

Others

The subnode field correspond to the 'ver' ("verification string") of XEP-0115. There is one entry in this table for each feature

advertised by the given (node,subnode) pair.

Table private storage

Used for user private data storage.

Field
username
namespace
data

created_at

Type

string
string
string

timestamp

Usage

User

XEP-0049 namespace of the stored data
Raw xml

Creation date

-295/512 -

Copyright © 2008 - 2024 ProcessOne

External authentication

External authentication

There are examples of external authentication scripts in many different languages in the page: https://www.ejabberd.im/extauth/

Main contribution repository

Check also the contributions hosted in the ejabberd-contrib Github repository .

ejabberd API libraries

Here is a ejabberd API implementations allowing to ease ejabberd integration with your own backends:

* pyejabberd : Client library for ejabberd XMLRPC API, in Python, by Dirkmoors, MIT license. See https://pypi.org/project/
pyejabberd/ and https://github.com/dirkmoors/pyejabberd

Old / obsolete contributions

Finally, there is an old list of contributions that were developed for ejabberd 2.x in: https://www.ejabberd.im/contributions/

- 296/512 - Copyright © 2008 - 2024 ProcessOne

https://www.ejabberd.im/extauth/
https://www.ejabberd.im/extauth/
https://github.com/processone/ejabberd-contrib
https://github.com/processone/ejabberd-contrib
https://pypi.org/project/pyejabberd/
https://pypi.org/project/pyejabberd/
https://pypi.org/project/pyejabberd/
https://pypi.org/project/pyejabberd/
https://github.com/dirkmoors/pyejabberd
https://github.com/dirkmoors/pyejabberd
https://www.ejabberd.im/contributions/
https://www.ejabberd.im/contributions/

Contributing to ejabberd

Contributing to ejabberd

We'd love for you to contribute to our source code and to make ejabberd even better than it is today! Here are the guidelines
we'd like you to follow:

* Code of Conduct

¢ Questions and Problems

* Issues and Bugs

* Feature Requests

* Issue Submission Guidelines

* Pull Request Submission Guidelines

¢ Signing the CLA

Code of Conduct

Help us keep ejabberd community open-minded and inclusive. Please read and follow our Code of Conduct.

Questions, Bugs, Features

Got a Question or Problem?

Do not open issues for general support questions as we want to keep GitHub issues for bug reports and feature requests. You've
got much better chances of getting your question answered on dedicated support platforms, the best being Stack Overflow.

Stack Overflow is a much better place to ask questions since:

* there are thousands of people willing to help on Stack Overflow
* questions and answers stay available for public viewing so your question / answer might help someone else

» Stack Overflow's voting system assures that the best answers are prominently visible.

To save your and our time, we will systematically close all issues that are requests for general support and redirect people to the
section you are reading right now.

Other channels for support are:

* ejabberd XMPP room: ejabberd@conference.process-one.net

* egjabberd Mailing List

Found an Issue or Bug?

If you find a bug in the source code, you can help us by submitting an issue to our GitHub Repository. Even better, you can
submit a Pull Request with a fix.

Missing a Feature?
You can request a new feature by submitting an issue to our GitHub Repository.

If you would like to implement a new feature then consider what kind of change it is:

* Major Changes that you wish to contribute to the project should be discussed first in an GitHub issue that clearly outlines the
changes and benefits of the feature.

* Small Changes can directly be crafted and submitted to the GitHub Repository as a Pull Request. See the section about Pull
Request Submission Guidelines.

- 297/512 - Copyright © 2008 - 2024 ProcessOne

https://github.com/processone/ejabberd/blob/master/CODE_OF_CONDUCT.md
https://stackoverflow.com/questions/tagged/ejabberd?sort=newest
xmpp:ejabberd@conference.process-one.net
https://web.archive.org/web/20230319174915/http://lists.jabber.ru/mailman/listinfo/ejabberd
https://github.com/processone/ejabberd
https://github.com/processone/ejabberd/issues
https://github.com/processone/ejabberd/issues
https://github.com/processone/ejabberd

Issue Submission Guidelines

Issue Submission Guidelines

Before you submit your issue search the archive, maybe your question was already answered.

If your issue appears to be a bug, and hasn't been reported, open a new issue. Help us to maximize the effort we can spend fixing
issues and adding new features, by not reporting duplicate issues.

The "new issue" form contains a number of prompts that you should fill out to make it easier to understand and categorize the
issue.

Pull Request Submission Guidelines

By submitting a pull request for a code or doc contribution, you need to have the right to grant your contribution's copyright
license to ProcessOne. Please check ProcessOne CLA for details.

Before you submit your pull request consider the following guidelines:

* Search GitHub for an open or closed Pull Request that relates to your submission. You don't want to duplicate effort.
* Create the development environment

* Make your changes in a new git branch:

git checkout -b my-fix-branch master

» Test your changes and, if relevant, expand the automated test suite.
* Create your patch commit, including appropriate test cases.
« If the changes affect public APIs, change or add relevant documentation.

e Commit your changes using a descriptive commit message.

git commit -a

Note: the optional commit -a command line option will automatically "add" and "rm" edited files.

* Push your branch to GitHub:
git push origin my-fix-branch
e In GitHub, send a pull request to ejabberd:master . This will trigger the automated testing. We will also notify you if you have
not yet signed the contribution agreement.

« If you find that the tests have failed, look into the logs to find out if your changes caused test failures, the commit message was
malformed etc. If you find that the tests failed or times out for unrelated reasons, you can ping a team member so that the
build can be restarted.

« If we suggest changes, then:

* Make the required updates.

» Test your changes and test cases.

* Commit your changes to your branch (e.g. my-fix-branch).

* Push the changes to your GitHub repository (this will update your Pull Request).

You can also amend the initial commits and force push them to the branch.

git rebase master -i
git push origin my-fix-branch -f

This is generally easier to follow, but separate commits are useful if the Pull Request contains iterations that might be
interesting to see side-by-side.

That's it! Thank you for your contribution!

- 298/512 - Copyright © 2008 - 2024 ProcessOne

https://github.com/processone/ejabberd/issues/new
https://cla.process-one.net/
https://github.com/processone/ejabberd/pulls
https://docs.ejabberd.im/developer/
https://github.com/processone/docs.ejabberd.im
https://cla.process-one.net/

Signing the Contributor License Agreement (CLA)

Signing the Contributor License Agreement (CLA)

Upon submitting a Pull Request, we will ask you to sign our CLA if you haven't done so before. It's a quick process, we promise,

and you will be able to do it all online
Here's a link to the ProcessOne Contribution License Agreement.

This is part of the legal framework of the open-source ecosystem that adds some red tape, but protects both the contributor and
the company / foundation behind the project. It also gives us the option to relicense the code with a more permissive license in
the future.

- 299/512 - Copyright © 2008 - 2024 ProcessOne

https://cla.process-one.net/

Contributor Covenant Code of Conduct

Contributor Covenant Code of Conduct

Our Pledge

In the interest of fostering an open and welcoming environment, we as contributors and maintainers pledge to making
participation in our project and our community a harassment-free experience for everyone, regardless of age, body size,
disability, ethnicity, gender identity and expression, level of experience, nationality, personal appearance, race, religion, or sexual
identity and orientation.

Our Standards

Examples of behavior that contributes to creating a positive environment include:

* Using welcoming and inclusive language

* Being respectful of differing viewpoints and experiences
* Gracefully accepting constructive criticism

» Focusing on what is best for the community

e Showing empathy towards other community members
Examples of unacceptable behavior by participants include:

* The use of sexualized language or imagery and unwelcome sexual attention or advances

* Trolling, insulting/derogatory comments, and personal or political attacks

e Public or private harassment

» Publishing others' private information, such as a physical or electronic address, without explicit permission

* Other conduct which could reasonably be considered inappropriate in a professional setting

Guidelines for Respectful and Efficient Communication on Issues, Discussions, and PRs

To ensure that our maintainers can efficiently manage issues and provide timely updates, we kindly ask that all comments on
GitHub tickets remain relevant to the topic of the issue. Please avoid posting comments solely to ping maintainers or ask for
updates. If you need information on the status of an issue, consider the following:

* Check the Issue Timeline: Review the existing comments and updates on the issue before posting.

* Use Reactions: If you want to show that you are interested in an issue, use GitHub's reaction feature (e.g., thumbs up)
instead of commenting.

* Be Patient: Understand that maintainers may be working on multiple tasks and will provide updates as soon as possible.
Additionally, please be aware that:

* User Responses: Users who report issues may no longer be using the software, may have switched to other projects, or may
simply be busy. It is their right not to respond to follow-up questions or comments.

* Maintainer Priorities: Maintainers have the right to define their own priorities and schedule. They will address issues based
on their availability and the project's needs.

By following these guidelines, you help us maintain a productive and respectful environment for everyone involved.

Our Responsibilities

Project maintainers are responsible for clarifying the standards of acceptable behavior and are expected to take appropriate and
fair corrective action in response to any instances of unacceptable behavior.

- 300/512 - Copyright © 2008 - 2024 ProcessOne

Scope

Project maintainers have the right and responsibility to remove, edit, or reject comments, commits, code, wiki edits, issues, and
other contributions that are not aligned to this Code of Conduct, or to ban temporarily or permanently any contributor for other
behaviors that they deem inappropriate, threatening, offensive, or harmful.

Scope

This Code of Conduct applies both within project spaces and in public spaces when an individual is representing the project or its
community. Examples of representing a project or community include using an official project e-mail address, posting via an
official social media account, or acting as an appointed representative at an online or offline event. Representation of a project
may be further defined and clarified by project maintainers.

Enforcement

Instances of abusive, harassing, or otherwise unacceptable behavior may be reported by contacting the project team at the email
address: conduct AT process-one.net. The project team will review and investigate all complaints, and will respond in a way that
it deems appropriate to the circumstances. The project team is obligated to maintain confidentiality with regard to the reporter
of an incident. Further details of specific enforcement policies may be posted separately.

Project maintainers who do not follow or enforce the Code of Conduct in good faith may face temporary or permanent
repercussions as determined by other members of the project's leadership.

Attribution

This Code of Conduct is adapted from the Contributor Covenant, version 1.4, available at https://contributor-covenant.org/
version/1/4

-301/512 - Copyright © 2008 - 2024 ProcessOne

https://www.contributor-covenant.org/
https://www.contributor-covenant.org/version/1/4/
https://www.contributor-covenant.org/version/1/4/

Contributors

Contributors

We would like to thanks official ejabberd source code contributors:

* Sergey Abramyan

* Badlop

e Ludovic Bocquet

* Emilio Bustos

* Thiago Camargo

e Juan Pablo Carlino
* Pawel Chmielowski
* Gabriel Gatu

» Tsukasa Hamano

» Konstantinos Kallas
* Evgeny Khramtsov
* Ben Langfeld

* Peter Lemenkov

e Anna Mukharram

e Johan Oudinet
 Pablo Polvorin

» Mickaél Rémond

» Matthias Rieber

» Rafael Roemhild

e Christophe Romain
e Jérome Sautret

e Sonny Scroggin

* Alexey Shchepin

» Shelley Shyan

* Radoslaw Szymczyszyn
e Stu Tomlinson

e Christian Ulrich

* Holger Weil3

Please, if you think we are missing your contribution, do not hesitate to contact us at ProcessOne. In case you do not want to
appear in this list, please, let us know as well.

Thanks !

-302/512 - Copyright © 2008 - 2024 ProcessOne

ejabberd Docs Source Code

ejabberd Docs Source Code

The ejabberd Community Server has its source code available in the ejabberd git repository. Its documentation is published in
the ejabberd Docs website, and its source code is available in the docs git repository.

This is a community effort and you are welcome to submit issues or pull requests in order to improve the docs and benefit the
ejabberd community.

This documentation site is built using MkDocs and Material for MkDocs.

Installation

To build the site you need Python 3.6 or later, then install the dependencies:

pip

mkdir -p .venv

python3 -m venv .venv

source .venv/bin/activate

pip install -r requirements.txt

o

From now on, remember to run source .venv/bin/activate before running any mkdocs [...] command.

1

You can freeze the dependencies to a file using pip freeze > requirements.txt .

Debian
You could install most dependencies using APT:

apt-get install mkdocs \
mkdocs-material \
mkdocs-material-extensions \
mkdocs-redirects \
python3-bs4

Arning

Unfortunately Debian doesn't package mkdocs-with-pdf, so you should remove with-pdf plugin from mkdocs.yml.

Building

Now you can start a small webserver that builds the site dynamically:

mkdocs serve

or build the site into static html files in the site/ directory:

mkdocs build

-303/512 - Copyright © 2008 - 2024 ProcessOne

https://www.ejabberd.im/
https://github.com/processone/ejabberd
https://docs.ejabberd.im
https://github.com/processone/docs.ejabberd.im
https://www.mkdocs.org/
https://squidfunk.github.io/mkdocs-material/

Testing

Testing

To verify the internal URLs in the site:

TEST=true mkdocs serve

To verify the internal URLs and also the external links:

TEST=true TEST_EXTERNAL=true mkdocs serve

Updating content

Some pages in this documentation are extracted from a running ejabberd node:

* admin/configuration/toplevel.md
* admin/configuration/modules.md
» developer/ejabberd-api/admin-api.md

* developer/ejabberd-api/admin-tags.md

To update those pages, install ejabberd, start it and run make all in this repository. This gets documentation from ejabberd,
processes it to obtain markdown content and moves the files to this repository.

Additionally, there are several other pages that are markdown files copied from ejabberd git repository and docker-ejabberd git

repository. Those repositories must be available next to docs.ejabberd.im before running make all.

Markdown Shorthands

When editing ejabberd source code to document top-level options, modules or API commands, there is some additional syntax
supported to generate HTML URLs:

For example, this text in the ejabberd source code:

_"mod_muc_admin’_

_"bookmarks_to_pep _ API

_default_db™_

_"basic.md#captcha|CAPTCHA™ _
https://xmpp.org/extensions/xep-0045.html[XEP-0045]
(def:c2s)

gets converted into this markdown:

[mod_muc_admin](../../admin/configuration/modules.md#mod_muc_admin)
[bookmarks_to_pep](../../developer/ejabberd-api/admin-api.md#bookmarks_to_pep) API
[default_db](toplevel.md#default_db)

[CAPTCHA] (basic.md#captcha)

[XEP-0045] (https://xmpp.org/extensions/xep-0045.html)

[1(def:c2s)

There are example usage of those shorthands in ejabberd, for example in mod_muc.ertl.

Glossary

Directly in markdown file
To define a new term, write in markdown:

def:c2s
: Client to Server connection in XMPP.

To link to that term, write in markdown:

Most connections in XMPP are [](def:c2s).

-304/512 - Copyright © 2008 - 2024 ProcessOne

Glossary

Glossary terms can be defined as singular nouns (connection, port), and later you can link to that term in plural noun

(connections, ports).

In ejabberd source code
Term definition is done as expected; example usage:

mod_doc() ->
#{desc =>
[?T("def:ad-hoc command"), "",
?T(": Command that can be executed by an XMPP client using XEP-0050."), "",
?T("This module implements XEP-0050.")]

In order to link to a term definition, please write simply (def:c2s) because [] becomes escaped and wouldn't work. Later make
extract will add the [] automatically. Example usage:

mod_doc() ->
#{desc =>
?T("This module implements some (def:ad-hoc commands) for adminitration.")

-305/512 - Copyright © 2008 - 2024 ProcessOne

ejabberd for Elixir Developers

ejabberd for Elixir Developers

Q improved in 21.07

Building ejabberd with Mix

You can build ejabberd with Elixir mix tool. This allows ejabberd to use Elixir libraries and ejabberd modules written in Elixir.

Please note: Elixir 1.10.3 or higher is required to build a release. Also, if using Erlang/OTP 24, then Elixir 1.11.4 or higher is
required.

1. Make sure you have the requirements installed. On MacOS you need to use Homebrew and set up your environment.

2. Clone ejabberd project from Github:

git clone https://github.com/processone/ejabberd.git
cd ejabberd

3. Compile ejabberd:

./autogen.sh
./configure --with-rebar=mix
make

4. Build a development release:

make dev

5. There are many ways to start ejabberd, using the ejabberdctl or ejabberd scripts:

_build/prod/rel/ejabberd/bin/ejabberdctl iexlive
_build/prod/rel/ejabberd/bin/ejabberdctl live
_build/prod/rel/ejabberd/bin/ejabberd start_iex

6. You should see that ejabberd is properly started:

Erlang/0TP 23 [erts-11.1.8] [source] [64-bit] [smp:2:2] [ds:2:2:10] [async-threads:1]

2021-08-03 13:37:36.561603+02:00 [info] Loading configuration from /home/bernar/e/git/ejabberd/_build/dev/rel/ejabberd/etc/ejabberd/ejabberd.yml
2021-08-03 13:37:37.541688+02:00 [info] Configuration loaded successfully

2021-08-03 13:37:40.201590+02:00 [info] ejabberd 21.7.9 is started in the node ejabberd@atenea in 3.86s
2021-08-03 13:37:40.203678+02:00 [info] Start accepting TCP connections at [::]:5222 for ejabberd_c2s

Interactive Elixir (1.10.3) - press Ctrl+C to exit (type h() ENTER for help)
iex(ejabberd@localhost)1>

7. Now that ejabberd starts correctly, adapt to your needs the default ejabberd configuration file located at _build/dev/rel/ejabberd/
etc/ejabberd/ejabberd.yml For example, enable this example Elixir ejabberd module:

modules:
'Ejabberd.Module.Example': {3}
mod_adhoc: {}

Embed ejabberd in an elixir app

ejabberd is available as an Hex.pm application: ejabberd on hex.pm.

This means you can build a customized XMPP messaging platform with Elixir on top of ejabberd by leveraging ejabberd code
base in your app and providing only your custom modules. This makes the management of your ejabberd plugins easier and
cleaner.

-306/512 - Copyright © 2008 - 2024 ProcessOne

https://elixir-lang.org/
https://hex.pm/packages/ejabberd

Call elixir code in erlang code

To create your own application depending on ejabberd, you can go through the following steps:

1. Create a new Elixir app using mix :

mix new myapp
cd myapp

2. Add ejabberd package as a dependency in your mix.exs file:

defp deps do

[
{:ejabberd, "~> 24.6"}

]
end
end

3. Get the dependencies and compile them:

mix deps.get
mix compile

4. Setup runtime options and ejabberd configuration file:

mkdir config

cp deps/ejabberd/config/runtime.exs config/runtime.exs
mkdir conf

cp deps/ejabberd/ejabberd.yml.example conf/ejabberd.yml

5. Start your app, ejabberd will be started as a dependency:

iex -S mix # similar to: ejabberdctl iexlive
mix run --no-halt # similar to: ejabberdctl foreground

6. You should see that ejabberd is properly started:

$ iex -S mix
2024-07-15 13:33:12.087 [info] Loading configuration from conf/ejabberd.yml
2024-07-15 13:33:12.301 [info] Configuration loaded successfully

2024-07-15 13:33:12.816 [info] ejabberd 24.6.0 is started in the node :nonode@nohost in 0.75s
2024-07-15 13:33:12.842 [info] Start accepting TCP connections at [::]:5222 for :ejabberd_c2s
Erlang/0TP 26 [erts-14.2.5] [source] [64-bit] [smp:4:4] [ds:4:4:10] [async-threads:1] [jit:ns]

Interactive Elixir (1.16.3) - press Ctrl+C to exit (type h() ENTER for help)

iex(1)>

7. Register an account from Elixir console:

:ejabberd_auth.try register("test", "localhost", "password")

8. You are all set, you can now connect with an XMPP client! Notice that the default configuration doesn't have certificates or
encryption.

Call elixir code in erlang code

It's possible to use Elixir libraries in an Erlang module, both the ones included in Elixir, or any other you add as a dependency.

This simple example invokes Elixir's String.duplicate/2 function as shown in one of its documentation examples, and uses the
result in the ejabberd vCard nickname field:

--- a/src/mod_vcard.erl
+++ b/src/mod_vcard.erl
@@ -209,6 +209,7 @@ process_local_iq(#iq{type = get, to = To, lang = Lang} = IQ) ->
VCard = case mod_vcard_opt:vcard(ServerHost) of
undefined ->
#vcard_temp{fn = <<"ejabberd">>,
+ nickname = 'Elixir.String':duplicate(<<"abc">>, 2),
url = ejabberd_config:get_uri(),
desc = misc:get_descr(Lang, ?T("Erlang XMPP Server")),
bday = <<"2002-11-16">>};

Notice that the elixir code:

-307/512 - Copyright © 2008 - 2024 ProcessOne

https://hex.pm/packages/ejabberd
https://hexdocs.pm/elixir/1.13.4/String.html#duplicate/2

String.duplicate("abc", 2)

is written in erlang as:

'Elixir.String':duplicate(<<"abc">>, 2),

Check Erlang/Elixir Syntax: A Crash Course for details.

Use elixir library in erlang code

Use elixir library in erlang code

This example demonstrates how to add an elixir library as a dependency in ejabberd, and use it in an ejabberd module written in

erlang.

It will use QRCodeEx elixir library to build a QR code of ejabberd's URI and return it as the server vCard photo.

First add the dependency to mix.exs :

--- a/mix.exs
+++ b/mix.exs
@@ -46,7 +46,7 @@ defmodule Ejabberd.MixProject do
:pl_utils, :stringprep, :yconf],
included_applications: [:mnesia, :os_mon,
:cache_tab, :eimp, :mgtree, :pl_acme,
- :pl_oauth2, :pkix, :xmpp]
+ :pl_oauth2, :pkix, :xmpp, :qrcode_ex]
++ cond_apps()]
end

@@ -113,6 +113,7 @@ defmodule Ejabberd.MixProject do
:pl_oauth2, "~> 0.6"},

pl_utils, "~> 1.0"},

pkix, "~> 1.0"},

grcode_ex, "~> 0.1.1"},

stringprep, ">= 1.0.26"},

xmpp, "~> 1.5"},

yconf, "~> 1.0"}]

-~

+
e R

Then call QRCodeEx.encode/2, QRCodeEx.png/2, and provide the result as the photo in the server vcard:

--- a/src/mod_vcard.erl
+++ b/src/mod_vcard.erl

@@ -206,9 +206,13 @@ process_local_iq(#iq{type = set, lang = Lang} = IQ) ->

xmpp:make_error(IQ, xmpp:err_not_allowed(Txt, Lang));
process_local_iq(#iq{type = get, to = To, lang = Lang} = IQ) ->
ServerHost = ejabberd_router:host_of_route(To#jid. lserver),

+ PhotoEncoded = 'Elixir.QRCodeEx':encode(ejabberd_config:get_uri()),

+

VCard = case mod_vcard_opt:vcard(ServerHost) of
undefined ->
#vcard_temp{fn = <<"ejabberd">>,
+ photo = PhotoEl,
url = ejabberd_config:get_uri(),
desc = misc:get_descr(Lang, ?T("Erlang XMPP Server")),
bday = <<"2002-11-16">>};

Write ejabberd module in elixir

PhotoBin = 'Elixir.QRCodeEx':png(PhotoEncoded, [{color, <<17, 120, 0>>}]),
& PhotoEl = #vcard_photo{type = <<"image/png">>, binval = PhotoBin},

If you plan to write an ejabberd module that heavily depends on Elixir dependencies, you may want to write it in elixir from

scratch.

The Elixir source code is placed in the ejabberd's lib/ path. Any elixir module placed in 1ib/ will be compiled by Mix, installed
with all the other erlang modules, and available for you to use.

As you can see, there's a file named mod example.ex which defines an ejabberd module written in elixir. To enable

Ejabberd.Module.Example , add it to ejabberd.yml like this:

modules:
'Ejabberd.Module.Example': {3}

-308/512 -

Copyright © 2008 - 2024 ProcessOne

https://elixir-lang.org/crash-course.html
https://hex.pm/packages/qrcode_ex
https://hexdocs.pm/qrcode_ex/QRCodeEx.Encode.html#encode/2
https://hexdocs.pm/qrcode_ex/QRCodeEx.PNG.html#png/2
https://github.com/processone/ejabberd/tree/master/lib
https://github.com/processone/ejabberd/blob/master/lib/mod_example.ex

Elixir module in ejabberd-contrib

Let's write a new ejabberd module in elixir, add it to ejabberd's source code, compile and install it. This example module requires
the QRCodeEx Elixir library, and adds a simple web page that generates QR code of any given JID.

1. Copy the mod grcode.ex source code to ejabberd's lib/ path:

1ib/mod_qrcode.ex

2. Recompile and reinstall ejabberd.
3. Enable the module in ejabberd.yml:
listen:
7 port: 5280

request_handlers:
/qrcode: 'Elixir.ModQrcode'

modules:
'Elixir.ModQrcode': {}
4. When restarting ejabberd, it will show in the logs:

2022-07-06 13:14:35.363081+02:00 [info] Starting ejabberd module Qrcode

5. Now the ejabberd internal web server provides QR codes of any given JID. Try visiting an URL like http://localhost:5280/qrcode/
anyusername/somedomain/

Elixir module in ejabberd-contrib

Using ejabberd-contrib it's possible to install additional ejabberd modules without compiling ejabberd, or requiring ejabberd
source code. This is useful if you install ejabberd using binary installers or a container image.

And it's possible to write a custom module and add your module to an existing ejabberd installation...

-309/512 - Copyright © 2008 - 2024 ProcessOne

Record definition

Let's write a new ejabberd module in elixir, compile and install in an existing ejabberd deployment without requiring its source

code. This example module adds a simple section listing PIDs in the users page in ejabberd WebAdmin.

. First, create this path

$HOME/ .ejabberd-modules/sources/mod_webadmin_pid/1ib/

. and copy the mod webadmin pid.ex source code to:

$HOME/ .ejabberd-modules/sources/mod_webadmin_pid/1ib/mod_webadmin_pid.ex

. Create a specification file in YAML format as mod_webadmin_pid.spec (see examples from ejabberd-contrib). So, create the file

$HOME/ .ejabberd-modules/sources/mod_webadmin_pid/mod_webadmin_pid.spec
with this content:
summary: "Display PIDs in User page in Web Admin"

. From that point you should see it as available module:

ejabberdctl modules_available
mod_webadmin_pid Display PIDs in User page in Web Admin

. Now you can compile and install that module:
ejabberdctl module_install mod_webadmin_pid

. Enable the module in ejabberd.ym1:

modules:
'Elixir.ModwebAdminPid': {}

. When restarting ejabberd, it will show in the logs:

2022-07-06 13:14:35.363081+02:00 [info] Starting ejabberd module WebAdminPid

. Finally, go to ejabberd WebAdmin -> Virtual Hosts -> your vhost -> Users -> some online user -> and there will be a new section

"PIDs".

Record definition

To use an erlang record defined in ejabberd's header file, use Elixir's Record to extract the fields and define an Elixir record with

its usage macros.
For example, add this to the beginning of mod example.ex:

require Record

Record.defrecord(:presence,
Record.extract(:presence, from_lib: "xmpp/include/xmpp.hrl"))

Later you can use those macros, named like your record, see the examples.

In our example, let's improve the on_presence function and use the presence macros to get the to field:

def on_presence(_user, _server, _resource, packet) do
to_jid = presence(packet, :to)
to_str = :jid.to_string(to_jid)
info('Received presence for #{to_str}:~n~p', [packet])
inone

end

-310/512 -

Copyright © 2008 - 2024 ProcessOne

https://hexdocs.pm/elixir/Record.html
https://github.com/processone/ejabberd/blob/master/lib/mod_example.ex
https://hexdocs.pm/elixir/Record.html#defrecord/3-examples

mod_qrcode.ex
Example ejabberd module written in elixir:

mod_grcode.ex

defmodule ModQrcode do
use Ejabberd.Module

def start(host, _opts) do
info('Starting ejabberd module Qrcode')
1ok

end

def stop(host) do
info('Stopping ejabberd module Qrcode')
1ok

end

def process([username, hostname] = _path, _query) do
uri = <<"xmpp:", username::binary, "@", hostname::binary>>
qr = QRCodeEx.svg(QRCodeEx.encode(uri), [{:color, "#3fb0d2"}])
gxmlel = :fxml_stream.parse_element(qr)
{200,
[{<<"Server">>, <<"ejabberd">>},
{<<"Content-Type">>, <<"image/svg+xml">>}],
:ejabberd_web.make_xhtml([], [gxmlel])}
end

def process(path, _query) do
info('Received HTTP query with path: ~p', [path])
{404, [], "Not Found"}
end
def depends(_host, _opts) do
[1
end
def mod_options(_host) do
[1
end
def mod_doc() do
%{:desc => 'This is just a demonstration.'}

end

end

mod_webadmin_pid.ex
Example ejabberd module written in elixir:

mod_webadmin_pid.ex

defmodule ModwebAdminPid do
use Ejabberd.Module

require Record

Record.defrecord(:xmlel,
Record.extract(:xmlel, from_lib: "xmpp/include/xmpp.hrl"))

Record.defrecord(:request,
Record.extract(:request, from: "include/ejabberd_http.hrl"))

gen_mod callbacks

def start(host, _opts) do
info('Starting ejabberd module WebAdminPid')

:ejabberd_hooks.add(:webadmin_user, host, _ MODULE__, :webadmin_user, 60)
:ejabberd_hooks.add(:webadmin_page_host, host, _ MODULE__, :webadmin_page, 60)
1ok

end

def stop(host) do
info('Stopping ejabberd module WebAdminPid')

:ejabberd_hooks.delete(:webadmin_user, host, _ MODULE__, :webadmin_user,
:ejabberd_hooks.delete(:webadmin_page_host, host, _ MODULE__, :webadmin_page, 60)
1ok

end

def depends(_host, _opts) do
[1

end

-311/512 -

mod_qgrcode.ex

Copyright © 2008 - 2024 ProcessOne

mod _webadmin_ pid.ex

def mod_options(_host) do
[1

end

def mod_doc() do
%{:desc => 'This is just a demonstration.'}
end

Web Admin

def webadmin_user(acc, user, server, _lang) do
resources = :ejabberd_sm.get_user_resources(user, server)

pids_elements = Enum.map(resources
fn resource ->
pid = :ejabberd_sm.get_session_pid(user, server, resource)

pid_string = :erlang.pid_to_list(pid)
xmlel(name: ', attrs: [{"href", "pid/#{pid_string}"}], children: [xmlcdata: pid_string])
end)
pids_separated = Enum.intersperse(pids_elements, {:xmlcdata, ", "})

new_element = xmlel(name: "h3", children: [xmlcdata: "PIDs:"])

acc ++ [new_element] ++ pids_separated
end

def webadmin_page(_acc, host, request(path: ["user", user, "pid", pid])) do
res = webadmin_pid(user, host, pid)
{:stop, res}

end

def webadmin_page(acc, _host, _request) do
acc
end

def webadmin_pid(user, host, pid_string) do
us = :jid.to_string(:jid.make(user, host))
page_title = 'Pid #{pid_string} of #{us}'

pid = :erlang.list_to_pid(String.to_charlist(pid_string))
pid_info = Process.info(pid)

pid_info_string = :io_lib.format("~p", [pid_info])
[xmlel(name: "h1", children: [xmlcdata: page_title]),
xmlel(name: "pre", children: [xmlcdata: pid_info_string])]

end

end

-312/512 - Copyright © 2008 - 2024 ProcessOne

The ejabberd Developer Livebook

The ejabberd Developer Livebook

o

This page is designed to run interactively using Livebook. Of course, you could simply reproduce the instructions manually yourself.
But, if possible, install Livebook in your machine and get the full experience clicking on the button:

ﬁl Run in Livebook

filename = "ejabberd.yml"
if File.exists?(filename) do
Mix.install([
{:ejabberd, "~> 24.2"},
{:kino, "~> 0.12.3"}
1)

elliise
url = "https://raw.githubusercontent.com/processone/ejabberd/master/ejabberd.yml.example"

Mix.install([:req]) &&
File.write!(
filename,
String.replace(Req.get!(url).body, "starttls_required: true", "")
)

I0.puts("ejabberd.yml downloaded correctly, click 'Reconnect and setup' to download ejabberd.")
end

Setup ejabberd inside livebook
This Livebook will download, compile and install ejabberd:

1. If you want to use a specific ejabberd.yml configuration file, copy it to your Livebook folder.
2. On top of this page, click setup .
3. If ejabberd.yml is not found, it will be downloaded from ejabberd git repository.

4. Click Reconnect and setup to download ejabberd and all its dependencies. It will be compiled and started... it may take a pair of

minutes.

Alternatively, if you already have ejabberd installed and running in your system, you can connect livebook to your ejabberd node

Execute some Erlang code

Now that Livebook is connected a running ejabberd node, you can run Erlang and Elixir code from this page directly in your

node.
For example, to run some erlang code, put your mouse over the new lines and click on Evaluate :

ejabberd_admin:registered_vhosts().

Let's define the details of an account, we will later register it. You may change those values:

Username = <<"user1">>,
Server = <<"localhost'">>,
Password = <<"somepass123">>,
{Username, Server, Password}.

Now let's execute an Erlang function to register the account:

ejabberd_auth:try_register(Username, Server, Password).

-313/512 - Copyright © 2008 - 2024 ProcessOne

https://livebook.dev/
https://livebook.dev/run/?url=https://processone.github.io/mkdocs/livebooks/ejabberd-developer-livebook.livemd
https://livebook.dev/run/?url=https://processone.github.io/mkdocs/livebooks/ejabberd-developer-livebook.livemd

Execute some Elixir code

Let's check the account was registered:
ejabberd_auth:get_users(<<"localhost">>).

And is the account's password the one we introduced?
Password == ejabberd_auth:get_password(Username, Server).

Ok, enough for now, let's remove the account:

ejabberd_auth:remove_user(Username, Server).

Execute some Elixir code
The same code of the previous section can be executed using Elixir:
:ejabberd_admin.registered_vhosts()

username = <<"useri1'">>
server = <<"localhost">>
password = <<"somepass123">>
{username, server, password}

:ejabberd_auth.try_register(username, server, password)
:ejabberd_auth.get_users(server)
password == :ejabberd_auth.get_password(username, server)

:ejabberd_auth.remove_user(username, server)

Run APl commands
Let's run some ejabberd API commands using the ejabberd ctl frontend (there is is also mod http api and ejabberd xmlrpc).
For example, the status API command:
ejabberd_ctl:process(["status"]).
How to register an account using ejabberd ctl to call the API command

command = ~c'"register"
:ejabberd_ctl.process([command, username, server, password])

If you have ejabberd installed in the the system, and the ejabberdctl command-line script is available in your PATH, then you
could also try to execute with:

os:cmd("ejabberdctl status").

:os.cmd(~c"ejabberdctl status")

Draw process structure
Let's view the ejabberd process tree:

Kino.Process.render_app_tree(:ejabberd, direction: :left_right)

Let's view the erlang processes that handle XMPP client connections. If this graph is empty, login to ejabberd with a client and
reevaluate this code:

Kino.Process.render_sup_tree(:ejabberd_c2s_sup, direction: :left_right)

-314/512 - Copyright © 2008 - 2024 ProcessOne

https://docs.ejabberd.im/developer/ejabberd-api/
https://docs.ejabberd.im/admin/configuration/modules/#mod_http_api
https://docs.ejabberd.im/admin/configuration/listen/#ejabberd-xmlrpc
https://docs.ejabberd.im/developer/ejabberd-api/admin-api/#status

Connect Livebook to your ejabberd node

And some information about the erlang process that handles the XMPP client session:

[resource] = :ejabberd_sm.get_user_resources(username, server)
Elixir.Process.info(:ejabberd_sm.get_session_pid(username, server, resource))

Connect Livebook to your ejabberd node

By default this livebook downloads, compiles and starts ejabberd by setting up ejabberd sinde livebook. If you already have
ejabberd installed and would like to connect this livebook to your existing ejabberd node, follow those steps:

Get erlang node name
To connect Livebook to your running ejabberd node, you must know its erlang node name and its cookie.
The erlang node name is by default ejabberd@localhost . You can check this in many places, for example:
* Using ejabberdctl status:

$ ejabberdctl status
The node ejabberd@localhost is started with status: started
ejabberd 24.2.52 is running in that node

e In the ejabberd.log file, which contains a line like:
2024-03-26 13:18:35.019288+01:00 [info] <0.216.0>@ejabberd_app:start/2:63
ejabberd 24.2.52 is started in the node ejabberd@localhost in 0.91s
Setup ejabberd node
A Livebook can only connect to an Erlang node that has Elixir support. So, make sure you install not only Erlang, but also Elixir.

When compiling ejabberd, make sure to enable Elixir support. It should get enabled by default, but you can ensure this: either by

./configure --with-rebar=mix or by ./configure --enable-elixir .

Then start ejabberd with IEx shell: ejabberdctl iexlive

Get erlang cookie
The erlang cookie is a random string of capital letters required to connect to an existing erlang node.
You can get it in a running node, simply call:
serlang.get_cookie()
: XQFOPGGPSNEZNUWKRZ JU
Connect this livebook to your ejabberd node
Now that you have ejabberd running, and you know the information required to connect to it:

1. go to Livebook

2. in the left side bar, click the Runtime settings icon, or press sr keyboard shortcut

3. click the configure button

4. click the Attached node button

5. introduce the erlang node name (ejabberd@localhost) and cookie (XQFOPGGPSNEZNUWKRZJIU) of your ejabberd node
6. click the connect button (it may say Reconnect)

7. If it connected successfully, it will now show memory consumption of that node

- 315/512 - Copyright © 2008 - 2024 ProcessOne

Stop ejabberd

Test the connection

Now that Livebook is connected to your running ejabberd node, you can run Erlang and Elixir code from this page directly in

your node.
For example, to run some erlang code, put your mouse over the new lines and click on Evaluate :

ejabberd_admin:registered_vhosts().

The same code can be executed using Elixir:

:ejabberd_admin.registered_vhosts()

Stop ejabberd

Let' stop ejabberd insie livebook

rejabberd.stop()

-316/512 - Copyright © 2008 - 2024 ProcessOne

Internationalization and Localization

Internationalization and Localization

The source code of ejabberd supports localization: all built-in modules support the xml:lang attribute inside IQ queries, and the
Web Admin supports the Accept-Language HTTP header.

There are two ways to improve the translation of a language:

 Preferably using the ejabberd-po Weblate online service, which ensures syntax and formatting, can be more easily managed,
and translations are immediately visible to other translators.

* Manually edit the corresponding .po file in ejabberd-po git repository with a gettext-compatible program (Poedit, KBabel,
Lokalize, ...). Then submit a Pull Request.

Once the translators have improved the po files, you can run make translations. With that command, the translatable strings are

extracted from source code to generate the file ejabberd.pot . This file is merged with each .po file to produce updated .po files.
Finally those .po files are exported to .msg files, that have a format easily readable by ejabberd.

- 317/512 - Copyright © 2008 - 2024 ProcessOne

https://hosted.weblate.org/projects/ejabberd/ejabberd-po/
https://github.com/processone/ejabberd-po

ejabberd Modules Development

Introduction

ejabberd Modules Development

ejabberd is based on a modular architecture that makes it highly customizable and infinitely extensible.

Here is an overview of ejabberd internal architecture:

'8 a
Data Modules Authentication ()
one or several backends “"“ch';n‘e::“m e ejabberd node

) . SQL - SOL (MySQL, Postgres)
Profile - VCards Message archive 50': (:IAOSQL (:;Qstgm) - NoSQL (Riak) ~ ~
- Mnesia - Mnesia _LDAP - LDAP =
- SQL (MySQL, Postgres) - SOL (MySQL, - Rest APl - PAM s2s =
- LDAP Postgres) - Rest API (federation) §
@
. J|a
Features Modules 4 -
1]
Multi-User Chat Offiine Last activity Logging [112
Pubsub Personal events Anonymous access Media transfer router Ul)
\ J g
Reliability & Security Modules - \ §
Carbon copy Stream management Message traceabllity Shaping / anti DOS session manager
c2s
Message acks Ping Privacy Audit L p
. 7

What is a module ?

Outside of a few infrastructure core components most of ejabberd features are developed as modules. Modules are used to

extend the features of ejabberd (plugins).

How to write a custom module ?

Ejabberd comes with a lot of modules, but sometimes you may need an unsupported feature from the official sources or maybe

you need to write your own custom implementation for your very special needs.

Each modules is written in either Erlang or Elixir. To use them, you typically declare them in ejabberd configuration file. That's
also the place where you can configure the module, by passing supported options to overload its default behaviour.

On ejabberd launch, the server will start all the declared modules. You can start (or stop) them manually from Erlang shell as

well.

As a convention, module names starts with "mod ", but you can actually call them as you want.

The gen_mod behaviour

All ejabberd modules are implementing the gen_mod behaviour. It means that a module must provide the following API:

start(Host, Opts) -> ok
stop(Host) -> ok
depends(Host, Opts) -> []
mod_options(Host) -> []

-318/512 -

Copyright © 2008 - 2024 ProcessOne

mod_hello world

Parameters are:

* Host = string()
* Opts = [{Name, Value}]

e Name = Value = string()

Host is the name of the virtual host running the module. The start/2 and stop/1 functions are called for each virtual host at
start and stop time of the server.

opts is a lists of options as defined in the configuration file for the module. They can be retrieved with the gen_mod:get_opt/3
function.

mod_hello_world
The following code shows the simplest possible module.

mod_hello_world.erl

-module(mod_hello_world).
-behaviour(gen_mod).

%% Required by ?INFO_MSG macros
-include("logger.hrl").

%% Required by ?T macro
-include("translate.hrl").

%% gen_mod API callbacks
-export([start/2, stop/1, depends/2, mod_options/1, mod_doc/0]).

start(_Host, _Opts) ->
?INFO_MSG("Hello, ejabberd world!", []),
ok.

stop(_Host) ->
?INFO_MSG("Bye bye, ejabberd world!", []),
ok.

depends(_Host, _Opts) ->
[1.

mod_options(_Host) ->

1.

mod_doc() ->
#{desc =>
?T("This is an example module.")}.

Now you have two ways to compile and install the module: If you compiled ejabberd from source code, you can copy that source
code file with all the other ejabberd source code files, so it will be compiled and installed with them. If you installed some
compiled ejabberd package, you can create your own module dir, see Add module to ejabberd-modules.

You can enable your new module by adding it in the ejabberd config file. Adding the following snippet in the config file will
integrate the module in ejabberd module lifecycle management. It means the module will be started at ejabberd launch and
stopped during ejabberd shutdown process:

modules:

ﬁéé,hello,wurld: {3
Or you can start / stop it manually by typing the following commands in an Erlang shell running ejabberd:

* To manually start your module:

gen_mod:start_module(<<"localhost">>, mod_hello_world, []).

* To manually stop your module:

gen_mod:stop_module(<<"localhost">>, mod_hello_world).

- 319/512 - Copyright © 2008 - 2024 ProcessOne

Add module to ejabberd-modules

When the module is started, either on ejabberd start or manually, you should see the following message in ejabberd log file:

19:13:29.717 [info] Hello, ejabberd world!

Add module to ejabberd-modules

If you install ejabberd using the official ProcessOne installer, it includes everything needed to build ejabberd modules on its own.
If using a container image, follow the specific steps to install your module in a container image.

The value of $HoME vary depending on your ejabberd installation method, check ejabberd-modules for details.

. First, create this path
$HOME/ .ejabberd-modules/sources/mod_hello_world/src/
. and copy your source code to this location:
$HOME/ .ejabberd-modules/sources/mod_hello_world/src/mod_hello_world.erl
. Create a specification file in YAML format as mod hello world.spec (see examples from ejabberd-contrib). So, create the file
$HOME/ .ejabberd-modules/sources/mod_hello_world/mod_hello_wor1ld.spec
with this content:

mod_hello_world.spec

summary: "Hello World example module"

. From that point you should see it as available module:

ejabberdctl modules_available
mod_hello_world Hello World example module

. Now you can install and uninstall that module like any other, as described in the previous section.

. If you plan to publish your module, you should check if your module follows the policy and if it compiles correctly:

ejabberdctl module_check mod_mysupermodule
ok

If all is OK, your’re done ! Else, just follow the warning/error messages to fix the issues.

You may consider publishing your module as a tgz/zip archive or git repository, and send your spec file for integration in
ejabberd-contrib repository. ejabberd-contrib will only host a copy of your spec file and does not need your code to make it
available to all ejabberd users.

Next steps

From there, you know how to package a module to integrate it inside ejabberd environment. Packaging a module allows you to:

» Integrate in ejabberd overall application life cycle, i.e. with the start and stop mechanism.

* Get data from ejabberd configuration file.

Now, to do useful stuff, you need to integrate with ejabberd data flow. You have two mechanisms available from ejabberd
modules:

» Events and Hooks: This is to handle internal ejabberd triggers and subscribe to them to perform actions or provide data.

* IQ Handlers: This is a way to register ejabberd module to handle XMPP Info Queries. This is the XMPP way to provide new
services.

- 320/512 - Copyright © 2008 - 2024 ProcessOne

MucSub: Multi-User Chat Subscriptions

MucSub: Multi-User Chat Subscriptions

Motivation

In XMPP, Multi-User Chat rooms design rely on presence. To participate in a MUC room, you need to send a presence to the
room. When you get disconnected, you leave the room and stopped being part of the room. User involvement in MUC rooms is

not permanent.

This is an issue with the rise of mobile applications. Chatting with friends in a room is a big part of messaging usage on mobile.
However, to save battery life, mobile devices will freeze mobile XMPP application after a while when they get to background. It
means that the connection is lost and that the session is usually terminated.

Some workaround have been used to try letting user keep on receiving messages from MUC room when the app is in
background. The most common one is to keep the session open for a while until a timeout happens. This is the approach
promoted on mobile by XEP-0198 - Stream Management. When messages are received and no TCP/IP connection is attached,
server usually fallback sending the message to the user using mobile push notification service to warn the user that a message
has been received.

This approach has many drawbacks:

1. It is not permanent. The idea of having the session kept into memory for a while is interesting but it is just a long timeout. After
that timeout, the session is closed and the user will leave the room. No message will be received anymore.

2. It does not play well with normal server / cluster operations. If you restart the service where the user session is kept, it will
disappear. You can dump them to disk and recreate them on start, but it means that if the node crashes, your session will be lost
and user will stop receiving messages.

3. It does not change the fundamental nature of MUC chat room. They are still presence-based. It means that if you need to restart
the MUC service, or if it crashes, presence are lost. For connected clients, they are expected to join the MUC room again. However,
for mobile clients, it cannot happens until user reopens the app. Moreover, it means that on new session start, user client is
expected to join all the MUC rooms they want to keep track of on connect.

This specification tries to solve those issues by keeping most of the logic of the MUC room intact. There is attempt to rewrite
XMPP Multi-User chat rooms by splitting presence from ability to receive and send messages (XEP-0369: Mediated Information
eXchange (MIX)). However, the features covered by the MUC protocol are quite comprehensive and the MIX protocol is not yet
ready to cover all the MUC use cases yet. The goal is to produce an intermediate state that is compliant with MUC and leverage
most of the MUC features, while adding the most basic feature possible to implement the MUC/Sub extension.

This specifications tries to merge ideas to produce a MUC extension that make MUC rooms mobile clients friendly.
To play well with mobile, MUC room need to support the following features:

* Add the ability to send and receive messages to a room without having to send presence to the room. More generally allow
other type of interaction with the room (like configuration changes for example or kick and ban). We will leverage existing
publish and subscribe approach.

* Add the ability to resync the client for missed messages on reconnect. We will leverage Message Archive Management service
for MUC.

 Finally, ensure that a server can implement push notification service to ensure alerting of offline users when MUC messages
are received.

The goal is to learn from real life working implementation to help feeding MIX with feedback from the field, without having to
reinvent a complete new protocol.

General principle

The core idea is to expose MUC rooms as PubSub nodes and to introduce the concept of MUC rooms subscribers.

-321/512 - Copyright © 2008 - 2024 ProcessOne

Discovering support

A user affiliated to a MUC room should be able to subscribe to MUC node events and have them routed to their JID, even if they
are not a participant in the room. It means that a user can receive messages without having to send presence to the room. In that
sense, "joining the room" in XEP-0045 becomes more "Being available in the MUC room".

Discovering support

Discovering support on MUC service
You can check if MUC/Sub feature is available on MUC service by sending Disco Info IQ:

<iq from='hag66@shakespeare.example/pda’'
to="'muc.shakespeare.example'
type="get'
id='ik3vs715'>
<query xmlns="http://jabber.org/protocol/disco#info'/>
</ig>

MUC service will show a feature of type 'urn:xmpp:mucsub:0' to the response if the feature is supported and enabled:

<iq from="muc.shakespeare.example"
to="hag66@shakespeare.example/pda"
type="result"
id="ik3vs715">
<query xmlns="http://jabber.org/protocol/disco#info">
<identity category="conference"
type="text"
name="Chatrooms" />

<feature var="urn:xmpp:mucsub:0" />
</query>
</ig>

Discovering support on a specific MUC
A user can discover support for MUC/Sub feature on a MUC room as follow:

<iq from='hag66@shakespeare.example/pda’
to='coven@muc.shakespeare.example'
type="'get'
id='ik3vs715'>
<query xmlns="http://jabber.org/protocol/disco#info'/>
</ig>

A conference MUST add 'urn:xmpp:mucsub:0' to the response if the feature is supported and enabled:

<ig from='coven@muc.shakespeare.example'
to="'hag66@shakespeare.example/pda’'
type='result'
id='ik3vs715'>
<query xmlns='http://jabber.org/protocol/disco#info'>
<identity category='conference'
name='A Dark Cave'
type="text' />
<feature var='http://jabber.org/protocol/muc' />

<feature var='urn:xmpp:mucsub:0' />
</query>
</ig>

Option MUC room support for subscriptions

Even if MUC room supports MUC/Sub feature, it MAY be explicitly enabled or disabled thanks to a new configuration option:

» Allow subscription: Users can subscribe to MUC/Sub events.

-322/512 - Copyright © 2008 - 2024 ProcessOne

Subscriber role

Subscriber role

Until a subscriber is not joined a conference (see Joining a MUC Room), a subscriber role MUST be 'none'. When a subscriber is

joined a conference its role is changed according to XEP-0045 rules, that is, it becomes either 'visitor', 'participant' or

'moderator'.

Subscribing to MUC/Sub events

User can subscribe to the following events, by subscribing to specific nodes:

e urn:xmpp:mucsub:nodes:presence

e urn:xmpp:mucsub:nodes:messages

e urn:xmpp:mucsub:nodes:affiliations
e urn:xmpp:mucsub:nodes:subscribers
e urn:xmpp:mucsub:nodes:config

e urn:xmpp:mucsub:nodes:subject

e urn:xmpp:mucsub:nodes:system
Example: User Subscribes to MUC/Sub events

<iq from='hag66@shakespeare.example'
to='coven@muc.shakespeare.example'
type="'set'
id="'E6E10350-76CF-40C6-B91B-1EAQ8C332FC7"'>
<subscribe xmlns='urn:xmpp:mucsub:0"
nick="mynick"'
password="'roompassword'>
<event node='urn:xmpp:mucsub:nodes:messages' />
<event node='urn:xmpp:mucsub:nodes:affiliations' />
<event node='urn:xmpp:mucsub:nodes:subject' />
<event node='urn:xmpp:mucsub:nodes:config' />
</subscribe>
</ig>

If user is allowed to subscribe, server replies with success. The password attribute can be provided when subscribing to a

password-protected room.
Example: Server replies with success

<iqg from='coven@muc.shakespeare.example'
to="hag66@shakespeare.example’
type='result'
id="'E6E10350-76CF-40C6-B91B-1EAQ8C332FC7"'>
<subscribe xmlns='urn:xmpp:mucsub:0'>
<event node='urn:xmpp:mucsub:nodes:messages' />
<event node='urn:xmpp:mucsub:nodes:affiliations' />
<event node='urn:xmpp:mucsub:nodes:subject' />
<event node='urn:xmpp:mucsub:nodes:config' />
</subscribe>
</ig>

Subscription is associated with a nick. It will implicitly register the nick. Server should otherwise make sure that subscription
match the user registered nickname in that room. In order to change the nick and/or subscription nodes, the same request MUST

be sent with a different nick or nodes information.
Example: User changes subscription data

<ig from='hag66@shakespeare.example’
to="'coven@muc.shakespeare.example'
type="'set'
id='E6E10350-76CF-40C6-B91B-1EAQ8C332FC7"'>
<subscribe xmlns='urn:xmpp:mucsub:0"
nick="'newnick'>
<event node='urn:xmpp:mucsub:nodes:messages' />
<event node='urn:xmpp:mucsub:nodes:presence' />
</subscribe>
</ig>

-323/512 -

Copyright © 2008 - 2024 ProcessOne

https://xmpp.org/extensions/xep-0045.html

Unsubscribing from a MUC Room

A room moderator can subscribe another user to MUC Room events by providing the user JID as an attribute in the <subscribe/>
element.

Example: Room moderator subscribes another user

<iq from='king@shakespeare.example'
to='coven@muc.shakespeare.example'
type="'set'
id="'E6E10350-76CF-40C6-B91B-1EAQ8C332FC7"'>
<subscribe xmlns='urn:xmpp:mucsub:0"'
jid="hag66@shakespeare.example'
nick="'mynick"
password="roompassword'>
<event node='urn:xmpp:mucsub:nodes:messages' />
<event node='urn:xmpp:mucsub:nodes:affiliations' />
<event node='urn:xmpp:mucsub:nodes:subject' />
<event node='urn:xmpp:mucsub:nodes:config' />
</subscribe>
</ig>

Unsubscribing from a MUC Room

At any time a user can unsubscribe from MUC Room events.
Example: User unsubscribes from a MUC Room

<iqg from='hag66@shakespeare.example’
to="'coven@muc.shakespeare.example'
type="set'
id="'E6E10350-76CF-40C6-B91B-1EAQ8C332FC7"'>
<unsubscribe xmlns='urn:xmpp:mucsub:0' />
</ig>

Example: A MUC Room responds to unsubscribe request

<ig from='coven@muc.shakespeare.example'
to="'hag66@shakespeare.example’
type='result'
id='E6E10350-76CF-40C6-B91B-1EAO8C332FC7"' />

A room moderator can unsubscribe another room user from MUC Room events by providing the user JID as an attribute in the
<unsubscribe/> element.

Example: Room moderator unsubscribes another room user

<iq from='king@shakespeare.example'
to='coven@muc.shakespeare.example'
type="'set'
id="'E6E10350-76CF-40C6-B91B-1EAQ8C332FC7"'>
<unsubscribe xmlns='urn:xmpp:mucsub:0'
jid="hag66@shakespeare.example'/>
</ig>

Subscriber actions

If not stated otherwise in this document, a subscriber MUST perform any actions in the conference as described in XEP-0045.
For example, it MUST send messages to all occupants according to 7.4 Sending a Message to All Occupants, it MUST configure a
conference according to 10.2 Subsequent Room Configuration and so on.

Here are a few examples:

Sending a message
Sending a message is like sending a standard groupchat message in MUC room:

<message from="hag66@shakespeare.example"
to="coven@muc.shakespeare.example"
type="groupchat">
<body>Test</body>
</message>

- 324/512 - Copyright © 2008 - 2024 ProcessOne

https://xmpp.org/extensions/xep-0045.html
https://xmpp.org/extensions/xep-0045.html#message
https://xmpp.org/extensions/xep-0045.html#roomconfig

Receiving events

No need to join it after you connect. As a subscriber, you can send messages at any time.

Joining a MUC Room
If a user wants to be present in the room, they just have to join the room as defined in XEP-0045.

A subscriber MAY decide to join a conference (in the XEP-0045 sense). In this case a conference MUST behave as described in
XEP-0045 7.2 Entering a Room. A conference MUST process events as described under XEP-0045 7.1 Order of Events except it
MUST not send room history. When a subscriber is joined, a conference MUST stop sending subscription events and MUST
switch to a regular groupchat protocol (as described in XEP-0045) until a subscriber leaves.

Receiving events

Here is as an example message received by a subscriber when a message is posted to a MUC room when subscriber is
subscribed to node urn:xmpp:mucsub:nodes:messages:

<message from="coven@muc.shakespeare.example"
to="hag66@shakespeare.example/pda">
<event xmlns="http://jabber.org/protocol/pubsub#event">
<items node="urn:xmpp:mucsub:nodes:messages">
<item id="18277869892147515942">
<message from="coven@muc.shakespeare.example/secondwitch"
to="hag66@shakespeare.example/pda"
type="groupchat"
xmlns="jabber:client">
<archived xmlns="urn:xmpp:mam:tmp"
by="muc.shakespeare.example"
1d="1467896732929849" />
<stanza-id xmlns="urn:xmpp:sid:0"
by="muc.shakespeare.example"
1d="1467896732929849" />
<body>Hello from the MUC room !</body>
</message>
</item>
</items>
</event>
</message>

Presence changes in the MUC room are received wrapped in the same way by subscribers which subscribed to node
urn:xmpp:mucsub:nodes:presence:

<message from="coven@muc.shakespeare.example"
to="hag66@shakespeare.example/pda">
<event xmlns="http://jabber.org/protocol/pubsub#event">
<items node="urn:xmpp:mucsub:nodes:presences">
<item id="8170705750417052518">
<presence xmlns="jabber:client"
from="coven@muc.shakespeare.example/secondwitch"
type="unavailable"
to="hag66@shakespeare.example/pda">
<x xmlns="http://jabber.org/protocol/muc#user">
<item affiliation="none"
role="none" />
</x>
</presence>
</item>
</items>
</event>
</message>

If subscriber is subscribed to node urn:xmpp:mucsub:nodes:subscribers, message will ne sent for every mucsub subscription
change. When a user becomes a subscriber:

<message from="coven@muc.shakespeare.example"
to="hag66@shakespeare.example/pda">
<event xmlns="http://jabber.org/protocol/pubsub#event">
<items node="urn:xmpp:mucsub:nodes:subscribers">
<item id="17895981155977588737">
<subscribe xmlns="urn:xmpp:mucsub:0"
jid="bob@server.com"
nick="bob"/>
</item>
</items>
</event>
</message>

- 325/512 - Copyright © 2008 - 2024 ProcessOne

https://xmpp.org/extensions/xep-0045.html
https://xmpp.org/extensions/xep-0045.html#enter-muc
https://xmpp.org/extensions/xep-0045.html#order
https://xmpp.org/extensions/xep-0045.html

When a user lost its subscription:

<message from="coven@muc.shakespeare.example"
to="hag66@shakespeare.example/pda">
<event xmlns="http://jabber.org/protocol/pubsub#event">
<items node="urn:xmpp:mucsub:nodes:subscribers">
<item id="10776102417321261057">
<unsubscribe xmlns="urn:xmpp:mucsub:0"

jid="bob@server.com"
nick="bob"/>
</item>
</items>
</event>
</message>

Getting List of subscribed rooms

Note: Sometimes jid in subscribe/unsubscribe event may be missing if room is set to anonymous and user is not moderator.

Getting List of subscribed rooms

A user can query the MUC service to get their list of subscriptions.

Example: User asks for subscriptions list

<ig from='hag66@shakespeare.example'
to="'muc.shakespeare.example'
type='get'
id='E6E10350-76CF-40C6-B91B-1EAQ8C332FC7"'>
<subscriptions xmlns='urn:xmpp:mucsub:0' />
</ig>

Example: Server replies with subscriptions list

<ig from='muc.shakespeare.example'
to="hag66@shakespeare.example’
type='result'
id="E6E10350-76CF-40C6-B91B-1EAG8C332FC7'>
<subscriptions xmlns='urn:xmpp:mucsub:0'>
<subscription nick="mynick
jid="'coven@muc.shakespeare.example'>
<event node='urn:xmpp:mucsub:nodes:messages'/>
<event node='urn:xmpp:mucsub:nodes:affiliations'/>
<event node='urn:xmpp:mucsub:nodes:subject'/>
<event node='urn:xmpp:mucsub:nodes:config'/>
</subscription>
<subscription nick='MyNick
jid="chat@muc.shakespeare.example'>
<event node='urn:xmpp:mucsub:nodes:messages'/>
</subscription>
</subscriptions>
</ig>

Getting list of subscribers of a room

A subscriber or room moderator can get the list of subscribers by sending

Example: Asks for subscribers list

<iq from='hag66@shakespeare.example'
to="'coven@muc.shakespeare.example'
type="get'
id="'E6E10350-76CF-40C6-B91B-1EAQ8C332FC7"'>
<subscriptions xmlns='urn:xmpp:mucsub:0' />
</ig>

Example: Server replies with subscribers list

<ig from='coven@muc.shakespeare.example'
to="'hag66@shakespeare.example’
type='result'
id="'E6E10350-76CF-40C6-B91B-1EAO8C332FC7"'>
<subscriptions xmlns='urn:xmpp:mucsub:0'>
<subscription nick='Juliet'
jid="juliet@shakespeare.example'>
<event node='urn:xmpp:mucsub:nodes:messages'/>
<event node='urn:xmpp:mucsub:nodes:affiliations'/>
</subscription>
<subscription nick='Romeo'
jid='romeo@shakespeare.example'>
<event node='urn:xmpp:mucsub:nodes:messages'/>

- 326/512 -

<subscriptions/> request directly to the room JID.

Copyright © 2008 - 2024 ProcessOne

Compliance with existing MUC clients

</subscription>
</subscriptions>
</ig>

Compliance with existing MUC clients

MUC/Sub approach is compliant with existing MUC service and MUC clients. MUC clients compliant with XEP-0045 will receive
messages posted by subscribers. They may not see the user's presence, but it should not be an issue for most clients. Most
clients already support receiving messages from users that are not currently in the MUC room through history retrieval.

This approach should also help most clients to support better integration with third-party services posting to MUC room through
API (as)

However, a server could choose to send presence on behalf of subscribers when a user joins the room (in the XEP-0045 sense) so
that the subscriber will be shown in MUC roster of legacy clients.

Synchronization of MUC messages: Leveraging MAM support

To be friendly with mobile, the MAM service should allow a user to connect and easily resync their history for all MUC
subscriptions. For details about MAM, see XEP-0313 Message Archive Management and your software's documentation, for
instance ejabberd's mod mam.

Thanks to ability to get the list of all the existing subscription, client can get a starting point to interact with MAM service to
resync history and get the messages that were missed while the user was offline.

If you subscribe to MucSub, MAM will add the message to your own user JID on new messages. You will simply be able to query
them using your own JID from the standard MAM service.

It means, you can get all new MUC message in subscribed room thanks to MucSub, with a single query. For example, if you ask
for all messages sent since a specific date, the result will contain both normal chat and MucSub messages.

You would only need to query MUC for MAM for rooms for which you do not use MucSub as with MucSub you will be "delivered"
each message (in that case, each message is added your MAM archive).

Push support compliance

Subscriptions are compliant with push mechanism. It is supported out of the box when using ProcessOne pl:push
implementation (deployed on ejabberd SaaS for example).

More generally, it is straightforward to handle them through ejabberd developer API to implement custom mechanisms.

Subscriptions are delivered to online users. If the user has no active session, the server can choose to broadcast to the user
through a push notification.

When a session is opened, if the server detects that the user has not been recently active, or for any other reason, the server can
still forward the message to a push notification service to warn the user that new messages are available in a MUC room.

-327/512 - Copyright © 2008 - 2024 ProcessOne

https://xmpp.org/extensions/xep-0313.html

ejabberd Test Suites

ejabberd Test Suites

ejabberd comes with a comprehensive test suite to cover various part of the software platform.

XMPP end-to-end protocol test suite

Running ejabberd test suite

This test suite is a set of end-2-end integration tests that act like XMPP clients connecting with the server and is testing ejabberd
at the protocol level. It also contains tests for the various backends that ejabberd supports.

The test suite is modular and can be run in parts (to focus on a group of features) or run for a specific backend.
The cT_BACKENDS environment variable specifies which backend tests to run. Current cT_BACKENDS values:

* extauth
* ldap

* mnesia
* mssql

* mysql

* odbc

* pgsql

* redis

* sqlite

Note: You must build ejabberd with proper backend support for the tests to work. If the tests fail and you aren't sure why, check
the configure build options to make sure ejabberd is compiled with adequate backend support.

Note: these tests are e2e tests that operate a full ejabberd instance. So the ports that ejabberd needs must be available for
testing. So you can't run an ejabberd instance at the same time you test.

Other options you can use to limit the tests that will be run is to pass a list of groups to test. Some groups examples:

* no_db : Runs subgroups generic and test_proxy65.
* component
* extauth

* ldap

* mnesia

* mssql

* mysql

* pgsql

* redis

® s2s

* sqlite

Usually, it is enough to just limit tests with cT_BAckenbps and let the test suite decide which relevant tests to run. Sometimes you
may want to only focus on a specific backend, skipping the generic no_db tests.

Some example commands for running the XMPP end-to-end test suite using rebar and rebar3 ct:

CT_BACKENDS=mnesia rebar ct suites=ejabberd

CT_BACKENDS=mnesia rebar ct suites=ejabberd groups=mnesia

CT_BACKENDS=mnesia rebar ct suites=ejabberd groups=generic

CT_BACKENDS=mnesia rebar3 ct --suite=test/ejabberd_SUITE --group=offline_flex,offline_send_all

- 328/512 - Copyright © 2008 - 2024 ProcessOne

https://rebar3.org/docs/testing/ct/

Dependency tests
CT_BACKENDS=redis rebar3 ct --suite=test/ejabberd_SUITE --group=offline_flex,offline_send_all
CT_BACKENDS=mnesia rebar3 ct --suite=test/ejabberd_SUITE --group=commands_single

If you have every backend configured, you can run all the tests with:

make test

Test suite conventions

The records used in test suite are autogenerated and come from tools/xmpp_codec.hr1l. This is handy to match packets/results
against expected values.

Dependency tests

ejabberd depends on a lot of dependent modules. The dependencies can be tested independently by checking them out and
running their test suites directly.

Build test status

We run tests for ejabberd and dependencies automatically via Github Actions. We have a Dashboard available on Github to check
the overall test status for all projects: ProcessOne Github Dashboard

- 329/512 - Copyright © 2008 - 2024 ProcessOne

https://processone.github.io/

Developing ejabberd with VSCode

Developing ejabberd with VSCode

Q added in 23.01

The ejabberd git repository includes basic configuration and a few scripts to get started with ejabberd development using Visual
Studio Code.

There are several Visual Studio Code flavours suitable for ejabberd development:

 Visual Studio Code desktop app - local development with no dependencies
* VSCodium desktop app - local development installing dependencies
» Coder's code-server container image - local or remote development

» GitHub Codespaces service - quick and short remote development

Visual Studio Code

The official Visual Studio Code installers provided by Microsoft can use the official marketplace. That allows to install the Dev
Container extension to compile and run ejabberd inside a prepared container, which includes Erlang/OTP and all the required
libraries, so you don't need to install them in your machine.

However that installer is licensed under a not-FLOSS license and contains telemetry/tracking.

Once installed: install Git as suggested, clone the ejabberd git repository locally, let it install the Dev Container extension, then
let it reopen the path inside the devcontainer.

VSCodium

VSCodium provides Free/Libre Open Source Software Binaries of VSCode. This is a great alternative to the official VSCode
installer.

However, it can't use the official marketplace, uses instead the open-vsx.com marketplace, and the Dev Containers extension is
not available. This means that you must install the ejabberd dependencies in your system to compile and debug ejabberd.

Once installed: open your local ejabberd git clone. It's highly recommended to go the EXTENSIONS tab and install the Erlang LS
extension.

Coder's code-server

An easy, zero-cost, way to use VSCode in a web browser is through the ejabberd's code-server container image. This image is
based in the Debian docker image and includes Coder's code-server, Erlang/OTP, Elixir, and all the required libraries.

- 330/512 - Copyright © 2008 - 2024 ProcessOne

https://code.visualstudio.com/
https://github.com/VSCodium/vscodium
https://github.com/erlang-ls/vscode
https://github.com/erlang-ls/vscode
https://hub.docker.com/_/debian
https://github.com/coder/code-server

GitHub Codespaces

Download and start the container, and provide as volume the path of your local ejabberd git clone:

docker pod

docker run \
--name coder \
-it \
-p 1870:1870 \
-v $(pwd)/ejabberd:/workspaces/ejabberd \
ghcr.io/processone/code-server

The next time it can be started with docker start -i coder
Write a file named pod.yml with the following content:

apiversion: vi
kind: Pod

metadata:
name: codeserver

spec:
containers:
- name: coder
image: ghcr.io/processone/code-server
ports:
- containerPort: 1870
hostPort: 1870
- containerPort: 5222
hostPort: 5222
- containerPort: 5280
hostPort: 5280
volumeMounts:
- mountPath: /workspaces/ejabberd
name: eja
volumes:
- name: eja
hostPath:
path: ejabberd # path to your ejabberd git clone
type: DirectoryOrCreate

And then run:

podman play kube pod.yml --replace --wait

Now open in your web browser: http://0.0.0.0:1870/

If you cannot write inside the container directory, you need to change the owner of ejabberd directory and its files: code-server is
ran by the user 1000:1000 inside the container, so should run something like this for your ejabberd directory:

docker podman

sudo chown -R 1000:1000 ejabberd

podman unshare chown -R 1000:1000 ejabberd

GitHub Codespaces

The ejabberd git repository contains default configuration to use it in the GitHub Codespaces service.

This can be used remotely over a web browser, no need to install anything. Notice this is a service that can be used for free
several hours each month, and later requires a subscription.

To start using it:

1. Go to https://github.com/codespaces
2. Click "New codespace"

3. Select ejabberd repository, desired branch, click "Create codespace"

-331/512 - Copyright © 2008 - 2024 ProcessOne

http://0.0.0.0:1870/
https://github.com/codespaces

Basic Usage

Basic Usage

Once you have VSCode running and ejabberd git repository opened, open some erlang file, so Erlang LS extension gets started,
and now you can go to RUN and run ejabberd for the first time. The first time it will take some time to compile, be patient.

Now you can:

e In RUN click > Relive to compile and start ejabberd
* In EXPLORER open any source code, and add a breakpoint
e In TERMINAL you can call: ejabberdctl register admin localhost somepass

e In PORTS you can view the addresses you can use to connect to the running ejabberd
The ejabberd configuration file is in _build/relive/conf/ejabberd.yml.

You can connect to ejabberd using a XMPP client using HTTPS BOSH or WS on port 5443. Webadmin is on port 5280, if it
complains 404, add admin/ to the URL.

- 332/512 - Copyright © 2008 - 2024 ProcessOne

Getting Started with XMPPFramework

Getting Started with XMPPFramework

Introduction

XMPP development on smartphone has always been challenging given the constraints on mobile platform.
This area will help you understand the challenges and help you get started with XMPP development on Apple iOS platform.

The main library to support XMPP on iOS is XMPPFramework.

XMPPFramework

XMPPFramework is a large framework relying on several dependencies. The easiest way to get started is to use Cocoapods to
integrate XMPPFramework in your own project. It will take care of adding all dependencies and perform all the required
configuration steps.

Here are the steps needed to get started:

. Create a new iOS project in Xcode, if you do not have one.
. If you do not yet have a podfile, create it if pod init command from the project root directory.
. Edit your podfile to use XMPPFramework as a target. It may looks like:

platform :ios, '6.0'
use_frameworks!

target 'projectname' do
pod 'XMPPFramework"'
end

. Run pod install command. It should download, install and configure three pods.

. Open your XCode project with the newly created workspace file instead of the project file. This is required by Cocoapods so that
you can use the installed Pods.

. At this stage, you should be able to build your project successfully with the XMPP framework setup.

- 333/512 - Copyright © 2008 - 2024 ProcessOne

https://github.com/robbiehanson/XMPPFramework

API

API

ejabberd ReST API

Introduction

ejabberd comes with a extensive API that allows to perform administrative tasks from outside ejabberd:

1. Manage the XMPP server: restart the server, reload configuration, ...
2. Integrate the XMPP server with your existing platforms: create a MUC room when a new party starts in your platform, ...
3. Allow users to perform tasks using simple basic programs with no XMPP support: send a message from the smartwatch, show the

number of offline messages...

The system is powerful, versatile, and you can configure access permissions very finely. In the next sections you will learn the
basic concepts, how to start using ejabberd's API, how to adjust it to your needs, and integrate ejabberd with your existing
systems.

! command

Command defined in some ejabberd module API backend, that can be executed using some API frontend.

ejabberd's API currently includes over 200 API Commands, see API Reference for a detailed list of all the existing commands.
Alternatively you can view the list of commands grouped by their API Tags.

API Backends

API commands are defined and implemented in Erlang or Elixir modules that can be considered "API backends". Some modules
included in ejabberd define their commands, while the majority of the existing commands are defined and implemented in:

* ejabberd_admin
* mod_admin extra

* mod muc admin

When developing a module in Erlang or Elixir, it can define new commands, see Commands page for details.

API Frontends

The API commands are exposed through interfaces, implemented in modules that can be considered "API frontends". Available
interfaces are:

e ejabberdctl command-line tool

e mod http api for HTTP ReST calls using JSON data

* mod adhoc api for calls using a XMPP client

* WebAdmin uses most commands to build the web pages

 ejabberd xmlrpc for XML-RPC calls (deprecated in favor of mod http api)
There are other interfaces available in the ejabberd-contrib Github repository:

* mod rest for HTTP ReST calls using plaintext data

* mod shcommands for a WebAdmin page

- 334/512 - Copyright © 2008 - 2024 ProcessOne

https://github.com/processone/ejabberd-contrib/tree/master/mod_rest
https://github.com/processone/ejabberd-contrib/tree/master/mod_shcommands

Process Flow

Let's review the process flow with one example:

1. API Client: Your web client (in this case Curl) sends an HTTP query

Process Flow

2. API Frontend: mod http api checks the client authentication, permissions to execute the command and processes command

arguments, th

en calls

3. API Backend: mod admin extra actually executes the command. In this case, it will query to proper internal ejabberd code.

sequenceDiagram
autonumber
participant C
box ejabberd
participant F
participant B
participant M
end
Note right of

C-->>F: POST /api/get_last
{"user": "tom",6
"host": "localhost"}

Note right of

as API Client
curl

as API Frontend
mod_http_api
as API Backend
mod_admin_extra
as Module
mod_last

C: HTTP Query

F: API Command Call

F-->>B: get_last
tom localhost

Note right of

B: Erlang Function Call

B-->>M: mod_last:get_last_info
(tom, localhost)

activate M

M-->>B: {ok,
1743517196,
"Disconnected"}

deactivate M

B-->>F: {"2025-04-01T14:19:56Z",
"Disconnected"}

F-->>C: 200 OK
{"timestamp":
 "2025-04-01T14:19:56Z",
"status":"Disconnected"}

The role of gj

abberd API

As we have seen, ejabberd API role is to provide and control access to ejabberd commands over HTTP/HTTPS.

Thus, ejabberd API primary goal is to grant access to some or all ejabberd "commands".

An admin ejabberd ReST API requires:

* At least one admin user, if you plan to check credentials for command access (You can alternatively rely on originating IP

addresses).

« HTTP/HTTPS handlers configured to expose the desired commands.

e The selection of authentication mechanisms that can be used to access the API. Two mechanisms are available to access the
HTTP API:

* Basic authentication. This mechanism is enabled by default.

e OAuth 2.0 token based authentication. It has to be explicitly added to the config file.

Learning the

The first resources to read to learn about ejabberd ReST API configuration are the following:

basics

e Simple API configuration

» Using ejabberd client API libraries and tools

The list of available commands is available in the API Reference section. Additionally, you can check at runtime what commands

are available in your installed server using ejabberdctl:

) ejabberdctl

Usage: ejabberdctl [--no-timeout] [--node nodename] [--version api_version] command [arguments]

Available com
backup file

ban_account

) ejabberdctl

mands in this ejabberd node:
Store internal Mnesia database to binary backup file

user host reason
Ban an account: kick sessions and set random password

help

- 335/512 -

Copyright © 2008 - 2024 ProcessOne

Next steps

) ejabberdctl help ban_account

Next steps

You can dig deeper into ejabberd ReST API configuration on the following pages:

* API Permissions

¢ OAuth Support

-336/512 - Copyright © 2008 - 2024 ProcessOne

API Reference

API Reference

gase note

This section describes API commands of ejabberd 26.01. If you are using an old ejabberd release, please refer to the corresponding
archived version of this page in the Archive.

The commands that changed in this version are marked with ¢)

abort_delete_old_mam_messages

© addedin22.05
Abort currently running delete old MAM messages operation
Arguments:

* host :: string : Name of host where operation should be aborted
Result:

e status :: string : Status text
Tags: mam, purge
Module: mod mam
Examples:

POST /api/abort_delete_old_mam_messages

{

"host": "localhost"

}

HTTP/1.1 200 OK
"Operation aborted"

abort_delete_old_messages

© addedin22.05

Abort currently running delete old offline messages operation
Arguments:

* host :: string : Name of host where operation should be aborted
Result:

e status :: string : Status text
Tags: offline, purge
Examples:

POST /api/abort_delete_old_messages
{

"host": "localhost"

}

HTTP/1.1 200 OK
"Operation aborted"

-337/512 - Copyright © 2008 - 2024 ProcessOne

add blocked domain

add_blocked_domain

© addedin25.07

Add domain to list of blocked domains
Arguments:

* host :: string

* domain :: string

Result:

* res :: string : Raw result string
Tags: spam

Module: mod antispam

Examples:

POST /api/add_blocked_domain

"host": "aaaaa",
"domain": "bbbbb"
}

HTTP/1.1 200 OK
"Success"

add_rosteritem

() updated in 24.02
Add an item to a user's roster (supports ODBC)
The client will receive a jabber:iqg:roster IQ notifying them of the added entry.
Arguments:

e localuser :: string : User name

e localhost :: string : Server name

e user :: string : Contact user name

* host :: string : Contact server name
* nick :: string : Nickname

e groups :: [group::string] : Groups

* subs :: string : Subscription

Result:

* res :: integer : Status code (@ on success, 1 otherwise)
Tags: roster, vl

Module: mod admin extra

Examples:

POST /api/add_rosteritem

{
"localuser": "user1",
"localhost": "myserver.com",
"user": "user2",
"host": "myserver.com",
"nick": "User 2",
"groups": [

- 338/512 - Copyright © 2008 - 2024 ProcessOne

"Friends",
"Team 1"

1
"subs": "both"

}

HTTP/1.1 200 OK

"

add_to_spam_filter_cache
© addedin25.07
Add JID to spam filter cache
Arguments:

* host :: string

e jid :: string

Result:

* res :: string : Raw result string
Tags: spam

Module: mod antispam
Examples:

POST /api/add_to_spam_filter_cache

"host": "aaaaa",
"jid": "bbbbb"
}

HTTP/1.1 200 OK
"Success"

announce_motd_delete

© addedin25.10

Delete Message Of The Day

If HOST is all, send to all hosts.

Arguments:

* host :: string

Result:

* res :: integer : Status code (o on success, 1 otherwise)
Tags: announce

Module: mod announce

Examples:

POST /api/announce_motd_delete

{

"host": "aaaaa"

}

HTTP/1.1 200 OK

- 339/512 -

add to spam filter cache

Copyright © 2008 - 2024 ProcessOne

announce motd get

announce_motd_get

© addedin25.10

Get Message Of The Day

You can use ' \n ' in the message body to write a newline.
Arguments:

* host :: string

Result:

* motd :: {subject::string, body::string}

Tags: announce

Module: mod announce

Examples:

POST /api/announce_motd_get
{

"host": "aaaaa"

}

HTTP/1.1 200 OK
{

"subject": "aaaaa",
"body": "bbbbb"
}

announce_motd_set_online

© addedin25.10

Set Message Of The Day and send to online users

If HOST is all, send to all hosts. You can use ' \n ' in the message body to write a newline.
Arguments:

* host :: string
* subject :: string

* body :: string

Result:

* res :: integer : Status code (0 on success, 1 otherwise)
Tags: announce

Module: mod announce

Examples:

POST /api/announce_motd_set_online

{

"host": "aaaaa",
"subject": "bbbbb",
"body": "ccccc"

}

HTTP/1.1 200 OK

"

- 340/512 - Copyright © 2008 - 2024 ProcessOne

announce motd update

announce_motd_update

© addedin25.10

Update Message Of The Day

If HOST is all, send to all hosts. You can use ' \n ' in the message body to write a newline.
Arguments:

* host :: string
* subject :: string

* body :: string

Result:

* res :: integer : Status code (o on success, 1 otherwise)
Tags: announce

Module: mod announce

Examples:

POST /api/announce_motd_update
{

"host": "aaaaa",
"subject": "bbbbb",
"body": "ccccc"

}

HTTP/1.1 200 OK

wn

announce_send_all

© addedin25.10

Send announcement to all users

If HOST is all, send to all hosts. You can use ' \n ' in the message body to write a newline.
Arguments:

* host :: string
* subject :: string

* body :: string

Result:

 res :: integer : Status code (0 on success, 1 otherwise)
Tags: announce

Module: mod announce

Examples:

POST /api/announce_send_all

{

"host": "aaaaa",
"subject": "bbbbb",
"body": "ccccc"

}

HTTP/1.1 200 OK

wn

- 341/512 - Copyright © 2008 - 2024 ProcessOne

announce send online

announce_send_online

© addedin25.10

Send announcement to online users

If HOST is all, send to all hosts. You can use ' \n ' in the message body to write a newline.
Arguments:

* host :: string
* subject :: string

* body :: string

Result:

* res :: integer : Status code (o on success, 1 otherwise)
Tags: announce

Module: mod announce

Examples:

POST /api/announce_send_online

{

"host": "aaaaa",
"subject": "bbbbb",
"body": "ccccc"

}

HTTP/1.1 200 OK

wn

backup

Backup the Mnesia database to a binary file
Arguments:

e file :: string : Full path for the destination backup file
Result:

* res :: string : Raw result string

Tags: mnesia

Examples:

POST /api/backup

"file": "/var/lib/ejabberd/database.backup"
}

HTTP/1.1 200 OK
"Success"

ban_account

Q improved in 25.08
Ban an account

This command kicks the account sessions, stores ban details in the account private storage, which blocks login to the account.
This command requires mod private to be enabled. Check also get ban details API and unban account API.

- 342/512 - Copyright © 2008 - 2024 ProcessOne

bookmarks to pep

Arguments:

* user :: string : User name to ban
* host :: string : Server name

* reason :: string : Reason for banning user

Result:

* res :: integer : Status code (0 on success, 1 otherwise)
Tags: accounts, v2

Module: mod admin extra

Examples:

POST /api/ban_account
{

"user": "attacker",
"host": "myserver.com",
"reason": "Spaming other users"

}

HTTP/1.1 200 OK

"

bookmarks_to_pep

Export private XML storage bookmarks to PEP
Arguments:

e user :: string : Username

* host :: string : Server

Result:

* res :: string : Raw result string
Tags: private

Module: mod private
Examples:

POST /api/bookmarks_to_pep
{

"user": "bob",

"host": "example.com"

}

HTTP/1.1 200 OK
"Bookmarks exported"

change_password

Change the password of an account
Arguments:

* user :: string : User name
* host :: string : Server name

* newpass :: string : New password for user
Result:

e res :: integer : Status code (@ on success, 1 otherwise)

- 343/512 - Copyright © 2008 - 2024 ProcessOne

Tags: accounts
Module: mod admin extra
Examples:

POST /api/change_password
{

"user": "peter",
"host": "myserver.com",
"newpass": "blank"

}

HTTP/1.1 200 OK
change_room_option
Change an option in a MUC room
Arguments:

e room :: string : Room name
* service :: string : MUC service
* option :: string : Option name

* value :: string : Value to assign

Result:

* res :: integer : Status code (o on success, 1 otherwise)
Tags: muc room

Module: mod muc admin

Examples:

POST /api/change_room_option

{

"room": "roomi"

"service": "conference.example.com",
"option": "members_only",

"value": "true"

}

HTTP/1.1 200 OK

check_account

Check if an account exists or not
Arguments:

* user :: string : User name to check

* host :: string : Server to check

Result:

* res :: integer : Status code (o on success, 1 otherwise)
Tags: accounts

Module: mod admin extra

Examples:

- 344/512 -

change room option

Copyright © 2008 - 2024 ProcessOne

check password

POST /api/check_account
{
"user": "peter",
"host": "myserver.com"

}

HTTP/1.1 200 OK

"

check_password

Check if a password is correct
Arguments:

* user :: string : User name to check
* host :: string : Server to check

* password :: string : Password to check

Result:

* res :: integer : Status code (0 on success, 1 otherwise)
Tags: accounts

Module: mod admin extra

Examples:

POST /api/check_password
{

"user": "peter",
"host": "myserver.com",
"password": "secret"

}

HTTP/1.1 200 OK

"

check_password_hash

Check if the password hash is correct
Allows hash methods from the Erlang/OTP crypto application.
Arguments:

 user :: string : User name to check

* host :: string : Server to check

* passwordhash :: string : Password's hash value

e hashmethod :: string : Name of hash method

Result:

* res :: integer : Status code (0 on success, 1 otherwise)
Tags: accounts

Module: mod admin extra

Examples:

POST /api/check_password_hash
{
"user": "peter",
"host": "myserver.com",
"passwordhash": "5ebe2294ecdded@f@8eab7690d2a6ee69"
"hashmethod": "md5"

- 345/512 - Copyright © 2008 - 2024 ProcessOne

https://www.erlang.org/doc/apps/crypto/crypto.html

cleanup expired invite tokens

}

HTTP/1.1 200 OK

"

cleanup_expired_invite_tokens

© added in 26.01

Delete invite tokens that have expired
Arguments:

Result:

* num _deleted :: integer

Tags: purge

Module: mod invites

Examples:

POST /api/cleanup_expired_invite_tokens

{
}

HTTP/1.1 200 OK
42

clear_cache

Clear database cache on all nodes

Arguments:

Result:

* res :: integer : Status code (o on success, 1 otherwise)
Tags: server

Examples:

POST /api/clear_cache
{

}

HTTP/1.1 200 OK

wn

compile
Recompile and reload Erlang source code file
Arguments:
e file :: string : Filename of erlang source file to compile
Result:
* res :: integer : Status code (0 on success, 1 otherwise)
Tags: erlang

Module: mod admin extra

- 346/512 - Copyright © 2008 - 2024 ProcessOne

Examples:

POST /api/compile

"file": "/home/me/srcs/ejabberd/mod_example.erl"

}

HTTP/1.1 200 OK

wn

connected_users

List all established sessions

Arguments:

Result:

* connected users :: [sessions::string] : List of users sessions full JID

Tags: session
Examples:

POST /api/connected_users

{

}

HTTP/1.1 200 OK

[

"userl@example.com/Home",

"user2@example.com/54134"

1

connected_users_info

List all established sessions and their information

Arguments:

Result:

connected users

* connected users_info :: [{jid::string, connection::string, ip::string, port::integer, priority::integer, node::string, uptime::integer,

status::string, resource::string, statustext::string}]

Tags: session

Module: mod_admin extra

Examples:

POST /api/connected_users_info

{
}

HTTP/1.1 200 OK
[
{

"jid": "useri@myserver.com/tka",

"connection": "c2s",
"ip": "127.0.0.1",
"port": 42656,
"priority": 8,

"node": "ejabberd@localhost",

"uptime": 231,
"status": "dnd",
"resource": "tka",
"statustext": ""

-347/512 -

Copyright © 2008 - 2024 ProcessOne

connected_users_number

Get the number of established sessions
Arguments:

Result:

* num_sessions :: integer

Tags: session, statistics

Examples:

POST /api/connected_users_number

{
}

HTTP/1.1 200 OK
2

connected_users_vhost

Get the list of established sessions in a vhost

Arguments:

* host :: string : Server name

Result:

* connected users vhost :: [sessions::string] : List of sessions full JIDs
Tags: session

Module: mod admin extra

Examples:

POST /api/connected_users_vhost

"host": "myexample.com"

}

HTTP/1.1 200 OK

[
"useril@myserver.com/tka",
"user2@localhost/tka"

]

convert_to_scram

Convert the passwords of users to SCRAM

Arguments:

 host :: string : Vhost which users' passwords will be scrammed
Result:

* res :: integer : Status code (0 on success, 1 otherwise)

Tags: sql

Examples:

POST /api/convert_to_scram

"host": "example.com"

- 348/512 -

connected users number

Copyright © 2008 - 2024 ProcessOne

convert to yaml

}

HTTP/1.1 200 OK

"

convert_to_yaml

Convert the input file from Erlang to YAML format
Arguments:

e in :: string : Full path to the original configuration file

 out :: string : And full path to final file

Result:

* res :: integer : Status code (o on success, 1 otherwise)
Tags: config

Examples:

POST /api/convert_to_yaml
{
"in": "/etc/ejabberd/ejabberd.cfg",
"out": "/etc/ejabberd/ejabberd.yml"
}

HTTP/1.1 200 OK

wn

count_banned

© addedin25.10

Count number of banned accounts

The HOST argument can be all to query all vhosts.
Arguments:

* host :: string : Server name

Result:

* banned :: integer : Number of banned accounts
Tags: accounts

Module: mod admin extra

Examples:

POST /api/count_banned
{

"host": "myserver.com"

}

HTTP/1.1 200 OK
6

create_room

Create a MUC room name@service in host

- 349/512 - Copyright © 2008 - 2024 ProcessOne

Arguments:

* room :: string : Room name
* service :: string : MUC service

* host :: string : Server host

Result:

* res :: integer : Status code (0 on success, 1 otherwise)
Tags: muc room

Module: mod muc admin

Examples:

POST /api/create_room

{

"room": "roomi"
"service": "conference.example.com",
"host": "example.com"

}

HTTP/1.1 200 OK

"

create_room_with_opts

Q modified in 25.03

Create a MUC room name@service in host with given options

create room with opts

Options affiliations and subscribers are lists of tuples. The tuples in the list are separated with ; and the elements in each

tuple are separated with = (until ejabberd 24.12 the separators were , and
more nodes. In summary, affiliations is like Type1=J1D1;Type2=31D2 and subscribers is like

JID1=Nickl=NodelA=NodelB=NodelC; JID2=Nick2=Node2 .
Arguments:

e room :: string : Room name
* service :: string : MUC service
e host :: string : Server host

* options :: [{name::string, value::string}] : List of options
Result:

* res :: integer : Status code (@ on success, 1 otherwise)
Tags: muc room, muc sub

Module: mod muc_admin

Examples:

POST /api/create_room_with_opts

{
"room": "roomi",
"service": "conference.example.com",
"host": "localhost",
"options": [
{
"name": "members_only",
"value": "true"
3
{
"name": "affiliations",
"value": "owner=userl@localhost;member=user2@localhost"
3
{
"name": "subscribers",

- 350/512 -

respectively). Each subscriber can have one or

Copyright © 2008 - 2024 ProcessOne

"value": "user3@localhost=User3=messages=subject;user4@localhost=User4=messages"

}
]
}

HTTP/1.1 200 OK

wn

create_rooms_file

Q improved in 24.12
Create the rooms indicated in file
Provide one room JID per line. Rooms will be created after restart.
Arguments:
* file :: string : Path to the text file with one room JID per line
Result:
* res :: integer : Status code (o on success, 1 otherwise)
Tags: muc
Module: mod muc admin
Examples:

POST /api/create_rooms_file

{

"file": "/home/ejabberd/rooms.txt"

}

HTTP/1.1 200 OK

delete_expired_messages

Delete expired offline messages from database
Arguments:

Result:

* res :: integer : Status code (o on success, 1 otherwise)
Tags: offline, purge

Examples:

POST /api/delete_expired_messages

{
}

HTTP/1.1 200 OK

delete_expired_pubsub_items

© addedin21.12
Delete expired PubSub items

Arguments:

-351/512 -

create rooms file

Copyright © 2008 - 2024 ProcessOne

Result:

* res :: integer : Status code (o on success, 1 otherwise)
Tags: purge

Module: mod pubsub

Examples:

POST /api/delete_expired_pubsub_items
{

}

HTTP/1.1 200 OK

delete_mnesia

Delete elements in Mnesia database for a given vhost
Arguments:

* host :: string : Vhost which content will be deleted in Mnesia database
Result:

* res :: integer : Status code (o on success, 1 otherwise)

Tags: mnesia

Examples:

POST /api/delete_mnesia
{

"host": "example.com"

}

HTTP/1.1 200 OK

delete_old_mam_messages

Delete MAM messages older than DAYS
Valid message TYPEs: chat, groupchat, all.
Arguments:

e type :: string : Type of messages to delete (chat, groupchat, all)

* days :: integer : Days to keep messages

Result:

e res :: integer : Status code (@ on success, 1 otherwise)
Tags: mam, purge

Module: mod mam

Examples:

POST /api/delete_old_mam_messages

{
"type": "all",
"days": 31

}

- 352/512 -

delete mnesia

Copyright © 2008 - 2024 ProcessOne

HTTP/1.1 200 OK

"

delete_old_mam_messages_batch

© addedin22.05

Delete MAM messages older than DAYS
Valid message TYPEs: chat, groupchat, all.
Arguments:

* host :: string : Name of host where messages should be deleted

* type :: string : Type of messages to delete (chat, groupchat, all)
* days :: integer : Days to keep messages

* batch size :: integer : Number of messages to delete per batch

* rate :: integer : Desired rate of messages to delete per minute
Result:

e res :: string : Raw result string

Tags: mam, purge

Module: mod mam

Examples:

POST /api/delete_old_mam_messages_batch
{

"host": "localhost",
"type": "all",
"days": 31,

"batch_size": 1000,
"rate": 10000
}

HTTP/1.1 200 OK
"Removal of 5000 messages in progress"

delete_old_mam_messages_status

© addedin22.05

Status of delete old MAM messages operation

Arguments:

* host :: string : Name of host where messages should be deleted
Result:

e status :: string : Status test

Tags: mam, purge

Module: mod mam

Examples:

POST /api/delete_old_mam_messages_status

"host": "localhost"

}

HTTP/1.1 200 OK
"Operation in progress, delete 5000 messages'

- 353/512 -

delete old mam messages batch

Copyright © 2008 - 2024 ProcessOne

delete_old_messages

Delete offline messages older than DAYS

Arguments:

e days :: integer : Number of days

Result:

e res :: integer : Status code (@ on success, 1 otherwise)
Tags: offline, purge

Examples:

POST /api/delete_old_messages

"days": 31
}

HTTP/1.1 200 OK

wn

delete_old_messages_batch

© addedin22.05
Delete offline messages older than DAYS
Arguments:

* host :: string : Name of host where messages should be deleted
e days :: integer : Days to keep messages
* batch size :: integer : Number of messages to delete per batch

e rate :: integer : Desired rate of messages to delete per minute
Result:

e res :: string : Raw result string

Tags: offline, purge

Examples:

POST /api/delete_old_messages_batch

"host": "localhost",
"days": 31,
"batch_size": 1000,
"rate": 10000

}

HTTP/1.1 200 OK
"Removal of 5000 messages in progress"

delete_old_messages_status

© addedin22.05
Status of delete old offline messages operation
Arguments:

* host :: string : Name of host where messages should be deleted

- 354/512 -

delete old messages

Copyright © 2008 - 2024 ProcessOne

delete old pubsub items

Result:

e status :: string : Status test
Tags: offline, purge
Examples:

POST /api/delete_old_messages_status
{

"host": "localhost"

}

HTTP/1.1 2060 OK
"Operation in progress, delete 5000 messages'

delete_old_pubsub_items

© addedin21.12

Keep only NUMBER of PubSub items per node
Arguments:

* number :: integer : Number of items to keep per node
Result:

* res :: integer : Status code (@ on success, 1 otherwise)
Tags: purge

Module: mod pubsub

Examples:

POST /api/delete_old_pubsub_items

"number": 1000
}

HTTP/1.1 200 OK

wn

delete_old_push_sessions

Remove push sessions older than DAYS
Arguments:
e days :: integer
Result:
* res :: integer : Status code (@ on success, 1 otherwise)
Tags: purge
Module: mod push
Examples:
POST /api/delete_old_push_sessions

"days": 1
}

HTTP/1.1 200 OK

wn

- 355/512 - Copyright © 2008 - 2024 ProcessOne

delete old users

delete_old_users

Delete users that didn't log in last days, or that never logged
To protect admin accounts, configure this for example:

access_rules:
protect_old_users:
- allow: admin
- deny: all

Arguments:

e days :: integer : Last login age in days of accounts that should be removed
Result:

* res :: string : Raw result string

Tags: accounts, purge

Module: mod admin extra

Examples:

POST /api/delete_old_users

{
"days": 30
}

HTTP/1.1 200 OK
"Deleted 2 users: ["oldman@myserver.com", '"test@myserver.com"]"

delete_old_users_vhost

Delete users that didn't log in last days in vhost, or that never logged
To protect admin accounts, configure this for example:

access_rules:
delete_old_users:
- deny: admin
- allow: all

Arguments:

* host :: string : Server name

* days :: integer : Last login age in days of accounts that should be removed
Result:

* res :: string : Raw result string

Tags: accounts, purge

Module: mod admin extra

Examples:

POST /api/delete_old_users_vhost
"host": "myserver.com",
"days": 30

}

HTTP/1.1 200 OK
"Deleted 2 users: ["oldman@myserver.com", "test@myserver.com"]"

- 356/512 - Copyright © 2008 - 2024 ProcessOne

delete_rosteritem

Delete an item from a user's roster (supports ODBC)

The client will receive a jabber:iq:roster IQ notifying them of the removed entry.

Arguments:

e localuser :: string : User name
e localhost :: string : Server name
e user :: string : Contact user name

* host :: string : Contact server name

Result:

* res :: integer : Status code (o on success, 1 otherwise)
Tags: roster

Module: mod admin extra

Examples:

POST /api/delete_rosteritem

"localuser": "user1",
"localhost": "myserver.com"
"user": "user2",

"host": "myserver.com"

}

HTTP/1.1 200 OK

wn

destroy_room

Destroy a MUC room
Arguments:

e room :: string : Room name

e service :: string : MUC service

Result:

* res :: integer : Status code (o on success, 1 otherwise)
Tags: muc room

Module: mod muc admin

Examples:

POST /api/destroy_room
{
"room": "roomli",
"service": "conference.example.com"

}

HTTP/1.1 200 OK

destroy_rooms_file

Destroy the rooms indicated in file

Provide one room JID per line.

-357/512 -

delete rosteritem

Copyright © 2008 - 2024 ProcessOne

drop from spam filter cache

Arguments:

* file :: string : Path to the text file with one room JID per line
Result:

* res :: integer : Status code (o on success, 1 otherwise)
Tags: muc

Module: mod muc admin

Examples:

POST /api/destroy_rooms_file

"file": "/home/ejabberd/rooms.txt"

}

HTTP/1.1 200 OK

"

drop_from_spam_filter_cache

Q added in 25.07
Drop JID from spam filter cache
Arguments:

* host :: string

e jid :: string

Result:

e res :: string : Raw result string
Tags: spam

Module: mod antispam
Examples:

POST /api/drop_from_spam_filter_cache

"host": "aaaaa",
"jid": "bbbbb"
}

HTTP/1.1 200 OK
"Success"

dump

Dump the Mnesia database to a text file
Arguments:

e file :: string : Full path for the text file
Result:

* res :: string : Raw result string

Tags: mnesia

Examples:

- 358/512 - Copyright © 2008 - 2024 ProcessOne

dump config

POST /api/dump

"file": "/var/lib/ejabberd/database.txt"
}

HTTP/1.1 200 OK
"Success"

dump_config

Dump configuration in YAML format as seen by ejabberd
Arguments:

e out :: string : Full path to output file

Result:

* res :: integer : Status code (@ on success, 1 otherwise)
Tags: config

Examples:

POST /api/dump_config
{
"out": "/tmp/ejabberd.yml"

}

HTTP/1.1 200 OK

wn

dump_table

Dump a Mnesia table to a text file
Arguments:

¢ file :: string : Full path for the text file

e table :: string : Table name
Result:

* res :: string : Raw result string
Tags: mnesia

Examples:

POST /api/dump_table

{
"file": "/var/lib/ejabberd/table-muc-registered.txt"
"table": "muc_registered"

}

HTTP/1.1 200 OK
"Success"

evacuate_kindly

© addedin24.12
Evacuate kindly all users (kick and prevent login)

Inform users and rooms, don't allow login, wait, restart the server, and don't allow new logins. Provide the delay in seconds, and
the announcement quoted, for example: ejabberdctl evacuate_kindly 60 \"The server will stop in one minute.\"

- 359/512 - Copyright © 2008 - 2024 ProcessOne

Arguments:

* delay :: integer : Seconds to wait

e announcement :: string : Announcement to send, with quotes
Result:

* res :: integer : Status code (o on success, 1 otherwise)
Tags: server

Examples:

POST /api/evacuate_kindly
{
"delay": 60,
"announcement": "Server will stop now."

}

HTTP/1.1 200 OK

wn

expire_invite_tokens
© addedin 26.01
Sets expiration to a date in the past for all tokens belonging to user
Arguments:

* username :: string

* host :: string

Result:

* num _deleted :: integer
Tags: purge

Module: mod invites
Examples:

POST /api/expire_invite_tokens
{

"username": "aaaaa"

"host": "bbbbb"

}

HTTP/1.1 200 OK
42

expire_spam_filter_cache
© addedin25.07
Remove old/unused spam JIDs from cache
Arguments:

e host :: string

* seconds :: integer
Result:

* res :: string : Raw result string

-360/512 -

expire invite tokens

Copyright © 2008 - 2024 ProcessOne

export2sql

Tags: spam
Module: mod antispam
Examples:

POST /api/expire_spam_filter_cache
{

"host": "aaaaa",

"seconds": 1

}

HTTP/1.1 200 OK
"Success"

export2sql

Export virtual host information from Mnesia tables to SQL file

Configure the modules to use SQL, then call this command. After correctly exported the database of a vhost, you may want to
delete from mnesia with the delete mnesia API.

Arguments:

* host :: string : Vhost
* file :: string : Full path to the destination SQL file

Result:

* res :: integer : Status code (o on success, 1 otherwise)
Tags: mnesia

Examples:

POST /api/export2sql
{

"host": "example.com"

"file": "/var/lib/ejabberd/example.com.sql"
}

HTTP/1.1 200 OK

wn

export_db
© addedin 26.01
Export database records for host to files
Arguments:

* host :: string : Name of host that should be exported

e dir :: string : Directory name where exported files should be created
Result:

* res :: string : Raw result string

Tags: db

Examples:

POST /api/export_db
{

"host": "localhost",

"dir": "/home/ejabberd/export"
}

- 361/512 - Copyright © 2008 - 2024 ProcessOne

HTTP/1.1 200 OK
"Export started"

export_db_abort

© addedin 26.01

Abort currently running export peration

Arguments:

* host :: string : Name of host where export is performed
Result:

e status :: string : Operation status

Tags: db

Examples:

POST /api/export_db_abort

"host": "localhost"

}

HTTP/1.1 200 OK
"Operation aborted"

export_db_status

© addedin 26.01

Return current status of export operation

Arguments:

* host :: string : Name of host where export is performed
Result:

e status :: string : Current operation status

Tags: db

Examples:

POST /api/export_db_status

"host": "localhost"

}

HTTP/1.1 200 OK
"Operation in progress: 'Exporting mod_mam', exported 5000 records so far"

export_piefxis
Export data of all users in the server to PIEFXIS files (XEP-0227)
Arguments:
e dir :: string : Full path to a directory
Result:
* res :: integer : Status code (@ on success, 1 otherwise)

Tags: mnesia

-362/512 -

export db abort

Copyright © 2008 - 2024 ProcessOne

export piefxis host

Examples:

POST /api/export_piefxis

"dir": "/var/lib/ejabberd/"
}

HTTP/1.1 200 OK

wn

export_piefxis_host
Export data of users in a host to PIEFXIS files (XEP-0227)

Arguments:

e dir :: string : Full path to a directory

* host :: string : Vhost to export

Result:

* res :: integer : Status code (@ on success, 1 otherwise)
Tags: mnesia

Examples:

POST /api/export_piefxis_host
{
"dir": "/var/lib/ejabberd/"
"host": "example.com"

}

HTTP/1.1 200 OK

gc
© addedin 20.01
Force full garbage collection
Arguments:
Result:
e res :: integer : Status code (@ on success, 1 otherwise)
Tags: server
Examples:

POST /api/gc
{

}

HTTP/1.1 200 OK

wn

gen_html_doc_for_commands

Generates html documentation for ejabberd commands

- 363/512 - Copyright © 2008 - 2024 ProcessOne

gen markdown doc for commands

Arguments:

e file :: string : Path to file where generated documentation should be stored
* regexp :: string : Regexp matching names of commands or modules that will be included inside generated document

e examples :: string : Comma separated list of languages (chosen from java, perl, xmlrpc, json) that will have example
invocation include in markdown document

Result:

e res :: integer : Status code (@ on success, 1 otherwise)
Tags: documentation

Examples:

POST /api/gen_html_doc_for_commands
{
"file": "/home/me/docs/api.html",
"regexp": "mod_admin",
"examples": "java, json"

}

HTTP/1.1 200 OK

gen_markdown_doc_for_commands

Generates markdown documentation for ejabberd commands
Arguments:

* file :: string : Path to file where generated documentation should be stored

e regexp :: string : Regexp matching names of commands or modules that will be included inside generated document, or
runtime to get commands registered at runtime

* examples :: string : Comma separated list of languages (chosen from java, perl, xmlrpc, json) that will have example
invocation include in markdown document

Result:

* res :: integer : Status code (0 on success, 1 otherwise)
Tags: documentation

Examples:

POST /api/gen_markdown_doc_for_commands
{
"file": "/home/me/docs/api.html",
"regexp": "mod_admin",
"examples": "java, json"

}

HTTP/1.1 200 OK

"

gen_markdown_doc_for_tags

© addedin21.12
Generates markdown documentation for ejabberd commands
Arguments:

* file :: string : Path to file where generated documentation should be stored

- 364/512 - Copyright © 2008 - 2024 ProcessOne

generate invite

Result:

* res :: integer : Status code (o on success, 1 otherwise)
Tags: documentation

Examples:

POST /api/gen_markdown_doc_for_tags

"file": "/home/me/docs/tags.md"

}

HTTP/1.1 200 OK

generate_invite

© addedin 26.01

Create a new 'create account' invite

Arguments:

* host :: string : Hostname to generate 'create account' invite for.
Result:

e invite :: {invite uri::string, landing page::string}

Tags: accounts

Module: mod invites

Examples:

POST /api/generate_invite

"host": "example.com"

}

HTTP/1.1 200 OK

{
"invite_uri": "xmpp:example.com?register;preauth=4bsdpwVrRDQYnF9aQQKXGbF7",
"landing_page": "https://example.com/invites/4bsdpwVrRDQYnF9aQQKXGbF7"

}

generate_invite_with_username

© addedin 26.01
Create a new 'create account' invite token with a preselected username
Arguments:

* username :: string : Preselected Username

* host :: string : hostname to generate 'create account' invite for.
Result:

e invite :: {invite uri::string, landing page::string}

Tags: accounts

Module: mod invites

Examples:

- 365/512 - Copyright © 2008 - 2024 ProcessOne

POST /api/generate_invite_with_username

{

"username":
"host":

}

"juliet",

"example.com"

HTTP/1.1 200 OK

{

"invite_uri": "xmpp:juliet@example.com?register;preauth=4bsdpwVrRDQYnF9aQQKXGhbF7"
"landing_page": "https://example.com/invites/4bsdpwVrRDQYnF9aQQKXGbF7"

}

get_ban_details

Q added in 24.06

Get ban details about an account

Check ban account API.

Arguments:

* user :: string : Name of a user to check ban information

e host :: string : Server name

Result:

* ban details :: [{name::string, value::string}]

Tags: accounts, v2

Module: mod admin extra

Examples:

POST /api/get_ban_details

{

"user":
"host":

}

"attacker",
"myserver.com"

HTTP/1.1 200 OK

[
{

"name":

"value":

"name":

"value":

"name":

"value":

"name":

"value":

"reason",
"Spamming other users"

"bandate",
'2024-04-22T09:16:47.975312Z2"

"lastdate",
'2024-04-22T08:39:122"

"lastreason",
"Connection reset by peer"

get_blocked_domains

Q added in 25.07

Get list of domains being blocked

Arguments:

* host :: string

Result:

* blocked_domains :: [jid::string]

- 366/512 -

get ban details

Copyright © 2008 - 2024 ProcessOne

Tags: spam
Module: mod antispam
Examples:

POST /api/get_blocked_domains

"host": "aaaaa"

}

HTTP/1.1 200 OK
[

"aaaaa",
"bbbbb"

get_cookie

Get the Erlang cookie of this node
Arguments:

Result:

* cookie :: string : Erlang cookie used for authentication by ejabberd

Tags: erlang
Module: mod admin extra
Examples:

POST /api/get_cookie
{

}

HTTP/1.1 200 OK
"MWTAVMODFELNLSMYXPPD"

get_last

Get last activity information

Timestamp is UTC and XEP-0082 format, for example: 2017-02-23T22:25:28.063062Z

Arguments:

e user :: string : User name

e host :: string : Server name

Result:

ONLINE

e last activity :: {timestamp::string, status::string} : Last activity timestamp and status

Tags: last
Module: mod admin extra
Examples:

POST /api/get_last

{
"user": "user1"
"host": "myserver.com"

}

HTTP/1.1 200 OK

"timestamp": "2017-06-30T14:32:16.060684Z"

-367/512 -

get cookie

Copyright © 2008 - 2024 ProcessOne

https://xmpp.org/extensions/xep-0082.html

get loglevel

"status": "ONLINE"
}

get_loglevel

Get the current loglevel
Arguments:
Result:
e levelatom :: string : Tuple with the log level number, its keyword and description
Tags: logs
Examples:

POST /api/get_loglevel
{

}

HTTP/1.1 200 OK
"warning"

get_mam_count

© addedin24.10
Get number of MAM messages in a local user archive
Arguments:

e user :: string

* host :: string

Result:

* value :: integer : Number
Tags: mam

Module: mod mam
Examples:

POST /api/get_mam_count
{
"user": "aaaaa",
"host": "bbbbb"

}

HTTP/1.1 200 OK
5]

get_master

© added in24.06

Get master node of the clustered Mnesia tables
If there is no master, returns none .
Arguments:

Result:

* nodename :: string

- 368/512 - Copyright © 2008 - 2024 ProcessOne

get offline count

Tags: cluster
Examples:

POST /api/get_master
{

}

HTTP/1.1 200 OK
"aaaaa"

get_offline_count

Get the number of unread offline messages
Arguments:

* user :: string

e host :: string

Result:

* value :: integer : Number
Tags: offline

Module: mod admin extra
Examples:

POST /api/get_offline_count
{

"user": "aaaaa",

"host": "bbbbb"

}

HTTP/1.1 200 OK
5

get_presence

Retrieve the resource with highest priority, and its presence (show and status message) for a given user.
The jid value contains the user JID with resource.
The show value contains the user presence flag. It can take limited values:

* available

* chat (Free for chat)

* away

¢ dnd (Do not disturb)

e xa (Not available, extended away)

* unavailable (Not connected)
status is a free text defined by the user client.
Arguments:

e user :: string : User name

* host :: string : Server name
Result:

e presence :: {jid::string, show::string, status::string}

- 369/512 - Copyright © 2008 - 2024 ProcessOne

Tags: session
Module: mod admin extra
Examples:

POST /api/get_presence

{
"user": "peter",
"host": "myexample.com"
}
HTTP/1.1 200 OK
{
"jid": "userl@myserver.com/tka",
"show": "dnd"
"status": "Busy"
}

get_room_affiliation
Get affiliation of a user in MUC room
Arguments:

e room :: string : Room name
 service :: string : MUC service

e jid :: string : User JID

Result:

e affiliation :: string : Affiliation of the user
Tags: muc room

Module: mod muc admin

Examples:

POST /api/get_room_affiliation

"room": "roomi",
"service": "conference.example.com",
"jid": "useri@example.com"

HTTP/1.1 200 OK
"member"

get_room_affiliations
Q updated in 24.12
Get the list of affiliations of a MUC room
Arguments:

e room :: string : Room name

e service :: string : MUC service

Result:

get room_affiliation

« affiliations :: [{jid::string, affiliation::string, reason::string}] : The list of affiliations with jid, affiliation and reason

Tags: muc room, v3

Module: mod muc admin

-370/512 -

Copyright © 2008 - 2024 ProcessOne

get room history

Examples:

POST /api/get_room_affiliations
{

"room": "roomi"
"service": "conference.example.com"

}

HTTP/1.1 200 OK
[
{
"jid": "useril@example.com",
"affiliation": "member"
"reason": "member"

get_room_history
© addedin23.04
Get history of messages stored inside MUC room state
Arguments:

e room :: string : Room name

 service :: string : MUC service

Result:

e history :: [{timestamp::string, message::string}1]
Tags: muc room

Module: mod muc admin

Examples:

POST /api/get_room_history
{

"room": "roomli"
"service": "conference.example.com"

}

HTTP/1.1 2060 OK
[
{
"timestamp": "aaaaa",
"message": "bbbbb"
I
{
"timestamp": "ccccc",
"message": "ddddd"
}
]

get_room_occupants

Get the list of occupants of a MUC room
Arguments:

* room :: string : Room name

e service :: string : MUC service

Result:

e occupants :: [{jid::string, nick::string, role::string}] : The list of occupants with JID, nick and affiliation
Tags: muc room

Module: mod muc_admin

-371/512 - Copyright © 2008 - 2024 ProcessOne

get room occupants number

Examples:

POST /api/get_room_occupants

{

"room": "roomi"
"service": "conference.example.com"

}

HTTP/1.1 200 OK
[

{
"jid": "useril@example.com/psi",
"nick": "User 1"
"role": "owner"

}

get_room_occupants_number

Get the number of occupants of a MUC room
Arguments:

* room :: string : Room name

e service :: string : MUC service

Result:

e occupants :: integer : Number of room occupants
Tags: muc room

Module: mod muc_admin

Examples:

POST /api/get_room_occupants_number

{

"room": "roomi"
"service": "conference.example.com"

}

HTTP/1.1 200 OK
7
get_room_options
Get options from a MUC room
Arguments:

e room :: string : Room name

e service :: string : MUC service

Result:

* options :: [{name::string, value::string}] : List of room options tuples with name and value
Tags: muc room

Module: mod muc admin

Examples:

POST /api/get_room_options
{
"room": "roomli"
"service": "conference.example.com"

}

HTTP/1.1 200 OK
[

-372/512 - Copyright © 2008 - 2024 ProcessOne

get roster

{
"name": "members_only"
"value": "true"
}
]
get_roster

Q improved in 23.10

Get list of contacts in a local user roster
subscription can be: none, from, to, both.
pending can be: in, out, none.
Arguments:

e user :: string

e host :: string

Result:

e contacts :: [{jid::string, nick::string, subscription::string, pending::string, groups::[group::string]}1]
Tags: roster

Module: mod _admin_extra

Examples:

POST /api/get_roster
{
"user": "aaaaa",
"host": "bbbbb"

}

HTTP/1.1 2060 OK
[
{
"jid": "user2@localhost",
"nick": "User 2",
"subscription": "none",
"pending": "subscribe",
"groups": [
"Group1l"
]
}
]

get_roster_count

Q added in 24.06
Get number of contacts in a local user roster
Arguments:

e user :: string

* host :: string

Result:

* value :: integer : Number
Tags: roster

Module: mod admin extra

Examples:

- 373/512 - Copyright © 2008 - 2024 ProcessOne

get spam filter cache

POST /api/get_roster_count
{

"user": "aaaaa",

"host": "bbbbb"

}

HTTP/1.1 200 OK
5

get_spam_filter_cache
Q added in 25.07
Show spam filter cache contents
Arguments:
* host :: string
Result:
e spammers :: [{jid::string, timestamp::integer}]
Tags: spam
Module: mod antispam
Examples:

POST /api/get_spam_filter_cache

"host": "aaaaa"

}

HTTP/1.1 200 OK
[
{
"jid": "aaaaa",
"timestamp": 1

b

"jid": "bbbbb",
"timestamp": 2

get_subscribers

List subscribers of a MUC conference
Arguments:

e room :: string : Room name

* service :: string : MUC service

Result:

 subscribers :: [jid::string] : The list of users that are subscribed to that room
Tags: muc room, muc sub

Module: mod muc admin

Examples:

POST /api/get_subscribers
{

"room": "roomi"
"service": "conference.example.com"

}

HTTP/1.1 200 OK
[

-374/512 - Copyright © 2008 - 2024 ProcessOne

"user2@example.com"
"user3@example.com"

]

get_user_rooms

Get the list of rooms where this user is occupant
Arguments:

e user :: string : Username

* host :: string : Server host
Result:

* rooms :: [room::string]
Tags: muc

Module: mod muc admin
Examples:

POST /api/get_user_rooms
{

"user": "tom",

"host": "example.com"

}

HTTP/1.1 200 OK
[

"rooml@conference.example.com",
"room2@conference.example.com"

]

get_user_subscriptions

Q added in 21.04
Get the list of rooms where this user is subscribed
Arguments:

e user :: string : Username

e host :: string : Server host

Result:

e rooms :: [{roomjid::string, usernick::string, nodes::[node
Tags: muc, muc sub

Module: mod muc admin

Examples:

POST /api/get_user_subscriptions

{

"user": "tom"
: ’
"host": "example.com"

}

HTTP/1.1 200 OK
[

{
"roomjid": "rooml@conference.example.com"
"usernick": "Tommy",
"nodes": [
"mucsub:config"
]
}

]

- 375/512 -

::string]}]

get user rooms

Copyright © 2008 - 2024 ProcessOne

get vcard

get_vcard

Get content from a vCard field
Some vcard field names in get / set_vcard are:

* FN - Full Name

* NICKNAME - Nickname
« BDAY - Birthday

» TITLE - Work: Position
* ROLE - Work: Role

For a full list of vCard fields check XEP-0054: vcard-temp
Arguments:

* user :: string : User name
 host :: string : Server name

* name :: string : Field name
Result:

e content :: string : Field content
Tags: vcard

Module: mod admin extra
Examples:

POST /api/get_vcard
{

"user": "user1",
"host": "myserver.com",
"name": "NICKNAME"

}

HTTP/1.1 200 OK
"User 1"

get_vcard2

Get content from a vCard subfield
Some vcard field names and subnames in get /set_vcard2 are:

* N FAMILY - Family name

* N GIVEN - Given name

* N MIDDLE - Middle name

* ADR CTRY - Address: Country

* ADR LOCALITY - Address: City

* TEL HOME - Telephone: Home

* TEL CELL - Telephone: Cellphone
* TEL WORK - Telephone: Work

e TEL VOICE - Telephone: Voice

« EMAIL USERID - E-Mail Address

* ORG ORGNAME - Work: Company
* ORG ORGUNIT - Work: Department

- 376/512 - Copyright © 2008 - 2024 ProcessOne

https://xmpp.org/extensions/xep-0054.html

get vcard2 multi

For a full list of vCard fields check XEP-0054: vcard-temp
Arguments:

e user :: string : User name

e host :: string : Server name

* name :: string : Field name

e subname :: string : Subfield name
Result:

e content :: string : Field content
Tags: vcard

Module: mod admin extra
Examples:

POST /api/get_vcard2

{
"user": "user1"
"host": "myserver.com"
"hame": "N
"subname": "FAMILY"

}

HTTP/1.1 200 OK
"Schubert"

get_vcard2_multi

Get multiple contents from a vCard field
Some vcard field names and subnames in get / set_vcard2 are:

e N FAMILY - Family name

* N GIVEN - Given name

* N MIDDLE - Middle name

* ADR CTRY - Address: Country

* ADR LOCALITY - Address: City

» TEL HOME - Telephone: Home

e TEL CELL - Telephone: Cellphone
* TEL WORK - Telephone: Work

e TEL VOICE - Telephone: Voice

* EMAIL USERID - E-Mail Address

* ORG ORGNAME - Work: Company
* ORG ORGUNIT - Work: Department

For a full list of vCard fields check XEP-0054: vcard-temp
Arguments:

* user :: string
* host :: string
* name :: string

e subname :: string

- 377/512 - Copyright © 2008 - 2024 ProcessOne

https://xmpp.org/extensions/xep-0054.html
https://xmpp.org/extensions/xep-0054.html

halt

Result:

* contents :: [value::string]
Tags: vcard

Module: mod admin extra
Examples:

POST /api/get_vcard2_multi
{

"user": "aaaaa",
"host": "bbbbb",
"name": "ccccc",

"subname": "ddddd"
}

HTTP/1.1 200 OK
[

"aaaaa",
"bbbbb"

]

halt

© addedin23.10

Halt ejabberd abruptly with status code 1

Arguments:

Result:

* res :: integer : Status code (o on success, 1 otherwise)
Tags: server

Examples:

POST /api/halt
{

}

HTTP/1.1 200 OK

help

Get list of commands, or help of a command (only ejabberdctl)

This command is exclusive for the ejabberdctl command-line script, don't attempt to execute it using any other API frontend.
Arguments:

Result:

* res :: integer : Status code (o on success, 1 otherwise)

Tags: ejabberdctl

Examples:

POST /api/help
{
}

HTTP/1.1 200 OK

- 378/512 - Copyright © 2008 - 2024 ProcessOne

import db

import_db
© addedin 26.01
Import database records for host to files
Arguments:

* host :: string : Name of host that should be imported

e dir :: string : Directory name where imported files should be created
Result:

* res :: string : Raw result string

Tags: db

Examples:

POST /api/import_db
{

"host": "localhost",

"dir": "/home/ejabberd/export"
}

HTTP/1.1 200 OK
"Import started"

import_db_abort
© addedin 26.01
Abort currently running import peration
Arguments:
* host :: string : Name of host where import is performed
Result:
e status :: string : Operation status
Tags: db
Examples:

POST /api/import_db_abort
{

"host": "localhost"

}

HTTP/1.1 200 OK
"Operation aborted"

import_db_status
© addedin 26.01
Return current status of import operation
Arguments:
* host :: string : Name of host where import is performed
Result:

e status :: string : Current operation status

- 379/512 - Copyright © 2008 - 2024 ProcessOne

import dir

Tags: db
Examples:

POST /api/import_db_status

"host": "localhost"

}

HTTP/1.1 200 OK
"Operation in progress: 'Importing mod_mam', imported 5000 records so far"

import_dir
Import users data from jabberd14 spool dir
Arguments:
e file :: string : Full path to the jabberd14 spool directory
Result:
* res :: string : Raw result string
Tags: mnesia
Examples:

POST /api/import_dir

"file": "/var/lib/ejabberd/jabberd14/"
}

HTTP/1.1 200 OK
"Success"

import_file
Import user data from jabberd14 spool file
Arguments:
e file :: string : Full path to the jabberd14 spool file
Result:
* res :: string : Raw result string
Tags: mnesia
Examples:

POST /api/import_file

"file": "/var/lib/ejabberd/jabberd14.spool"
}

HTTP/1.1 200 OK
"Success"

import_piefxis
Import users data from a PIEFXIS file (XEP-0227)

Arguments:

e file :: string : Full path to the PIEFXIS file

- 380/512 - Copyright © 2008 - 2024 ProcessOne

import prosody

Result:

* res :: integer : Status code (o on success, 1 otherwise)
Tags: mnesia

Examples:

POST /api/import_piefxis
{

"file": "/var/lib/ejabberd/example.com.xml"

}

HTTP/1.1 200 OK

import_prosody

Import data from Prosody

Note: this requires ejabberd to be compiled with ./configure --enable-lua (which installs the tluert library).
Arguments:

e dir :: string : Full path to the Prosody data directory

Result:

* res :: integer : Status code (0 on success, 1 otherwise)

Tags: mnesia, sql

Examples:

POST /api/import_prosody

"dir": "/var/lib/prosody/datadump/"
}

HTTP/1.1 200 OK

wn

incoming_s2s_number

Number of incoming s2s connections on the node
Arguments:

Result:

* s2s _incoming :: integer

Tags: statistics, s2s

Examples:

POST /api/incoming_s2s_number

{
}

HTTP/1.1 200 OK
1

install_fallback

Install Mnesia database from a binary backup file

- 381/512 - Copyright © 2008 - 2024 ProcessOne

join cluster

The binary backup file is installed as fallback: it will be used to restore the database at the next ejabberd start. This means that,
after running this command, you have to restart ejabberd. This command requires less memory than restore API.

Arguments:

e file :: string : Full path to the fallback file
Result:

* res :: string : Raw result string

Tags: mnesia

Examples:

POST /api/install_fallback

"file": "/var/lib/ejabberd/database.fallback"
}

HTTP/1.1 200 OK
"Success"

join_cluster

Q improved in 24.06
Join our local node into the cluster handled by Node

This command returns immediately, even before the joining process has completed. Consequently, if you are using ejabberdctl
(or some CTL_ON_ container environment variables) to run more commands afterwards, you may want to precede them with the
started ejabberdctl command to ensure the clustering process has completed before proceeding. For example: join_cluster

ejabberd@main > started > list_cluster.
Arguments:
* node :: string : Nodename of the node to join
Result:
* res :: string : Raw result string
Tags: cluster
Examples:

POST /api/join_cluster

"node": "ejabberdl@machine7"

}

HTTP/1.1 200 OK
"Success"

join_cluster_here

Q added in 24.06
Join a remote Node here, into our cluster
Arguments:

* node :: string : Nodename of the node to join here
Result:

* res :: string : Raw result string

-382/512 - Copyright © 2008 - 2024 ProcessOne

Tags: cluster
Examples:

POST /api/join_cluster_here

"node": "ejabberdi@machine7"

}

HTTP/1.1 200 OK
"Success"

kick_session

Kick a user session
Arguments:

* user :: string : User name
* host :: string : Server name
e resource :: string : User's resource

* reason :: string : Reason for closing session

Result:

* res :: integer : Status code (o on success, 1 otherwise)
Tags: session

Module: mod admin extra

Examples:

POST /api/kick_session
{
"user": "peter",
"host": "myserver.com"
"resource": "Psi",
"reason": "Stuck connection"

}

HTTP/1.1 200 OK

"

kick user

© modified in 24.06
Disconnect user's active sessions
Arguments:

e user :: string : User name

* host :: string : Server name
Result:

* res :: string : Raw result string
Tags: session, v2

Examples:

POST /api/kick_user
{

"user": "useri"
"host": "example.com"

- 383/512 -

kick session

Copyright © 2008 - 2024 ProcessOne

kick users

HTTP/1.1 200 OK
"Kicked sessions: 2"

kick_users

© addedin25.04
Disconnect all given host users' active sessions
Arguments:
* host :: string : Server name
Result:
* num_sessions :: integer : Number of sessions that were kicked
Tags: session
Examples:

POST /api/kick_users

"host": "example.com"

}

HTTP/1.1 200 OK
3

leave_cluster

Remove and shutdown Node from the running cluster

This command can be run from any running node of the cluster, even the node to be removed. In the removed node, this
command works only when using ejabberdctl, not mod http api or other code that runs inside the same ejabberd node that will
leave.

Arguments:

* node :: string : Nodename of the node to kick from the cluster
Result:

e res :: integer : Status code (@ on success, 1 otherwise)
Tags: cluster

Examples:

POST /api/leave_cluster

{

"node": "ejabberdil@machine8"

}

HTTP/1.1 200 OK

wn

list_banned

Q added in 25.10
List banned accounts

The HOST argument can be all to query all vhosts.

-384/512 - Copyright © 2008 - 2024 ProcessOne

list certificates

Arguments:

* host :: string : Server name

Result:

e banned :: [jid::string] : The list of accounts that are banned
Tags: accounts

Module: mod admin extra

Examples:

POST /api/list_banned

"host": "myserver.com"

}

HTTP/1.1 200 OK
[

"attacker@example.com",
"user3@example.com"

]

list_certificates

Lists all ACME certificates

Arguments:

Result:

e certificates :: [{domain::string, file::string, used::string}]
Tags: acme

Examples:

POST /api/list_certificates
{
}

HTTP/1.1 200 OK
[

{
"domain": "aaaaa",
"file": "bbbbb",
"used": "ccccc"

I

{
"domain": "ddddd",
"file": "eeeee",
"used": "fffff"

}

]
list_cluster

List running nodes that are part of this cluster
Arguments:

Result:

* nodes :: [node::string]

Tags: cluster

Examples:

- 385/512 - Copyright © 2008 - 2024 ProcessOne

list cluster detailed

POST /api/list_cluster
{

}

HTTP/1.1 200 OK

[
"ejabberdi@machine7",
"ejabberdi@machine8"

1

list_cluster_detailed

© added in24.06

List nodes (both running and known) and some stats
Arguments:

Result:

* nodes :: [{name::string, running::string, status::string, online users::integer, processes::integer, uptime seconds::integer,
master node::string}]

Tags: cluster
Examples:

POST /api/list_cluster_detailed
{

}

HTTP/1.1 200 OK
[
{

"name": "ejabberd@localhost",
"running": "true",
"status": "The node ejabberd is started. Status...",
"online_users": 7,
"processes": 348,
"uptime_seconds": 60,
"master_node": "none"

list_invites
© addedin26.01
List invite tokens
Arguments:
e host :: string : Hostname tokens are valid for
Result:

e invites :: [{token::string, valid::string, created at::string, expires::string, type::string, inviter::string, invitee::string,
account name::string, token uri::string, landing page::string}]

Tags: accounts
Module: mod invites
Examples:

POST /api/list_invites

"host": "example.com"

}

HTTP/1.1 200 OK

- 386/512 - Copyright © 2008 - 2024 ProcessOne

"token": "aaaaa",
"valid": "bbbbb",
"created_at": "ccccc",
"expires": "ddddd",
"type": "eeeee",
"inviter": "fffff",
"invitee": "ggggg",
"account_name": "hhhhh"

"token_uri": "iijii",

"token": "KKKkk",
"valid": "11111",
"created_at": "mmmmm",
"expires": "nnnnn",
"type": "oooo00",
"inviter": "ppppp",
"invitee": "qqgqq",
"account_name": "rrrrr",
"token_uri": "sssss",
"landing_page": "ttttt"

load

Restore Mnesia database from a text dump file

load

Restore immediately. This is not recommended for big databases, as it will consume much time, memory and processor. In that

case it's preferable to use backup API and install fallback API.

Arguments:

e file :: string : Full path to the text file
Result:

* res :: string : Raw result string
Tags: mnesia

Examples:

POST /api/load

"file": "/var/lib/ejabberd/database.txt"
}

HTTP/1.1 200 OK
"Success"

man

Q added in 20.01
Generate Unix manpage for current ejabberd version
Arguments:
Result:
* res :: string : Raw result string
Tags: documentation
Examples:

POST /api/man
{

}

-387/512 -

Copyright © 2008 - 2024 ProcessOne

HTTP/1.1 200 OK
"Success"

mnesia_change

Q added in 25.08

Change the erlang node name in the mnesia database (only ejabberdctl)

mnesia_change

This command internally calls the mnesia change nodename API. This is a special command that starts and stops ejabberd

several times: do not attempt to run this command when ejabberd is running. This command is exclusive for the ejabberdctl

command-line script, don't attempt to execute it using any other API frontend.

Arguments:

* old node name :: string : Old erlang node name
Result:

* res :: integer : Status code (0 on success, 1 otherwise)
Tags: ejabberdctl, mnesia

Examples:

POST /api/mnesia_change

{

"old_node_name": "ejabberd@oldmachine"

}

HTTP/1.1 200 OK

wn

mnesia_change_nodename

Change the erlang node name in a backup file
Arguments:

* oldnodename :: string : Name of the old erlang node
* newnodename :: string : Name of the new node

* oldbackup :: string : Path to old backup file

* newbackup :: string : Path to the new backup file

Result:

* res :: string : Raw result string
Tags: mnesia

Examples:

POST /api/mnesia_change_nodename

{
"oldnodename": "ejabberd@machine1",
"newnodename": "ejabberd@machine2",
"oldbackup": "/var/lib/ejabberd/old.backup"
"newbackup": "/var/lib/ejabberd/new.backup"

}

HTTP/1.1 200 OK
"Success"

mnesia_info

Dump info on global Mnesia state

- 388/512 -

Copyright © 2008 - 2024 ProcessOne

mnesia_info ctl

Arguments:
Result:

e res :: string
Tags: mnesia
Examples:

POST /api/mnesia_info

{
}

HTTP/1.1 200 OK
"aaaaa"

mnesia_info_ctl
© renamed in 24.02
Show information of Mnesia system (only ejabberdctl)
This command is exclusive for the ejabberdctl command-line script, don't attempt to execute it using any other API frontend.
Arguments:
Result:
e res :: integer : Status code (@ on success, 1 otherwise)
Tags: ejabberdctl, mnesia
Examples:

POST /api/mnesia_info_ctl
{
}

HTTP/1.1 200 OK

wn

mnesia_list_tables

© addedin25.03

List of Mnesia tables

Arguments:

Result:

e tables :: [{name::string, storage type::string, elements::integer, memory kb::integer, memory mb::integer}]
Tags: mnesia

Examples:

POST /api/mnesia_list_tables
{

}

HTTP/1.1 200 OK
[
{

"name": "aaaaa",
"storage_type": "bbbbb",
"elements": 1,
"memory_kb": 2,

- 389/512 - Copyright © 2008 - 2024 ProcessOne

"memory_mb": 3

iy

{
"name": "ccccc"
"storage_type": "ddddd"
"elements": 4,
"memory_kb": 5,
"memory_mb": 6

}

]

mnesia_table_change_storage

Q added in 25.03

Change storage type of a Mnesia table

Storage type can be: ram_copies, disc_copies, disc_only_copies, remote_copy .

Arguments:

e table :: string

» storage type :: string

Result:

* res :: string : Raw result string
Tags: mnesia

Examples:

POST /api/mnesia_table_change_storage
{

"table": "aaaaa",

"storage_type": "bbbbb"

}

HTTP/1.1 200 OK
"Success"

mnesia_table_info

Dump info on Mnesia table state
Arguments:

e table :: string : Mnesia table name
Result:

* res :: string

Tags: mnesia

Examples:

POST /api/mnesia_table_info

"table": "roster"

}

HTTP/1.1 200 OK
"aaaaa"

module_check

Check the contributed module repository compliance

-390/512 -

mnesia table change storage

Copyright © 2008 - 2024 ProcessOne

module install

Arguments:

* module :: string : Module name

Result:

* res :: integer : Status code (o on success, 1 otherwise)
Tags: modules

Examples:

POST /api/module_check
{

"module": "mod_rest"

}

HTTP/1.1 200 OK

module_install

Compile, install and start an available contributed module
Arguments:

* module :: string : Module name

Result:

* res :: integer : Status code (o on success, 1 otherwise)
Tags: modules

Examples:

POST /api/module_install

"module": "mod_rest"

}

HTTP/1.1 200 OK

wn

module_uninstall

Uninstall a contributed module

Arguments:

e module :: string : Module name

Result:

* res :: integer : Status code (0 on success, 1 otherwise)
Tags: modules

Examples:

POST /api/module_uninstall

"module": "mod_rest"

}

HTTP/1.1 200 OK

i

- 391/512 - Copyright © 2008 - 2024 ProcessOne

module upgrade

module_upgrade

Q improved in 25.07

Upgrade the running code of an installed module

In practice, this uninstalls, cleans the compiled files, and installs the module
Arguments:

* module :: string : Module name

Result:

* res :: integer : Status code (@ on success, 1 otherwise)

Tags: modules

Examples:

POST /api/module_upgrade
{

"module": "mod_rest"

}

HTTP/1.1 200 OK

"

modules_available

List the contributed modules available to install

Arguments:

Result:

* modules :: [{name::string, summary::string}] : List of tuples with module name and description
Tags: modules

Examples:

POST /api/modules_available
{

}

HTTP/1.1 200 OK
{

"mod_cron": "Execute scheduled commands",
"mod_rest": "ReST frontend"

}

modules_installed

List the contributed modules already installed

Arguments:

Result:

* modules :: [{name::string, summary::string}] : List of tuples with module name and description
Tags: modules

Examples:

POST /api/modules_installed
{

-392/512 - Copyright © 2008 - 2024 ProcessOne

modules update specs

}

HTTP/1.1 200 OK

{
"mod_cron": "Execute scheduled commands",
"mod_rest": "ReST frontend"

}

modules_update_specs

Update the module source code from Git

A connection to Internet is required

Arguments:

Result:

* res :: integer : Status code (© on success, 1 otherwise)
Tags: modules

Examples:

POST /api/modules_update_specs
{

}

HTTP/1.1 200 OK

wn

muc_get_registered_nick

Q added in 25.10
Get nick registered for that account in the MUC service
Arguments:

e user :: string : user name
* host :: string : user host

* service :: string : MUC service
Result:

* nick :: string : nick registered
Tags: muc

Module: mod muc_admin
Examples:

POST /api/muc_get_registered_nick
{

nuser: "tim"
: ,

"host": "example.org",

"service": "conference.example.org"

}

HTTP/1.1 200 OK
nTim"

muc_get_registered_nicks

Q added in 25.10

List all nicks registered in the MUC service

- 393/512 - Copyright © 2008 - 2024 ProcessOne

muc online rooms

Arguments:

e service :: string : MUC service

Result:

e registrations :: [{user::string, host::string, nick::string}]
Tags: muc

Module: mod muc admin

Examples:

POST /api/muc_get_registered_nicks

{

"service": "conference.example.org"

}

HTTP/1.1 200 OK
[

{
"user": "Tim",
"host": "timexa",
"nick": "example.com"
I
{
"user": "Laia",
"host": "laia001",
"nick": "example2.org"
}

muc_online_rooms

List existing rooms
Ask for a specific host, or global to use all vhosts.
Arguments:

e service :: string : MUC service, or global for all
Result:

* rooms :: [room::string] : List of rooms JIDs
Tags: muc

Module: mod muc admin

Examples:

POST /api/muc_online_rooms

{

"service": "conference.example.com"
}
HTTP/1.1 200 OK
[

"rooml@conference.example.com",
"room2@conference.example.com"

1

muc_online_rooms_bhy regex

List existing rooms filtered by regexp

Ask for a specific host, or global to use all vhosts.

-394/512 - Copyright © 2008 - 2024 ProcessOne

Arguments:

* service :: string : MUC service, or global for all

* regex :: string : Regex pattern for room name

Result:

* rooms :: [{jid::string, public::string, participants::integer}] : List of rooms with summary

Tags: muc
Module: mod muc admin
Examples:

POST /api/muc_online_rooms_by_regex

{
"service": "conference.example.com",
"regex": "Aprefix"

}

HTTP/1.1 200 OK
[
{
"jid": "rooml@conference.example.com",
"public": "true",
"participants": 10

"jid": "room2@conference.example.com",
"public": "false",
"participants": 10

muc_online_rooms_count

© added in 26.01

Return number of online rooms
Ask for a specific host, or global to use all vhosts.
Arguments:

e service :: string : MUC service, or global for all
Result:

e count :: integer : Number of active rooms
Tags: muc

Module: mod muc_admin

Examples:

POST /api/muc_online_rooms_count

{

"service": "conference.example.com"

}

HTTP/1.1 200 OK
2137

muc_register_nick
Q updated in 24.12

Register a nick to a User JID in a MUC service

- 395/512 -

muc_online rooms count

Copyright © 2008 - 2024 ProcessOne

Arguments:

* nick :: string : nick
* user :: string : user name
* host :: string : user host

e service :: string : MUC service

Result:

e res :: integer : Status code (@ on success, 1 otherwise)
Tags: muc, v3

Module: mod muc_admin

Examples:

POST /api/muc_register_nick

{

nick™: "Tim"
: ,
nuser™: "tim"
: ’
"host": "example.org",
"service": "conference.example.org"

}

HTTP/1.1 200 OK

muc_unregister_nick

Q updated in 24.12

Unregister the nick registered by that account in the MUC service

Arguments:

* user :: string : user name
e host :: string : user host

e service :: string : MUC service

Result:

* res :: integer : Status code (o on success, 1 otherwise)
Tags: muc, v3

Module: mod muc admin

Examples:

POST /api/muc_unregister_nick

{

"user": "tim",
"host": "example.org",
"service": "conference.example.org"

}

HTTP/1.1 200 OK

wn

num_resources

Get the number of resources of a user

-396/512 -

muc_unregister nick

Copyright © 2008 - 2024 ProcessOne

oauth add client implicit

Arguments:

e user :: string : User name

* host :: string : Server name

Result:

* resources :: integer : Number of active resources for a user
Tags: session

Module: mod admin extra

Examples:

POST /api/num_resources
{
"user": "peter",
"host": "myserver.com"

}

HTTP/1.1 200 OK
5

oauth_add_client_implicit
Add OAuth client id with implicit grant type
Arguments:

e client id :: string
* client name :: string

e redirect_uri :: string

Result:

* res :: string : Raw result string
Tags: oauth

Examples:

POST /api/oauth_add_client_implicit

"client_id": "aaaaa",
"client_name": "bbbbb",
"redirect_uri": "ccccc"

}

HTTP/1.1 200 OK
"Success"

oauth_add_client_password

Add OAuth client id with password grant type
Arguments:

e client id :: string
e client name :: string

* secret :: string
Result:
* res :: string : Raw result string

Tags: oauth

- 397/512 - Copyright © 2008 - 2024 ProcessOne

Examples:

POST /api/oauth_add_client_password

"client_id": "aaaaa",
"client_name": "bbbbb"
"secret": "ccccc"

}

HTTP/1.1 200 OK
"Success"

oauth_issue_token

© updated in 24.02
Issue an OAuth token for the given jid
Arguments:

e jid :: string : Jid for which issue token
e ttl :: integer : Time to live of generated token in seconds

* scopes :: [scope::string] : List of scopes to allow

Result:

 result :: {token::string, scopes::[scope::string], expires in::string}

Tags: oauth, v1
Examples:

POST /api/oauth_issue_token
{

"jid": "user@server.com"

"ttl": 3600,

"scopes": [
"connected_users_number",
"muc_online_rooms"

]

}

HTTP/1.1 200 OK
{
"token": "aaaaa",
"scopes": [
"bbbbb",
"cccec"
1,

"expires_in": "ddddd"

oauth_list_tokens

List OAuth tokens, user, scope, and seconds to expire (only Mnesia)

List OAuth tokens, their user and scope, and how many seconds remain until expiry

Arguments:

Result:

e tokens :: [{token::string, user::string, scope::string, expires in::string}]

Tags: oauth
Examples:

POST /api/oauth_list_tokens
{

}

-398/512 -

oauth issue token

Copyright © 2008 - 2024 ProcessOne

HTTP/1.1 200 OK
[

{
"token": "aaaaa",
"user": "bbbbb",
"scope": "ccccc",
"expires_in": "ddddd"
i
{
"token": "eeeee",

"user": "fffff",

"scope": "ggggg",
"expires_in": "hhhhh"

}
]

oauth_remove_client

Remove OAuth client id
Arguments:

e client id :: string

Result:

* res :: string : Raw result string
Tags: oauth

Examples:

POST /api/oauth_remove_client

{

"client_id": "aaaaa"

}

HTTP/1.1 2060 OK
"Success"

oauth_revoke_token

Q changed in 22.05

Revoke authorization for an OAuth token
Arguments:

e token :: string

Result:

e res :: string : Raw result string

Tags: oauth

Examples:

POST /api/oauth_revoke_token
{

"token": "aaaaa"

}

HTTP/1.1 200 OK
"Success"

outgoing_s2s_number

Number of outgoing s2s connections on the node

Arguments:

-399/512 -

oauth remove client

Copyright © 2008 - 2024 ProcessOne

Result:

* s2s outgoing :: integer
Tags: statistics, s2s
Examples:

POST /api/outgoing_s2s_number
{

}

HTTP/1.1 200 OK
1

print_sql_schema
© added in24.02

Print SQL schema for the given RDBMS (only ejabberdctl)

print sql schema

This command is exclusive for the ejabberdctl command-line script, don't attempt to execute it using any other API frontend.

Arguments:

e db _type :: string : Database type: pgsql | mysql | sqlite

e db version :: string : Your database version: 16.1, 8.2.0...

* multihost_schema :: string : Use multihost schema: 0, false, 1 or true

Result:

* res :: integer : Status code (© on success, 1 otherwise)
Tags: ejabberdctl, sql

Examples:

POST /api/print_sql_schema

{
"db_type": "pgsql",
"db_version": "16.1"
"multihost_schema": "true"

}

HTTP/1.1 200 OK

wn

privacy_set

Send a IQ set privacy stanza for a local account
Arguments:

e user :: string : Username
* host :: string : Server name

* xmlquery :: string : Query XML element

Result:

* res :: integer : Status code (o on success, 1 otherwise)
Tags: stanza

Module: mod admin extra

-400/512 -

Copyright © 2008 - 2024 ProcessOne

Examples:

POST /api/privacy_set

{

"user": "user1",

"host": "myserver.com",

"xmlquery": "<query xmlns='jabber:iq:privacy'>..."
}

HTTP/1.1 200 OK

private_get

Get some information from a user private storage
Arguments:

e user :: string : User name

* host :: string : Server name

e element :: string : Element name

* ns :: string : Namespace

Result:

e res :: string

Tags: private

Module: mod _admin extra

Examples:

POST /api/private_get
{

"user": "user1",

"host": "myserver.com",
"element": "storage",

"ns": "storage:rosternotes"

}

HTTP/1.1 200 OK
"aaaaa"

private_set

Set to the user private storage
Arguments:

e user :: string : User name
* host :: string : Server name

e element :: string : XML storage element

Result:

* res :: integer : Status code (@ on success, 1 otherwise)
Tags: private

Module: mod admin extra

Examples:

POST /api/private_set
{

"user": "user1",
"host": "myserver.com",

-401/512 -

private get

Copyright © 2008 - 2024 ProcessOne

process_rosteritems

"element": "<storage xmlns='storage:rosternotes'/>"

}

HTTP/1.1 200 OK

process_rosteritems

List/delete rosteritems that match filter
Explanation of each argument:

e action: what to do with each rosteritem that matches all the filtering options
e subs : subscription type

e asks : pending subscription

e users : the JIDs of the local user

e contacts : the JIDs of the contact in the roster
Mnesia backend:
Allowed values in the arguments:

* action = list | delete

any | SUB[:SUBJ*

* subs

* asks any | ASK[:ASK]*
e users = any | JID[:JID]*

* contacts = any | JID[:JID]*
where

* SUB = none | from| to | both
* ASK = none | out | in

* JID = characters valid in a JID, and can use the globs: *, 2, ! and [...]

This example will list roster items with subscription none, from or to that have any ask property, of local users which JID is in
the virtual host example.org and that the contact JID is either a bare server name (without user part) or that has a user part and
the server part contains the word icq: list none:from:to any *@example.org *:*@*icq*

SQL backend:

Allowed values in the arguments:

* action = list | delete
* subs = any | SUB

e asks = any | ASK

e users = JID

* contacts = JID
where

* SUB = none | from | to | both
* ASK = none | out | in

e JID = characters valid in a JID, and can use the globs: _ and %

This example will list roster items with subscription to that have any ask property, of local users which JID is in the virtual host
example.org and that the contact JID's server part contains the word icq: list to any %@example.org %@%icq%

- 402/512 - Copyright © 2008 - 2024 ProcessOne

Arguments:

e action :: string
* subs :: string
* asks :: string
* users :: string

e contacts :: string

Result:

e response :: [{user::string, contact::string}]
Tags: roster

Module: mod admin extra

Examples:

POST /api/process_rosteritems
{
"action": "aaaaa",
"subs": "bbbbb",
"asks": "ccccc",
"users": "ddddd",
"contacts": "eeeee"

}

HTTP/1.1 200 OK
[
{
"user": "aaaaa",
"contact": "bbbbb"

"user": "ccccc",
"contact": "ddddd"

push_alltoall

Add all the users to all the users of Host in Group
Arguments:

* host :: string : Server name

* group :: string : Group name

Result:

* res :: integer : Status code (o on success, 1 otherwise)
Tags: roster

Module: mod admin extra

Examples:

POST /api/push_alltoall
{
"host": "myserver.com",
"group": "Everybody"
}

HTTP/1.1 200 OK

wn

push_roster

Push template roster from file to a user

-403/512 -

push alltoall

Copyright © 2008 - 2024 ProcessOne

push roster all

The text file must contain an erlang term: a list of tuples with username, servername, group and nick. For example: [{"user1",
"localhost", "workers", "User 1"},

{"user2", "localhost", "Workers", "User 2"}].

If there are problems parsing UTF8 character encoding, provide the corresponding string with the <<"sSTRING"/utfg>> syntax, for
example: [{"user2", "localhost", "Workers", <<"User 2"/utfg8>>}].

Arguments:

e file :: string : File path
* user :: string : User name

* host :: string : Server name

Result:

* res :: integer : Status code (0 on success, 1 otherwise)
Tags: roster

Module: mod admin extra

Examples:

POST /api/push_roster

"file": "/home/ejabberd/roster.txt",
"user": "user1"
"host": "localhost"

}

HTTP/1.1 200 OK

"

push_roster_all

Push template roster from file to all those users

The text file must contain an erlang term: a list of tuples with username, servername, group and nick. Example: [{"user1",
"localhost", "workers", "User 1"},

{"user2", "localhost", "Workers", "User 2"}].
Arguments:
e file :: string : File path
Result:
* res :: integer : Status code (@ on success, 1 otherwise)
Tags: roster
Module: mod admin extra
Examples:

POST /api/push_roster_all

"file": "/home/ejabberd/roster.txt"

}

HTTP/1.1 200 OK

wn

register

Register a user

- 404/512 - Copyright © 2008 - 2024 ProcessOne

registered users

Arguments:

e user :: string : Username
* host :: string : Local vhost served by ejabberd

e password :: string : Password
Result:

* res :: string : Raw result string
Tags: accounts

Examples:

POST /api/register
{

"user": "bob"
: ’

"host": "example.com",
"password": "SomEPass44"

}

HTTP/1.1 200 OK
"Success"

registered_users

List all registered users in HOST

Arguments:

* host :: string : Local vhost

Result:

 users :: [username::string] : List of registered accounts usernames
Tags: accounts

Examples:

POST /api/registered_users

{

"host": "example.com"

}

HTTP/1.1 200 OK
[

"user1",
"user2"

]

registered_vhosts

List all registered vhosts in SERVER
Arguments:

Result:

* vhosts :: [vhost::string] : List of available vhosts
Tags: server

Examples:

POST /api/registered_vhosts
{

}

- 405/512 - Copyright © 2008 - 2024 ProcessOne

reload config

HTTP/1.1 200 OK
[

"example.com",
"anon.example.com"

]

reload_config

Reload config file in memory

Arguments:

Result:

* res :: integer : Status code (o on success, 1 otherwise)
Tags: config

Examples:

POST /api/reload_config
{

}

HTTP/1.1 200 OK

wn

reload_spam_filter_files

© addedin25.07

Reload spam JID/URL files

Arguments:

e host :: string

Result:

* res :: integer : Status code (@ on success, 1 otherwise)
Tags: spam

Module: mod antispam

Examples:

POST /api/reload_spam_filter_files

"host": "aaaaa"

}

HTTP/1.1 200 OK

wn

remove_blocked_domain

© addedin25.07
Remove domain from list of blocked domains
Arguments:

* host :: string

* domain :: string

- 406/512 - Copyright © 2008 - 2024 ProcessOne

Result:

* res :: string : Raw result string
Tags: spam

Module: mod antispam
Examples:

POST /api/remove_blocked_domain
{

"host": "aaaaa",

"domain": "bbbbb"

}

HTTP/1.1 2060 OK
"Success"

remove_mam_for_user

Remove mam archive for user
Arguments:

* user :: string : Username

* host :: string : Server

Result:

e res :: string : Raw result string
Tags: mam

Module: mod mam

Examples:

POST /api/remove_mam_for_user

{

"user": "bob",
"host": "example.com"

}

HTTP/1.1 200 OK
"MAM archive removed"

remove_mam_for_user_with_peer

Remove mam archive for user with peer
Arguments:

e user :: string : Username
* host :: string : Server

* with :: string : Peer

Result:

* res :: string : Raw result string
Tags: mam

Module: mod mam

Examples:

-407/512 -

remove mam for user

Copyright © 2008 - 2024 ProcessOne

reopen _log

POST /api/remove_mam_for_user_with_peer

{

"user": "bob"
: ’

"host": "example.com",
"with": "anne@example.com"

}

HTTP/1.1 200 OK
"MAM archive removed"

reopen_log
Reopen maybe the log files after being renamed

Has no effect on ejabberd main log files, only on log files generated by some modules. This can be useful when an external tool is
used for log rotation. See Log Files.

Arguments:

Result:

* res :: integer : Status code (e on success, 1 otherwise)
Tags: logs

Examples:

POST /api/reopen_log
{

}

HTTP/1.1 200 OK

wn

request_certificate

Requests certificates for all or some domains

Domains can be all, or a list of domains separared with comma characters
Arguments:

e domains :: string : Domains for which to acquire a certificate

Result:

* res :: string : Raw result string

Tags: acme

Examples:

POST /api/request_certificate
{

"domains": "example.com,domain.tld,conference.domain.tld"

}

HTTP/1.1 200 OK
"Success"

resource_num

Resource string of a session number

- 408/512 - Copyright © 2008 - 2024 ProcessOne

restart

Arguments:

e user :: string : User name
* host :: string : Server name

* num :: integer : ID of resource to return
Result:

* resource :: string : Name of user resource
Tags: session

Module: mod admin extra

Examples:

POST /api/resource_num

{

"user": "peter",
"host": "myserver.com",
"num": 2

}

HTTP/1.1 200 OK
npgin

restart

Restart ejabberd gracefully

Arguments:

Result:

* res :: integer : Status code (o on success, 1 otherwise)
Tags: server

Examples:

POST /api/restart
{

}

HTTP/1.1 200 OK

"

restart_kindly

Q added in 25.10
Restart kindly the server

Inform users and rooms, wait, and restart the server. Provide the delay in seconds, and the announcement quoted, for example:

ejabberdctl restart_kindly 60 \"The server will stop in one minute.\"
Arguments:

e delay :: integer : Seconds to wait

e announcement :: string : Announcement to send, with quotes
Result:
* res :: integer : Status code (o on success, 1 otherwise)

Tags: server, async

- 409/512 - Copyright © 2008 - 2024 ProcessOne

restart module

Examples:
POST /api/restart_kindly
"delay": 60,

"announcement": "Server will restart now."

}

HTTP/1.1 200 OK

wn

restart_module

Stop an ejabberd module, reload code and start
Arguments:

* host :: string : Server name

* module :: string : Module to restart
Result:

* res :: integer : Returns integer code:
¢ 0: code reloaded, module restarted
e 1:error: module not loaded

* 2: code not reloaded, but module restarted
Tags: erlang

Module: mod admin extra

Examples:

POST /api/restart_module

{
"host": "myserver.com",
"module": "mod_admin_extra"

}

HTTP/1.1 200 OK
(o]

restore

Restore the Mnesia database from a binary backup file

This restores immediately from a binary backup file the internal Mnesia database. This will consume a lot of memory if you have
a large database, you may prefer install fallback API.

Arguments:

e file :: string : Full path to the backup file
Result:

* res :: string : Raw result string

Tags: mnesia

Examples:

POST /api/restore

{
"file": "/var/lib/ejabberd/database.backup"

}

HTTP/1.1 200 OK
"Success"

- 410/512 - Copyright © 2008 - 2024 ProcessOne

revoke_certificate

Revokes the selected ACME certificate
Arguments:

e file :: string : Filename of the certificate
Result:

e res :: string : Raw result string

Tags: acme

Examples:

POST /api/revoke_certificate

"file": "aaaaa"

}

HTTP/1.1 200 OK
"Success"

rooms_empty_destroy

© modified in 24.06

Destroy the rooms that have no messages in archive

The MUC service argument can be global to get all hosts.
Arguments:

* service :: string : MUC service, or global for all
Result:

* res :: string : Raw result string

Tags: muc, v2

Module: mod muc admin

Examples:

POST /api/rooms_empty_destroy
{

"service": "conference.example.com"

}

HTTP/1.1 200 OK
"Destroyed rooms: 2"

rooms_empty_list

List the rooms that have no messages in archive

The MUC service argument can be global to get all hosts.
Arguments:

* service :: string : MUC service, or global for all
Result:

* rooms :: [room::string] : List of empty rooms

-411/512 -

revoke certificate

Copyright © 2008 - 2024 ProcessOne

rooms _unused_destroy

Tags: muc
Module: mod muc admin
Examples:

POST /api/rooms_empty_list
{

"service": "conference.example.com"

}

HTTP/1.1 200 OK
[

"rooml@conference.example.com"
"room2@conference.example.com"

]

rooms_unused_destroy

Destroy the rooms that are unused for many days in the service

The room recent history is used, so it's recommended to wait a few days after service start before running this. The MUC service
argument can be global to get all hosts.

Arguments:

* service :: string : MUC service, or global for all

e days :: integer : Number of days

Result:

* rooms :: [room::string] : List of unused rooms that has been destroyed
Tags: muc

Module: mod muc_admin

Examples:

POST /api/rooms_unused_destroy

{
"service": "conference.example.com"
"days": 31

}

HTTP/1.1 200 OK
[

"rooml@conference.example.com"
"room2@conference.example.com"

]

rooms_unused_list

List the rooms that are unused for many days in the service

The room recent history is used, so it's recommended to wait a few days after service start before running this. The MUC service
argument can be global to get all hosts.

Arguments:

e service :: string : MUC service, or global for all

* days :: integer : Number of days
Result:
* rooms :: [room::string] : List of unused rooms

Tags: muc

- 412/512 - Copyright © 2008 - 2024 ProcessOne

rotate log

Module: mod muc admin
Examples:

POST /api/rooms_unused_list

{
"service": "conference.example.com",
"days": 31

}

HTTP/1.1 200 OK

[
"rooml@conference.example.com"
"room2@conference.example.com"

]

rotate_log

Rotate maybe log file of some module

Has no effect on ejabberd main log files, only on log files generated by some modules.
Arguments:

Result:

 res :: integer : Status code (0 on success, 1 otherwise)

Tags: logs

Examples:

POST /api/rotate_log
{

}

HTTP/1.1 200 OK

wn

send_direct_invitation

Q updated in 24.02

Send a direct invitation to several destinations

Since ejabberd 20.12, this command is asynchronous: the API call may return before the server has send all the invitations.
password and message can be set to none .

Arguments:

* room :: string : Room name

 service :: string : MUC service

e password :: string : Password, or none
* reason :: string : Reason text, or none

e users :: [jid::string] : List of users JIDs

Result:

* res :: integer : Status code (@ on success, 1 otherwise)
Tags: muc room, vl

Module: mod muc_admin

Examples:

- 413/512 - Copyright © 2008 - 2024 ProcessOne

send message

POST /api/send_direct_invitation
{
"room": "roomi",
"service": "conference.example.com",
"password": "",
"reason": "Check this out!",
"users": [
"user2@localhost",
"user3@example.com"
1
}

HTTP/1.1 200 OK

wn

send_message

Send a message to a local or remote bare of full JID

When sending a groupchat message to a MUC room, from must be the full JID of a room occupant, or the bare JID of a MUC
service admin, or the bare JID of a MUC/Sub subscribed user.

Arguments:

* type :: string : Message type: normal, chat, headline, groupchat
e from :: string : Sender JID

e to :: string : Receiver JID

 subject :: string : Subject, or empty string

e body :: string : Body

Result:

* res :: integer : Status code (@ on success, 1 otherwise)

Tags: stanza

Module: mod admin extra

Examples:

POST /api/send_message

{
"type": "headline",
"from": "admin@localhost",
"to": "useril@localhost",
"subject": "Restart",
"body": "In 5 minutes"

}

HTTP/1.1 200 OK

wn

send_stanza

Send a stanza; provide From JID and valid To JID
Arguments:

e from :: string : Sender JID
e to :: string : Destination JID

* stanza :: string : Stanza
Result:
* res :: integer : Status code (© on success, 1 otherwise)

Tags: stanza

- 414/512 - Copyright © 2008 - 2024 ProcessOne

Module: mod admin extra
Examples:

POST /api/send_stanza

"from": "admin@localhost"
"to": "userl@localhost",
"stanza": "<message><ext attr='value'/></message>"

}

HTTP/1.1 200 OK

"

send_stanza_c2s

Send a stanza from an existing C2S session

user @ host / resource must be an existing C2S session. As an alternative, use send stanza API instead.

Arguments:

e user :: string : Username
* host :: string : Server name
* resource :: string : Resource

* stanza :: string : Stanza

Result:

* res :: integer : Status code (0 on success, 1 otherwise)
Tags: stanza

Module: mod admin extra

Examples:

POST /api/send_stanza_c2s
{

"user": "admin",

"host": "myserver.com",

"resource": "bot",

"stanza": '"<message to='userl@localhost'><ext attr='value'/></message>"

}

HTTP/1.1 200 OK

set_last

Set last activity information
Timestamp is the seconds since 1970-01-01 00:00:00 UTC . For example value see date +%s
Arguments:

* user :: string : User name
e host :: string : Server name
e timestamp :: integer : Number of seconds since epoch

e status :: string : Status message
Result:
* res :: integer : Status code (@ on success, 1 otherwise)

Tags: last

-415/512 -

send stanza c2s

Copyright © 2008 - 2024 ProcessOne

set_loglevel

Module: mod admin extra
Examples:

POST /api/set_last
{

"user": "useri"

"host": "myserver.com",
"timestamp": 1500045311,
"status": "GoSleeping"

}

HTTP/1.1 200 OK

set_loglevel

Set the loglevel

Possible loglevels: none, emergency, alert, critical, error, warning, notice, info, debug .
Arguments:

¢ loglevel :: string : Desired logging level

Result:

* res :: integer : Status code (o on success, 1 otherwise)

Tags: logs

Examples:

POST /api/set_loglevel

{
"loglevel": "debug"

}

HTTP/1.1 200 OK

wn

set_master

Set master node of the clustered Mnesia tables
If nodename is set to self, then this node will be set as its own master.
Arguments:
* nodename :: string : Name of the erlang node that will be considered master of this node
Result:
* res :: string : Raw result string
Tags: cluster
Examples:

POST /api/set_master
{

"nodename": "ejabberd@machine7"

}

HTTP/1.1 200 OK
"Success"

set_nickname

Set nickname in a user's vCard

- 416/512 - Copyright © 2008 - 2024 ProcessOne

Arguments:

e user :: string : User name
* host :: string : Server name

e nickname :: string : Nickname

Result:

* res :: integer : Status code (0 on success, 1 otherwise)

Tags: vcard
Module: mod admin extra
Examples:

POST /api/set_nickname

{
"user": "user1i",
"host": "myserver.com",
"nickname": "User 1"

}

HTTP/1.1 200 OK

"

set_presence

Q updated in 24.02
Set presence of a session
Arguments:

* user :: string : User name

 host :: string : Server name

e resource :: string : Resource

e type :: string : Type: available, error, probe ...
e show :: string : Show: away, chat, dnd, xa.

e status :: string : Status text

e priority :: integer : Priority, provide this value as an integer

Result:

* res :: integer : Status code (o on success, 1 otherwise)

Tags: session, vl
Module: mod admin extra
Examples:

POST /api/set_presence

{
"user": "user1",
"host": "myserver.com",
"resource": "tka1l",
"type": "available",
"show": "away",
"status": "BB",
"priority": 7

}

HTTP/1.1 200 OK

"

-417/512 -

set presence

Copyright © 2008 - 2024 ProcessOne

set_room_affiliation

Q updated in 24.12

Change an affiliation in a MUC room

If affiliation is none, then the affiliation is removed.

Arguments:

* room :: string : room name
* service :: string : MUC service
* user :: string : user name

e host :: string : user host

* affiliation :: string : affiliation to set

Result:

* res :: integer : Status code (o on success,

Tags: muc room, v3
Module: mod muc_admin
Examples:

POST /api/set_room_affiliation

{
"room": "roomi",
"service": "conference.example.com",
"user": "sun",
"host": "localhost",
"affiliation": "member"

}

HTTP/1.1 200 OK

wn

set_vcard

Set content in a vCard field

1 otherwise)

Some vcard field names in get / set_vcard are:

* FN - Full Name

* NICKNAME - Nickname
« BDAY - Birthday

» TITLE - Work: Position
* ROLE - Work: Role

For a full list of vCard fields check XEP-0054: vcard-temp

Arguments:

e user :: string : User name
* host :: string : Server name
* name :: string : Field name

e content :: string : Value

Result:

* res :: integer : Status code (© on success, 1 otherwise)

-418/512 -

set room_affiliation

Copyright © 2008 - 2024 ProcessOne

https://xmpp.org/extensions/xep-0054.html

Tags: vcard
Module: mod admin extra
Examples:

POST /api/set_vcard
{

"user": "user1i",

"host": "myserver.com",
"name": "URL",

"content": "www.example.com"

}

HTTP/1.1 200 OK
"

set_vcard2

Set content in a vCard subfield
Some vcard field names and subnames in get /set_vcard2 are:

* N FAMILY - Family name

* N GIVEN - Given name

* N MIDDLE - Middle name

* ADR CTRY - Address: Country

* ADR LOCALITY - Address: City

* TEL HOME - Telephone: Home

* TEL CELL - Telephone: Cellphone
* TEL WORK - Telephone: Work

e TEL VOICE - Telephone: Voice

« EMAIL USERID - E-Mail Address

* ORG ORGNAME - Work: Company
* ORG ORGUNIT - Work: Department

For a full list of vCard fields check XEP-0054: vcard-temp
Arguments:

e user :: string : User name

* host :: string : Server name

* name :: string : Field name

e subname :: string : Subfield name

e content :: string : Value

Result:

* res :: integer : Status code (@ on success, 1 otherwise)
Tags: vcard

Module: mod admin extra

Examples:

POST /api/set_vcard2
{

"user": "user1",
"host": "myserver.com",
"name": "TEL",

"subname": "NUMBER",

-419/512 -

set vcard2

Copyright © 2008 - 2024 ProcessOne

https://xmpp.org/extensions/xep-0054.html

set vcard2 multi

"content": "123456"
}

HTTP/1.1 200 OK

set_vcard2_multi

Set multiple contents in a vCard subfield
Some vcard field names and subnames in get / set_vcard2 are:

* N FAMILY - Family name

* N GIVEN - Given name

* N MIDDLE - Middle name

* ADR CTRY - Address: Country

* ADR LOCALITY - Address: City

* TEL HOME - Telephone: Home

e TEL CELL - Telephone: Cellphone
* TEL WORK - Telephone: Work

e TEL VOICE - Telephone: Voice

« EMAIL USERID - E-Mail Address

* ORG ORGNAME - Work: Company
* ORG ORGUNIT - Work: Department

For a full list of vCard fields check XEP-0054: vcard-temp
Arguments:

* user :: string

* host :: string

* name :: string

e subname :: string

* contents :: [value::string]

Result:

* res :: integer : Status code (@ on success, 1 otherwise)
Tags: vcard

Module: mod _admin extra

Examples:

POST /api/set_vcard2_multi
{

"user": "aaaaa",
"host": "bbbbb",
"name": "ccccc",

"subname": "ddddd",
"contents": [
"eeeee",
"FEFFF"
]
}

HTTP/1.1 200 OK
wn

- 420/512 - Copyright © 2008 - 2024 ProcessOne

https://xmpp.org/extensions/xep-0054.html

srg_add

© added in24.06
Add/Create a Shared Roster Group (without details)
Arguments:

e group :: string : Group identifier

* host :: string : Group server name

Result:

* res :: integer : Status code (o on success, 1 otherwise)
Tags: shared roster group

Module: mod admin extra

Examples:

POST /api/srg_add

{
"group": "group3",
"host": "myserver.com"

}

HTTP/1.1 200 OK

srg_add_displayed

() added in 24.06

Add a group to displayed groups of a Shared Roster Group

Arguments:

e group :: string : Group identifier
* host :: string : Group server name

* add :: string : Group to add to displayed groups
Result:

* res :: integer : Status code (© on success, 1 otherwise)
Tags: shared roster group

Module: mod admin extra

Examples:

POST /api/srg_add_displayed

{
"group": "group3",
"host": "myserver.com",
"add": "group1"

}

HTTP/1.1 200 OK

wn

srg_create

Q updated in 24.02

Create a Shared Roster Group

-421/512 -

srg add

Copyright © 2008 - 2024 ProcessOne

srg del displayed

Arguments:

e group :: string : Group identifier

* host :: string : Group server name

e label :: string : Group name

e description :: string : Group description

e display :: [group::string] : List of groups to display
Result:

* res :: integer : Status code (@ on success, 1 otherwise)
Tags: shared roster group, vl

Module: mod admin extra

Examples:

POST /api/srg_create
{
"group": "group3",
"host": "myserver.com"
"label": "Group3",
"description": "Third group",
"display": [
"group1"
"group2"
1
}

HTTP/1.1 200 OK
srg_del_displayed
© added in24.06
Delete a group from displayed groups of a Shared Roster Group
Arguments:

e group :: string : Group identifier
* host :: string : Group server name

e del :: string : Group to delete from displayed groups
Result:

* res :: integer : Status code (o on success, 1 otherwise)
Tags: shared roster group

Module: mod admin extra

Examples:

POST /api/srg_del_displayed

{
"group": "group3",
"host": "myserver.com",
"del": "group1i"

}

HTTP/1.1 200 OK

wn

srg_delete

Delete a Shared Roster Group

- 422/512 - Copyright © 2008 - 2024 ProcessOne

srg get displayed

Arguments:

e group :: string : Group identifier

* host :: string : Group server name

Result:

* res :: integer : Status code (o on success, 1 otherwise)
Tags: shared roster group

Module: mod admin extra

Examples:

POST /api/srg_delete

{
"group": "group3",
"host": "myserver.com"

}

HTTP/1.1 200 OK
srg_get_displayed
© added in24.06
Get displayed groups of a Shared Roster Group
Arguments:

e group :: string : Group identifier

* host :: string : Group server name

Result:

e display :: [group::string] : List of groups to display
Tags: shared roster group

Module: mod admin extra

Examples:

POST /api/srg_get_displayed
{
"group": "group3",
"host": "myserver.com"

}

HTTP/1.1 200 OK
[
"groupl1",
"group2"
]

srg_get_info
Get info of a Shared Roster Group
Arguments:

e group :: string : Group identifier

* host :: string : Group server name

- 423/512 - Copyright © 2008 - 2024 ProcessOne

srg get members

Result:

* informations :: [{key::string, value::string}] : List of group information, as key and value
Tags: shared roster group

Module: mod admin extra

Examples:

POST /api/srg_get_info
{
"group": "group3",
"host": "myserver.com"
}
HTTP/1.1 2060 OK
[
{
"key": "name",
"value": "Group 3"
3
{
"key": "displayed_groups",
"value": "groupl"
}
]

srg_get_members

Get members of a Shared Roster Group
Arguments:

e group :: string : Group identifier

* host :: string : Group server name

Result:

* members :: [member::string] : List of group identifiers
Tags: shared roster group

Module: mod_admin extra

Examples:

POST /api/srg_get_members
{
"group": "group3",
"host": "myserver.com"

}

HTTP/1.1 200 OK
[

"useril@localhost",
"user2@localhost"

]

srg_list
List the Shared Roster Groups in Host
Arguments:
* host :: string : Server name
Result:
e groups :: [id::string] : List of group identifiers

Tags: shared roster group

-424/512 - Copyright © 2008 - 2024 ProcessOne

Module: mod admin extra
Examples:

POST /api/srg_list

"host": "myserver.com"

}

HTTP/1.1 200 OK

[
"groupl1",
"group2"
]

srg_set_info

© addedin 24.06
Set info of a Shared Roster Group
Arguments:

e group :: string : Group identifier
* host :: string : Group server name
 key :: string : Information key: label, description

* value :: string : Information value

Result:

* res :: integer : Status code (o on success, 1 otherwise)
Tags: shared roster group

Module: mod admin extra

Examples:

POST /api/srg_set_info
{

"group": "group3",

"host": "myserver.com",
"key": "label,
"value": "Family"

}

HTTP/1.1 200 OK

wn

srg_user_add

Add the JID user@host to the Shared Roster Group
Arguments:

e user :: string : Username
* host :: string : User server name
e group :: string : Group identifier

e grouphost :: string : Group server name

Result:

* res :: integer : Status code (0 on success, 1 otherwise)
Tags: shared roster group

Module: mod admin extra

-425/512 -

srg set info

Copyright © 2008 - 2024 ProcessOne

srg user del

Examples:

POST /api/srg_user_add
{

"user": "user1",

"host": "myserver.com",
"group": "group3",
"grouphost": "myserver.com"

}

HTTP/1.1 200 OK

srg_user_del

Delete this JID user@host from the Shared Roster Group
Arguments:

e user :: string : Username
* host :: string : User server name
e group :: string : Group identifier

e grouphost :: string : Group server name

Result:

* res :: integer : Status code (@ on success, 1 otherwise)
Tags: shared roster group

Module: mod_admin extra

Examples:

POST /api/srg_user_del

{
"user": "user1",
"host": "myserver.com",
"group": "group3",
"grouphost": "myserver.com"
}

HTTP/1.1 200 OK

wn

stats

Get some statistical value for the whole ejabberd server
Allowed statistics name are: registeredusers, onlineusers, onlineusersnode, uptimeseconds, processes .
Arguments:

* name :: string : Statistic name

Result:

e stat :: integer : Integer statistic value

Tags: statistics

Module: mod admin extra

Examples:

POST /api/stats
{

"name": "registeredusers"

}

-426/512 - Copyright © 2008 - 2024 ProcessOne

stats host

HTTP/1.1 200 OK
6

stats_host

Get some statistical value for this host
Allowed statistics name are: registeredusers, onlineusers.
Arguments:

* name :: string : Statistic name

e host :: string : Server JID

Result:

* stat :: integer : Integer statistic value
Tags: statistics

Module: mod admin extra

Examples:

POST /api/stats_host

{
"name": "registeredusers"
"host": "example.com"

}

HTTP/1.1 200 OK
6

status

Get status of the ejabberd server
Arguments:

Result:

* res :: string : Raw result string
Tags: server

Examples:

POST /api/status
{

}

HTTP/1.1 200 OK
"The node ejabberd@localhost is started with status: startedejabberd X.X is running in that node"

status_list

Q updated in 24.12

List of logged users with this status
Arguments:

e status :: string : Status type to check
Result:

e users :: [{jid::string, priority::integer, status::string}]

- 427/512 - Copyright © 2008 - 2024 ProcessOne

status list host

Tags: session, v3
Module: mod admin extra
Examples:

POST /api/status_list
{

"status": "dnd"

}

HTTP/1.1 200 OK
[
{
"jid": "peter@myserver.com/tka"
"priority": 6,
"status": "Busy"
}
]

status_list_host

Q updated in 24.12
List of users logged in host with their statuses
Arguments:

* host :: string : Server name

e status :: string : Status type to check

Result:

* users :: [{jid::string, priority::integer, status::string}]
Tags: session, v3

Module: mod admin extra

Examples:

POST /api/status_list_host
{
"host": "myserver.com",
"status": "dnd"
}
HTTP/1.1 200 OK
[
{
"jid": "peter@myserver.com/tka"
"priority": 6,
"status": "Busy"
}
]

status_num

Number of logged users with this status

Arguments:

* status :: string : Status type to check

Result:

* users :: integer : Number of connected sessions with given status type
Tags: session, statistics

Module: mod admin extra

-428/512 - Copyright © 2008 - 2024 ProcessOne

status num host

Examples:

POST /api/status_num
{

"status": "dnd"

}

HTTP/1.1 200 OK
23

status_num_host

Number of logged users with this status in host
Arguments:

* host :: string : Server name

e status :: string : Status type to check

Result:

* users :: integer : Number of connected sessions with given status type
Tags: session, statistics

Module: mod _admin_extra

Examples:

POST /api/status_num_host
{

"host": "myserver.com"
"status": "dnd"

}

HTTP/1.1 200 OK
23

stop

Stop ejabberd gracefully

Arguments:

Result:

* res :: integer : Status code (o on success, 1 otherwise)
Tags: server

Examples:

POST /api/stop
{

}

HTTP/1.1 200 OK

stop_kindly

Stop kindly the server (informing users)

Inform users and rooms, wait, and stop the server. Provide the delay in seconds, and the announcement quoted, for example:

ejabberdctl stop_kindly 60 \"The server will stop in one minute.\"

- 429/512 - Copyright © 2008 - 2024 ProcessOne

stop_s2s connections

Arguments:

* delay :: integer : Seconds to wait

e announcement :: string : Announcement to send, with quotes
Result:

* res :: integer : Status code (o on success, 1 otherwise)
Tags: server, async

Examples:

POST /api/stop_kindly
{
"delay": 60,
"announcement": "Server will stop now."

}

HTTP/1.1 200 OK

wn

stop_s2s_connections

Stop all s2s outgoing and incoming connections
Arguments:

Result:

* res :: integer : Status code (e on success, 1 otherwise)
Tags: s2s

Examples:

POST /api/stop_s2s_connections

{
}

HTTP/1.1 200 OK

wn

subscribe_room

Q updated in 24.12
Subscribe to a MUC conference
Arguments:

* user :: string : user name

* host :: string : user host

* nick :: string : user nick

e room :: string : room name

e service :: string : MUC service

* nodes :: [node::string] : list of nodes
Result:
* nodes :: [node::string] : The list of nodes that has subscribed

Tags: muc room, muc sub, v3

- 430/512 - Copyright © 2008 - 2024 ProcessOne

Module: mod muc admin
Examples:

POST /api/subscribe_room

{
"user": "tom",
"host": "localhost",
"nick": "Tom",
"room": "roomi"
"service": "conference.localhost",
"nodes": [
"urn:xmpp:mucsub:nodes:messages",
"urn:xmpp:mucsub:nodes:affiliations"
1
}

HTTP/1.1 200 OK
[

"urn:xmpp:mucsub:nodes:messages",
"urn:xmpp:mucsub:nodes:affiliations"

]

subscribe_room_many

© updated in 24.12

Subscribe several users to a MUC conference

This command accepts up to 50 users at once (this is configurable with the mod muc admin option

subscribe_room_many_max_users)

Arguments:

* users :: [{user::string, host::string, nick::string}] : List of tuples with users name, host and nick

* room :: string : room name
* service :: string : MUC service

* nodes :: [node::string] : nodes separated by commas: ,
Result:

* res :: integer : Status code (0 on success, 1 otherwise)
Tags: muc room, muc sub, v3

Module: mod muc admin

Examples:

POST /api/subscribe_room_many

{
"users": [
{
"user": "tom"
"host": "localhost",
"nick": "Tom"
3}
{
"user": "jerry"
"host": "localhost",
"nick": "Jerry"
}
1
"room": "roomi"
"service": "conference.localhost",
"nodes": [
"urn:xmpp:mucsub:nodes:messages",
"urn:xmpp:mucsub:nodes:affiliations"
1
}

HTTP/1.1 200 OK

wn

-431/512 -

subscribe room many

Copyright © 2008 - 2024 ProcessOne

unban account

unban_account

© added in24.06

Remove the ban from an account
Check ban account API.
Arguments:

* user :: string : User name to unban

* host :: string : Server name

Result:

* res :: integer : Status code (o on success, 1 otherwise)
Tags: accounts, v2

Module: mod admin extra

Examples:

POST /api/unban_account
{
"user": "gooduser",
"host": "myserver.com"

}

HTTP/1.1 200 OK

unban_ip

Remove banned IP addresses from the fail2ban table

Accepts an IP address with a network mask. Returns the number of unbanned addresses, or a negative integer if there were any
error.

Arguments:

e address :: string : IP address, optionally with network mask.

Result:

e unbanned :: integer : Amount of unbanned entries, or negative in case of error.
Tags: accounts

Module: mod fail2ban

Examples:

POST /api/unban_ip

{
"address": "::FFFF:127.0.0.1/128"

}

HTTP/1.1 200 OK
3

unregister

Unregister a user

This deletes the authentication and all the data associated to the account (roster, vcard...).

- 432/512 - Copyright © 2008 - 2024 ProcessOne

unsubscribe room

Arguments:

e user :: string : Username

* host :: string : Local vhost served by ejabberd
Result:

* res :: string : Raw result string

Tags: accounts

Examples:

POST /api/unregister

{
"user": "bob",
"host": "example.com"

}

HTTP/1.1 200 OK
"Success"

unsubscribe_room

Q updated in 24.12
Unsubscribe from a MUC conference
Arguments:

* user :: string : user name
* host :: string : user host
* room :: string : room name

* service :: string : MUC service

Result:

 res :: integer : Status code (0 on success, 1 otherwise)
Tags: muc room, muc sub, v3

Module: mod muc_admin

Examples:

POST /api/unsubscribe_room

{

"user": "tom"
: ,

"host": "localhost",

"room": "roomi"

"service": "conference.localhost"

}

HTTP/1.1 200 OK

update
Q improved in 24.10
Update the given module
To update all the possible modules, use all.
Arguments:

* module :: string

- 433/512 - Copyright © 2008 - 2024 ProcessOne

update list

Result:

* res :: string : Raw result string
Tags: server

Examples:

POST /api/update
{

"module": "all"

}

HTTP/1.1 2060 OK
"Updated modules: mod_configure, mod_vcard"
update_list
List modified modules that can be updated
Arguments:
Result:
* modules :: [module::string]
Tags: server
Examples:

POST /api/update_list
{

}

HTTP/1.1 200 OK
[

"mod_configure",
"mod_vcard"

]

update_sql
Q improved in 23.04
Convert SQL database from singlehost to multihost (MS SQL, MySQL, PostgreSQL)
Arguments:
Result:
* res :: integer : Status code (@ on success, 1 otherwise)
Tags: sql
Module: mod admin update sql
Examples:

POST /api/update_sql
{

}

HTTP/1.1 200 OK

wn

user_resources

List user's connected resources

- 434/512 - Copyright © 2008 - 2024 ProcessOne

user sessions_info

Arguments:

e user :: string : User name

* host :: string : Server name
Result:

* resources :: [resource::string]
Tags: session

Examples:

POST /api/user_resources
{
"user": "user1",
"host": "example.com"

}

HTTP/1.1 200 OK

[
"tkal",
"Gajim",
"mobile-app"

1

user_sessions_info

Get information about all sessions of a user
Arguments:

e user :: string : User name

* host :: string : Server name
Result:

* sessions_info :: [{connection::string, ip::string, port::integer, priority::integer, node::string, uptime::integer, status::string,
resource::string, statustext::string}|]

Tags: session
Module: mod admin extra
Examples:

POST /api/user_sessions_info
{

"user": "peter",

"host": "myserver.com"

}

HTTP/1.1 200 OK
[
{

"connection": "c2s",
"ip": "127.0.0.1",
"port": 42656,
"priority": 8,
"node": "ejabberd@localhost",
"uptime": 231,
"status": "dnd",
"resource": "tka",
"statustext": ""

-435/512 - Copyright © 2008 - 2024 ProcessOne

API Tags

API Tags

gase note

This section enumerates the API tags of ejabberd 26.01. If you are using an old ejabberd release, please refer to the corresponding
archived version of this page in the Archive.

accounts

* ban account

change password

check account

check password

check password_hash

count banned

delete old users

delete old users vhost

generate invite

generate invite with username

get ban details

list banned

list_invites

register

registered users

unban account

unban_ip

unregister

acme

* list_certificates
» request certificate

* revoke certificate

announce

announce motd delete

announce motd get

announce motd set online

announce motd update

announce _send_all

announce_send_online

-436/512 - Copyright © 2008 - 2024 ProcessOne

async

async

e restart kindly

* stop kindly

cluster

¢ get_master

* join cluster

* join cluster here

* leave cluster

* list_cluster

* list_cluster detailed

¢ set_master

config

convert to yaml

dump config

reload config

db

export_db

export db abort

export db status

import db

import db abort

import db status

documentation

* gen _html doc for commands
e gen markdown doc for commands
e gen markdown doc for tags

* man

ejabberdctl

* help
* mnesia_change
* mnesia_info ctl

e print sql schema

-437/512 - Copyright © 2008 - 2024 ProcessOne

erlang

erlang

* compile
* get_cookie

* restart module

last

e get last

* set last

logs

* get _loglevel
* reopen _log
* rotate log

* set loglevel

mam

» abort delete old mam messages
* delete_old mam messages

* delete old mam messages batch
¢ delete old mam messages status
* get mam count

* remove_mam _for user

* remove_mam _for user with peer

mnesia

* backup
* delete mnesia
e dump

e dump table

export2sql

export piefxis

export piefxis host

import_dir

import file

import piefxis

import prosody

install fallback

¢ load

mnesia_change

-438/512 - Copyright © 2008 - 2024 ProcessOne

modules

mnesia change nodename

mnesia_info

mnesia info ctl

mnesia_list tables

mnesia_table change storage

mnesia_table info

restore

modules

module check

module install

module uninstall

module upgrade

modules_available

modules_installed

modules update specs

muc

* create rooms file
» destroy rooms file
¢ get_user rooms

* get user subscriptions

muc_get registered nick

muc_get registered nicks

muc_online rooms

muc_online rooms by regex

muc online rooms count

muc register nick

muc_unregister nick

rooms _empty destroy

rooms empty list

rooms unused_destroy

rooms unused list

muc_room

* change room option

¢ create_room

e create room with opts
e destroy room

* get room affiliation

-439/512 - Copyright © 2008 - 2024 ProcessOne

muc_sub

* get room affiliations

* get room history

¢ get room occupants

e get room occupants number
* get room options

* get_subscribers

» send_direct invitation

» set room affiliation

* subscribe room

e subscribe room many

e unsubscribe room

muc_sub

e create room with opts
* get_subscribers
* get user subscriptions
* subscribe room
* subscribe room many

* unsubscribe room

oauth

* oauth add client implicit

e oauth add client password
e oauth issue token

* oauth list tokens

* oauth remove_ client

* oauth _revoke token

offline

» abort delete old messages
¢ delete expired messages

* delete old messages

* delete old messages batch
* delete old messages_status

» get offline count

private

* bookmarks to pep
* private get

* private set

-440/512 - Copyright © 2008 - 2024 ProcessOne

purge

purge

» abort delete old mam messages
* abort delete old messages

 cleanup expired invite tokens

* delete expired messages

* delete expired pubsub items

¢ delete old mam messages

* delete old mam messages batch
¢ delete old mam messages status
* delete old messages

* delete old messages batch

» delete old messages_status

* delete old pubsub items

* delete old push sessions

* delete old users
 delete old users vhost

* expire invite tokens

roster

* add rosteritem

* delete rosteritem

¢ get _roster

¢ get roster count

* process rosteritems
e push alltoall

* push roster

* push roster all

s2s

* incoming s2s_number
* outgoing s2s number

» stop s2s connections

server

* clear cache

* evacuate kindly
. gc

* halt

* registered vhosts

* restart

-441/512 - Copyright © 2008 - 2024 ProcessOne

restart kindly
status

stop

stop kindly
update

update list

session

connected users
connected users info
connected users number
connected users vhost
get presence

kick session

kick user

kick users
num_resources
resource num
set_presence

status list
status list host

status num
status num host

user resources

user sessions_info

shared_roster_group

srg add

srg add displayed
srg create

srg del displayed
srg delete

srg get displayed
srg get info

srg get members
srg list

srg set info

srg user add

srg_user_del

-442/512 -

session

Copyright © 2008 - 2024 ProcessOne

spam

sql

add blocked domain

add to spam filter cache
drop from spam filter cache
expire spam filter cache

get blocked domains

get spam filter cache
reload spam filter files

remove blocked domain

convert to scram
import prosody
print sql schema

update sql

stanza

privacy set
send message
send stanza

send stanza c2s

statistics

vl

connected users number
incoming s2s number
outgoing s2s number
stats

stats host

status_num

status num host

add rosteritem

oauth issue token
send _direct invitation
set presence

srg create

-443/512 -

spam

Copyright © 2008 - 2024 ProcessOne

v2

v3

* ban account
e get ban details

* kick user

rooms empty destroy

unban account

get room affiliations

muc_register nick

muc_unregister nick

set room affiliation

status list

status list host

subscribe_room

subscribe room many

unsubscribe room

vcard

* get vcard

» get vcard2

e get vcard2 multi
* set nickname

* set vcard

* set vcard2

* set_vcard2 multi

- 444/512 -

v2

Copyright © 2008 - 2024 ProcessOne

Simple ejabberd Rest API Configuration

Simple ejabberd Rest API Configuration

Restrict to Local network

If you are planning to use ejabberd API for admin purpose, it is often enough to configure it to be available local commands.
Access is thus generally limited by IP addresses, either restricted to localhost only, or restricted to one of your platform back-
end.

1. Make sure an ejabberd http listener is using mod http api on a given root URL and on a desired port:

listen:

port: 5281

module: ejabberd_http

ip: 127.0.0.1

request_handlers:
/api: mod_http_api

The ip option ensures it listens only on the local interface (127.0.0.1) instead of listening on all interface (0.0.0.0).

2. By defining api_permissions, you can then allow HTTP request from a specific IP to trigger API commands execution without user
credentials:

api_permissions:
"API used from localhost allows all calls":

who:
ip: 127.0.0.1/8

what:
_wsn
- "Istop"
- "Istart"

\J
](ote

The stop and start commands are disabled in that example as they are usually restricted to the ejabberdctl command-line tool. They
are considered too sensitive to be exposed through API.

3. Now you can query the API:
* Example using PosT query:

curl -X POST \
-H "Content-type: application/json" \
"127.0.0.1:5281/api/registered_users" \
-d '{"host": "localhost"}'

["user2", "user8"]

* Minimal example using POST :

curl 127.0.0.1:5281/api/registered_users -d '{"host": "localhost"}'

["user2", "user8"]

e GET is also supported when the arguments are just string or integers:

curl '127.0.0.1:5281/api/registered_users?host=1localhost'

["user2", "user8"]

-445/512 - Copyright © 2008 - 2024 ProcessOne

Encryption

Encryption
If you already defined certificates and your connection is not on a local network, you may want to use encryption.

1. Setup encryption like this:

listen:

port: 5281

module: ejabberd_http

tls: true

request_handlers:
/api: mod_http_api

2. Now you can query using HTTPS:

curl 'https://127.0.0.1:5281/api/registered_users?host=1localhost'

["user2", "user8"]

3. If you are using a self-signed certificate, you can bypass the corresponding error message:

curl --insecure 'https://127.0.0.1:5281/api/registered_users?host=1localhost'

["user2", "user8"]

-446/512 - Copyright © 2008 - 2024 ProcessOne

Basic Authentication

Basic Authentication

Quite probably you will want to require authentication to execute API queries, either using basic auth or OAuth.

1. Assuming you have the simple listener:

listen:
port: 5281
module: ejabberd_http
ip: 127.0.0.1
request_handlers:
/api: mod_http_api

2. Define an ACL with the account that you will use to authenticate:

acl:
apicommands:
user: john@localhost

3. Allow only that ACL to use the API:

api_permissions:
"some playing":
from:
- ejabberd_ctl
- mod_http_api

who:
acl: apicommands
what: "*"

4. If that account does not yet exist, register it:
ejabberdctl register john localhost somePass
5. Now, when sending an API query, provide the authentication for that account:

curl --basic --user john@localhost:somePass \
'127.0.0.1:5281/api/registered_users?host=1localhost'

["user2", "user8", "john"]

6. Example Python code:

import requests

url = "http://localhost:5281/api/registered_users"

data = {
"host": "localhost"
}
res = requests.post(url, json=data, auth=("john@localhost", '"somePass"))

print(res.text)

OAuth Authentication

Before using OAuth to interact with ejabberd API, you need to configure OAuth support in ejabberd.

-447/512 -

Copyright © 2008 - 2024 ProcessOne

OAuth Authentication

Here are example entries to check / change in your ejabberd configuration file:

1. Add a request handler for OAuth:

listen:
Using a separate port for oauth and API to make it easy to protect it
differently than BOSH and WebSocket HTTP interface.
port: 5281
oauth and API only listen on localhost interface for security reason
You can set ip to 0.0.0.0 to open it widely, but be careful!
ip: 127.0.0.1
module: ejabberd_http
request_handlers:
/api: mod_http_api
/oauth: ejabberd_oauth

2. Set the oauth access top-level option to allow token creation:

oauth_access: all

3. Define an ACL with the account that you will use to authenticate:

acl:
apicommands:
user: john@localhost

4. You can then configure the OAuth commands you want to expose and who can use them:

api_permissions:
"admin access":
who:
oauth:
scope: "ejabberd:admin"
scope: '"registered_users"
access:
allow:
acl: apicommands
what: "*"

5. If that account does not yet exist, register it:
ejabberdctl register john localhost somePass
6. Request an authorization token. A quick way is using ejabberdctl:

ejabberdctl oauth_issue_token useri123@localhost 3600 ejabberd:admin
erHymcBiT2r0Qsu0opDjIrsEvn0S4grkj [<<"ejabberd:admin">>] 3600 seconds

7. Now, when sending an API query, provide the authentication for that account:

curl -H "Authorization: Bearer erHymcBiT2r0QsuOpDjIrsEvn0S4grkj" \
'127.0.0.1:5281/api/registered_users?host=1localhost'

["user2", "user8", "john"]
Or quite simply:

curl --oauth2-bearer erHymcBiT2r@QsuOpDjIrsEvn0S4grkj \
'127.0.0.1:5281/api/registered_users?host=1localhost'

["user2", "user8", "john"]

-448/512 - Copyright © 2008 - 2024 ProcessOne

API Permissions

API Permissions

© addedin16.12

This page describes ejabberd's flexible permission mechanism.

Access to all available endpoints are configured using the api_permissions top-level option.

It allows to define multiple groups, each one with separate list of filters on who and what are allowed by rules specified inside it.
Basic rule looks like this:

api_permissions:
"admin access":
who:
- admin
what:

_ onxn

- "Istop"
from:

- ejabberd_ctl

- mod_http_api

It tells that group named Admin access allows all users that are accepted by ACL rule admin to execute all commands except
command stop, using the command-line tool ejabberdctl or sending a ReST query handled by mod http api.

Each group has associated name (that is just used in log messages), who section for rules that authentication details must match,
what section for specifying list of command, and from with list of modules that API was delivered to.

Rules inside who section

There are 3 types of rules that can be placed in who section:

* acl: Name | ACLDefinition
or the short version:
Name | ACLRule
This accepts a command when the authentication provided matches rules of name Access Control List (or inline rules from

ACLDefinition Or ACLRule)

* access: Name | AccessDefinition
This allows execution if the Access Rule Name or inline Accessbefinition returns allowed for command's authentication details

e oauth: ListOfRules
This rule (and only this) will match for commands that were executed with OAuth authentication. Inside ListOfRules you can
use any rule described above (acl: Name, AClName, access: Name) and additionally you must include scope: List0fScopeNames
with OAuth scope names that must match scope used to generate OAuth token used in command authentication.

who allows the command to be executed if at least one rule matches.
If you want to require several rules to match at this same time, use access (see examples below).

Missing who rule is equivalent to who: none which will stop group from accepting any command.

Examples of who rules

This accepts user admin@server.com or commands originating from localhost:

who:
user: admin@server.com
ip: 127.0.0.1/8

This only allows execution of a command if it's invoked by user admin@server.com and comes from localhost address. If one of
those restrictions isn't satisfied, execution will fail:

-449/512 - Copyright © 2008 - 2024 ProcessOne

Rules in what section

who:
access:
allow:
user: admin@server.com
ip: 127.0.0.1/8

Those rules match for users from muc_admin ACL both using regular authentication and OAuth:

who:
access:
allow:
acl: muc_admin
oauth:
scope: "ejabberd:admin"
access:
allow:
acl: muc_admin

Rules in what section

Rules in what section are constructed from "strings" literals. You can use:

* "command_name" of an existing APl command

command_name is same as before, but no need to provide "

"*" is a wildcard rule to match all commands

"[tag: tagname]" allows all commands that have been declared with tag tagname . You can consult the list of tags and their
commands with: ejabberdctl help tags

Additionally each rule can be prepended with ! character to change it into negative assertion rule. Command names that would
match what is after ! character will be removed from list of allowed commands.

Missing what rule is equivalent to what: "!*" which will stop group from accepting any command.

Example of what rules
This allows execution of all commands except command stop :

what :

_onkn

- "Istop"

This allows execution of status and commands with tag session (like num_resources or status_list):

what:
- status
- "[tag:account]"

This matches no command:

what :
- start

_ompAn

Rules in from section

This section allows to specify list of allowed module names that expose API to outside world. Currently those modules are

ejabberd_xmlrpc, mod_http_api and ejabberd_ctl.

If from section is missing from group then all endpoints are accepted, if it's specified endpoint must be listed inside it to be
allowed to execute.

- 450/512 - Copyright © 2008 - 2024 ProcessOne

Examples

Examples

Those rules allow execution of any command invoked by ejabberdctl shell command, or all command except start and stop for
users in ACL admin, with regular authentication or ejabberd:admin scoped OAuth tokens.

api_permissions:
"console commands":
from:
- ejabberd_ctl
who: all
what: "*"
"admin access":
who:
access:
allow:
- acl: admin
oauth:
scope: "ejabberd:admin"
access:
allow:
- acl: admin
what:
_owxn
- "Istop"
- "Istart"

-451/512 - Copyright © 2008 - 2024 ProcessOne

OAuth Support

OAuth Support

Q added in 15.09

Introduction

ejabberd includes a full support OAuth 2.0 deep inside the ejabberd stack.

This OAuth integration makes ejabberd:

 an ideal project to develop XMPP applications with Web in mind, as it exposes ejabberd features as ReST or XML-RPC HTTP
based API endpoints. OAuth makes ejabberd the ideal XMPP server to integrate in a larger Web / HTTP ecosystem.

* a more secure tool that can leverage the use of oAuth token to authenticate, hiding your real password from the
client itself. As your password is never shared with client directly with our X-OAUTH2 authentication mechanism, user have
less risks of having their primary password leaked.

* a tool that can be used at the core of larger platforms as oauth token can be used by users and admins to delegate rights to
subcomponents / subservices.

¢ a tool that is friendly to other online services as users can delegate rights to others SaaS platform they are using. This will be
possible to let services access your message archive, show your offline message count or with future commands send message
to users and chatrooms on your behalf. This is done in a granular way, with a scope limited to a specific function. And the
delegation rights for a specific app / third party can always be revoked at any time as this is usually the case with OAuth
services.

You can read more on OAuth from OAuth website.

Configuration

Authentication method
An X-OAUTH2 SASL authentication mechanism is enabled by default in ejabberd.

However, if the ejabberd_oauth HTTP request handler is not enabled, there is no way to generate token from outside ejabberd. In
this case, you may want to disable X-OAUTH2 with the disable sasl mechanisms top-level option in ejabberd.yml file, either at
global or at virtual host level:

disable_sasl_mechanisms: ["X-0AUTH2"]

ejabberd listeners
To enable OAuth support in ejabberd, you need to edit your ejabberd.yml file to add the following snippets.
You first need to expose more HTTP endpoint in ejabberd http modules:
* ejabberd_oauth is the request handler that will allow generating token for third-parties (clients, services). It is usually exposed

on "/oauth" endpoint. This handler is mandatory to support OAuth.

» mod http api request handler enables ReST API endpoint to perform delegated actions on ejabberd using an HTTP JSON API.
This handler is usually exposed on "/api" endpoint. It is optional.

e ejabberd xmlrpc listener can be set on a separate port to query commands using the XML-RPC protocol.
Here is a example of the listen section in ejabberd configuration file, focusing on HTTP handlers:

listen:

port: 4560
module: ejabberd_http
request_handlers:
Handle ejabberd commands using XML-RPC

-452/512 - Copyright © 2008 - 2024 ProcessOne

https://oauth.net

authorization token

/: ejabberd_xmlrpc

port: 5280
module: ejabberd_http
request_handlers:

/websocket: ejabberd_http_ws

/log: mod_log_http

OAuth support:

/oauth: ejabberd_oauth

ReST API:

/api: mod_http_api

Module configuration

Some commands are implemented by ejabberd internals and are always available, but other commands are implemented by
optional modules. If the documentation of a command you want to use mentions a module, make sure you have enabled that
module in ejabberd.yml. For example the add rosteritem command is implemented in the mod admin extra module.

By the way, ejabberd implements several commands to manage OAuth, check the oauth tag documentation.

OAuth specific parameters
OAuth is configured using those top-level options:

* oauth access

oauth cache life time

oauth cache missed

oauth cache rest failure life time

oauth_cache size

oauth client id check

oauth db type

oauth expire

oauth use cache
A basic setup is to allow all accounts to create tokens, and tokens expire after an hour:

oauth_access: all
oauth_expire: 3600

authorization_token

An easy way to generate a token is using the oauth issue token command with the ejabberdctl shell script:

ejabberdctl oauth_issue_token useri@localhost 3600 ejabberd:admin

r9KF1ladBTYJS710ggKCifo0GIwyT70Y4 [<<"ejabberd:admin">>] 3600 seconds

The users can generate tokens themselves by visiting /oauth/authorization_token in a webview in your application or in a web
browser. For example, URL can be:

http://example.net:5280/0auth/authorization_token
?response_type=token
&client_id=Client1l
&redirect_uri=http://client.uri
&scope=get_roster+sasl_auth

Note: To use the get_roster scope, enable mod_admin_extra, because the get roster API is defined in that module. Otherwise, the
command is unknown and you will get an invalid_scope error. See Module configuration for details.

-453/512 - Copyright © 2008 - 2024 ProcessOne

redirect uri

Parameters are described in OAuth 2.0 specification:

¢ response_type : Should be token.
* client_id: This is the name of the application that is asking for Oauth token.

* scope : This is the scope of the rights being delegated to the application. It will limit the feature the application can perform
and thus ensure the user is not giving away more right than expected by the application. As a developer, you should always
limit the scope to what you actually need.

* redirect_uri: After token is generated, token is passed to the application using the redirect URI. It can obviously work for web
applications, but also for mobile applications, using a redirect URI that the mobile application have registered: Proper code for
handling the token will thus be executed directly in the mobile application.

* state: State parameter is optional and use by client to pass information that will be passed as well as state parameter in the

redirect URI.

Directing the user to this URL will present an authentication form summarizing what is the app requiring the token and the
scope / rights that are going to be granted.

The user can then put their login and password to confirm that they accept granting delegating rights and confirm the token
generation. If the provided credentials are valid, the browser or webview will redirect the user to the redirect uri, to actually let
ejabberd pass the token to the app that requested it. It can be either a Web app or "a mobile / desktop application.

redirect_uri

The redirect_uri originally passed in the authorization token request will be called on successful validation of user credentials,
with added parameters.

For example, redirect URI called by ejabberd can be:

http://client.uri/
?access_token=RHIT8DoudzOctdzBhYL9bYvXz28xQ40]
&token_type=bearer
&expires_in=3600
&scope=user_get_roster+sasl_auth
&state=

Parameters are described in OAuth specification:

e access_token : This is the actual token that the client application can use for OAuth authentication.

e token_type : ejabberd supports bearer token type.

e expires_in: This is the validity duration of the token, in seconds. When the token expires, a new authorization token will need
to be generated an approved by the user.

* scope : Confirms the granted scope to the requesting application. Several scopes can be passed, separated by '+'.

* state: If a state parameter was passed by requesting application in authorization token URL, it will be passed back to the
application as a parameter of the redirect_uri to help with the client workflow.

Scopes

e sasl_auth: This scope is use to generate a token that can login over XMPP using SASL X-OAUTH2 mechanism.
* ejabberd:admin
* ejabberd:user

* Scopes for each existing API command. For example, there is a scope registered_users because there is a command called
registered users. Ensure you enable the module that defines the command that you want to use, see Module configuration for
details.

-454/512 - Copyright © 2008 - 2024 ProcessOne

X-OAuth2 Authentication

X-OAuth2 Authentication

You can connect to ejabberd using an X-OAUTH?2 token that is valid in the scope sasl_auth. You can use an OAuth token as
generated in the previous steps instead of a password when connecting to ejabberd servers support OAuth SASL mechanism.

When enabled, X-OAUTH2 SASL mechanism is advertised in server stream features:

<stream:features>
<c xmlns="http://jabber.org/protocol/caps" node="http://www.process-one.net/en/ejabberd/" ver="nM19M+JKOZBMXK7iJAvKnmDuQus=" hash="sha-1"/>
<register xmlns="http://jabber.org/features/iq-register"/>
<mechanisms xmlns="urn:ietf:params:xml:ns:xmpp-sasl">
<mechanism>PLAIN</mechanism>
<mechanism>DIGEST-MD5</mechanism>
<mechanism>X-0AUTH2</mechanism>
<mechanism>SCRAM-SHA-1</mechanism>
</mechanisms>
</stream:features>

Authentication with X-OAUTH?2 is done by modifying the SASL auth element as follow:

<auth mechanism="'X-0AUTH2'
xmlns='urn:ietf:params:xml:ns:xmpp-sasl'>
base64("\0" + user_name + "\@" + oauth_token)
</auth>

The content in the auth element should be the base64 encoding of a string containing a null byte, followed by the user name,
another null byte and the string representation of the user’s OAuth token. This is similar to how to authenticate with a password
using the PLAIN mechanism, except the token is added instead of the user’s password.

The response is standard for SASL XMPP authentication. For example, on success, server will reply with:

<success xmlns='urn:ietf:params:xml:ns:xmpp-sasl'/>

ReST Example

It is possible to use OAuth to authenticate a client when attempting to perform a ReST or XML-RPC query.

Configuring
First of all check all the required options are setup (listener, OAuth, API and ACL):

listen:
port: 5280
dpe Mgg
module: ejabberd_http
request_handlers:
/api: mod_http_api
/oauth: ejabberd_oauth

oauth_expire: 3600
oauth_access: all

api_permissions:
"admin access":
who:
oauth:
scope: "ejabberd:admin"
access:
allow:
- acl: loopback
- acl: admin
what:
_owxn
- "Istop"
- "Istart"

acl
admin:
user:
- userl@localhost

modules:

mod_admin_extra: {}
mod_roster: {}

-455/512 - Copyright © 2008 - 2024 ProcessOne

ReST Example

Register the account with admin rights, and another one used for the queries:

ejabberdctl register userl localhost asd
ejabberdctl register user2 localhost asd
ejabberdctl add_rosteritem user2 localhost tom localhost Tom "" none

Obtain bearer token

Obtain a bearer token as explained in authorization token, either using ejabberdctl:

ejabberdctl oauth_issue_token userl@localhost 3600 ejabberd:admin
r9KF1ladBTYJS710ggKCifo0GIwyT70Y4 [<<"ejabberd:admin">>] 3600 seconds

Or using a web browser:

¢ visit the URL http://localhost:5280/0auth/authorization_token?response_type=token&scope=ejabberd:admin
* User (jid): useri@localhost
* Password: asd

e and click Accept
This redirects to a new URL which contains the access token, for example:

http://localhost:5280/0auth/authorization_token
?access_token=r9KF1ladBTYJS710ggKCifo0GIwyT70Y4
&token_type=bearer
&expires_in=31536000
&scope=ejabberd:admin
&state=

Passing credentials

When using ReST, the client authorization is done by using a bearer token (no need to pass the user and host parameters). For
that, include an Authorization HTTP header like:

Authorization: Bearer r9KFladBTYJS710ggKCifo0GJwyT70Y4

Query examples
Let's use curl to get the list of registered users with a HTTP GET query:

curl -X GET \
-H "Authorization: Bearer r9KFladBTYJS710ggKCifo0GJIwyT70Y4" \
http://localhost:5280/api/registered_users?host=1localhost

["user1i", "user2"]

Or provide the bearer token with this option:

curl -X GET \
--oauth2-bearer r9KFladBTYJS710ggKCifo0GJwyT70Y4 \
http://localhost:5280/api/registered_users?host=1localhost

With a command like get roster you can get your own roster, or act as an admin to get any user roster.

The HTTP endpoint does not take any parameter, so we can just do an HTTP POST with empty JSON structure list (see -d
option).

In this example let's use a HTTP POST query:

curl -v -X POST \
--oauth2-bearer r9KFladBTYJS710ggKCifo0GJwyT70Y4 \
http://localhost:5280/api/get_roster \
-d '{"user": "user2", "server": "localhost"}

[{"jid":"tom@localhost", "nick":"Tom", "subscription":"none", "ask":"none", "group":""}]

-456/512 - Copyright © 2008 - 2024 ProcessOne

XML-RPC Example

XML-RPC Example

For XML-RPC, credentials must be passed as XML-RPC parameters, including token but also user and host parameters. This is

for legacy reason, but will likely change in a future version, making user and host implicit, thanks to bearer token.

Here is an (Erlang) XML-RPC example on how to get your own roster:

xmlrpc:call({127, ©, ©, 1}, 4560, "/",
{call, get_roster, [
{struct, [{user, "peter"},
{server, "example.com"},
{token, "On6LaEjyAOxVDyZChzZfoKMYxc8uUk6L"}]1}1},
false, 60000, "Host: localhost\r\n", []).

This will lead to sending this XML-RPC payload to server:

<?xml version="1.0" encoding="UTF-8"?>
<methodCall>
<methodName>get_roster</methodName>
<params>
<param>
<value>
<struct>
<member>
<name>server</name>
<value>
<string>example.com</string>
</value>
</member>
<member>
<name>user</name>
<value>
<string>peter</string>
</value>
</member>
<member>
<name>token</name>
<value>
<string>0n6LaEjyA0xVDyZChzZfoKMYxc8uUk6L</string>
</value>
</member>
</struct>
</value>
</param>
</params>
</methodCall>

To get roster of other user using admin authorization, this erlang XML-RPC code can be used:

xmlrpc:call({127, 0, 0, 1}, 4560, "/",
{call, get_roster, [
{struct, [{user, "admin"},
{server, "example.com"},
{token, "On6LaEjyA0xVDyZChzZfoKMYxc8uUk6L"}
{admin, true}]},
{struct, [{user, "peter"}
{server, "example.com"}]}1},
false, 60000, "Host: localhost\r\n", []).

This is an equivalent Python 2 script:

import xmlrpclib

server_url = 'http://127.0.0.1:4560"'
server = xmlrpclib.ServerProxy(server_url)

LOGIN = {'user': 'admin'
'server': 'example.com'
'token': 'On6LaEjyA0xVDyZChzZfoKMYxc8uUk6L'
'admin': True}

def calling(command, data):
fn = getattr(server, command)
return fn(LOGIN, data)

print calling('get_roster', {'user':'peter', 'server':'example.com'})

And this is an equivalent Python 3 script:

from xmlrpc import client

server_url = 'http://127.0.0.1:4560'
server = client.ServerProxy(server_url)

-457/512 -

Copyright © 2008 - 2024 ProcessOne

XML-RPC Example

LOGIN = {'user': 'admin',
'server': 'example.com',
'token': 'On6LaEjyAO0xVDyZChzZfoKMYxc8uUk6L '
'admin': True}

def calling(command, data):
fn = getattr(server, command)
return fn(LOGIN, data)

result = calling('get_roster', {'user':'peter',6 'server':'example.com'})
print(result)

Those calls would send this XML to server:

<?xml version="1.0" encoding="UTF-8"?>
<methodCall>
<methodName>get_roster</methodName>
<params>
<param>
<value>
<struct>
<member>
<name>admin</name>
<value>
<boolean>1</boolean>
</value>
</member>
<member>
<name>server</name>
<value>
<string>example.com</string>
</value>
</member>
<member>
<name>user</name>
<value>
<string>admin</string>
</value>
</member>
<member>
<name>token</name>
<value>
<string>0n6LaEjyA0xVDyZChzZfoKMYxc8uUk6L</string>
</value>
</member>
</struct>
</value>
</param>
<param>
<value>
<struct>
<member>
<name>user</name>
<value>
<string>peter</string>
</value>
</member>
<member>
<name>server</name>
<value>
<string>example.com</string>
</value>
</member>
</struct>
</value>
</param>
</params>
</methodcall>

-458/512 - Copyright © 2008 - 2024 ProcessOne

ejabberd commands

ejabberd commands

By defining command using api available through ejabberd_commands module, it's possible to add operations that would be
available to users through ejabberdctl command, XML-RPC socket or JSON based REST service.

Each command needs to provide information about required arguments and produced result by filling #ejabberd_commands record
and registering it in dispatcher by calling ejabberd_commands:register_commands([ListOfEjabberdCommandsRecords]) .

Structure of #ejabberd_commands record

Writing ejabberd commands supporting OAuth

If you have existing commands that you want to make OAuth compliant, you can make them OAuth compliant very easily.
An ejabberd command is defined by an #ejabberd_commands Erlang record. The record requires a few fields:

* name: This is an atom defining the name of the command.

* tags: This is a list of atoms used to group the command into consistent group of commands. This is mostly used to group
commands in ejabberdctl command-line tool. Existing categories are:

* session: For commands related to user XMPP sessions.

e roster : Commands related to contact list management.

* desc: Description of the command for online help.

* module and function: Module and function to call to execute the command logic.

e args: Argument of the command. An argument is defined by a tuple of atoms of the form {argument_name, data_type} .
data_type can be one of:

* binary
* result: defines what the command will return.

* policy: Is an optional field, containing an atom that define restriction policy of the command. It can be on of: open, admin,
user , restricted. Defaultis restricted, meaning the command can be used from ejabberdctl command-line tool.

* version: API version number where this command is available (see API versioning documentation for details).

To define a command that can be used by server user over ReST or XML-RPC API, you just have to define it with policy user .
Then, you have to make sure that the function will take a user binary and a host binary as first parameter of the function. They
do not have to be put in the args list in #ejabberd_commands record as the "user policy implicitly expect them.

That's all you need to have commands that can be used in a variety of ways.
Here is a example way to register commands when

start(_Host, _Opts) ->
ejabberd_commands:register_commands(commands()).

stop(_Host) ->
ejabberd_commands:unregister_commands(commands()).

9%6%%
%%% Register commands
%%%

commands() ->
[#ejabberd_commands{name = user_get_roster

tags = [roster],

desc = "Retrieve the roster",

longdesc =
"Returns a list of the contacts in a "
"user roster.\n\nAlso returns the state "
"of the contact subscription. Subscription
"can be either \"none\", \"from\", \"to\", "
"\"both\". Pending can be \"in\", \"out\" "
"or \"none\".",

module = ?MODULE, function = get_roster

args = [],

- 459/512 - Copyright © 2008 - 2024 ProcessOne

Writing ejabberd commands supporting OAuth

policy = user,
result =
{contacts,
{list,
{contact,
{tuple,
[{jid, string},
{groups, {list, {group, string}}},
{nick, string}, {subscription, string},
{pending, string}]}}}}}

-460/512 - Copyright © 2008 - 2024 ProcessOne

API Versioning

API Versioning

© added in 24.02

API Versions History

e API v3 (changes) was introduced in ejabberd 24.12
* API v2 (changes) was introduced in ejabberd 24.06
* API vl (changes) was introduced in ejabberd 24.02
e API vO was used in ejabberd 23.10

Introduction

It is possible to support different versions of the ejabberd API. Versioning is used to ensure compatibility with third party
backend that uses the API.

When a command is modified (either its declaration or its definition, breaking compatibility), those modifications can be done in a
new version of the API, keeping the old command still available in the previous API version. An API version is an integer (sub-
versions are not supported).

If the API client does not specify the API version, ejabberd uses by default the most recent available API version.

Alternatively, the API client can specify an API version, and ejabberd will use that one to process the query, or the most recent to
the one specified. For example: if a command is defined in API versions 0, 2, 3, 7, and 9, and a client declares to support up to
API version 5, then ejabberd uses the command API version 3, which is the most recent available for the one supported by the
client.

API versioning is supported by mod_http_api ReST interface and ejabberdctl command line script. However ejabberd xmlrpc
doesn't support API versioning, and consequently it can only use the latest API version.

Command Definition

If a command is modified, a new #ejabberd commands record should be defined with a version attribute set to the API version (an
integer) where this command version is available. There is no need to add a new #ejabberd_commands record for commands that
are not modified in a given API version, immediate inferior version is used.

By default, all commands are in API version 0, and latest API is used if no version is specified when calling ejabberd_commands
directly without specifying a version.

API Documentation

The command documentation indicates the api version as a tag: vi, v2... Commands not versioned do not have such a tag: they
are version 0.

The API Tags page lists the most recent API versions, and what commands are included.

To know exactly what is the format expected for a command in a specific API version, use ejabberdctl specifying what API
version you want to consult and the command name, for example:

ejabberdctl --version @ help get_roster

ejabberdctl

ejabberdctl uses by default the latest API version.

-461/512 - Copyright © 2008 - 2024 ProcessOne

mod_adhoc api

To execute a command from a specific API version, add the --version switch, followed by the version number, and then the

command name.
Example:

ejabberdctl --version 2 set_loglevel 4

Use the most recent API version:

$ ejabberdctl get_roster admin localhost
jan@localhost jan none subscribe groupl, group2
tom@localhost tom none subscribe group3

Use version 0:

$ ejabberdctl --version 0 get_roster admin localhost
jan@localhost jan none subscribe groupl;group2
tom@localhost tom none subscribe group3

mod_adhoc_api

mod adhoc api uses by default the latest API version.

If you want the module to use a specific API version, configure the module option default_version.

mod_http_api

mod http api uses by default the latest API version.

You can set the default version when configuring request_handlers, by including a vn in its path, where n is an integer

corresponding to the version.

In any case, the API client can specify a version when sending the request, by appending vn to the request path.

For example, when configured like:

listen:
request_handlers:
/api/v0: mod_http_api
/v1/api: mod_http_api
/api: mod_http_api

See what API version will be used depending on the URL:

* api/command use the latest available version
* api/command/ve use version 0

* api/command/v1 use version 1

* vi/api/command use version 1

* vi/api/command/ve use version 0

¢ api/v@/command use version 0

e api/ve@/command/vi use version 1

In this example, the server administrator configured the default API version to O:

listen:

request_handlers:
/api/ve: mod_http_api

The client doesn't specify any version, so 0 is used:

-462/512 -

Copyright © 2008 - 2024 ProcessOne

mod_http api

$ curl -k -X POST -H "Content-type: application/json" \
-d '{}' "http://localhost:5280/api/ve/get _loglevel"
{"levelatom":"info"}

This time the client requests the API version 2:

$ curl -k -X POST -H "Content-type: application/json" \
-d '{}' "http://localhost:5280/api/v0/get_loglevel/v2"
"info"

-463/512 - Copyright © 2008 - 2024 ProcessOne

Archive

Archive

Changelog

Version 26.02

 Fixes issue with adding hats data in presences send by group chats (#4516)

* Removes mod_muc_occupantid modules, and integrates its functionality directly into mod_muc (#4521)
» Fixes issue with reset occupant-id values after restart of ejabberd (#4521)

e Improves handling of mediated group chat invitations in mod_block_stranger (#4523)

* Properly install mod_invites templates in make install call (#4514)

* Better errors in mod_invites (#4515)

* Accessibility improvements in mod_invites (#4524)

* Improves handling of request with invalid url encoded values in request handled by ejabberd_http

* Improves handling of invalid responses to disco queries in mod_pubsub_serverinfo

 Fixes conversion of MUC room configs from ejabberd older than 21.12

* Fixes to autologin in WebAdmin

Version 26.01
COMPILE AND START

* Remove dependencies, macros and code for Erlang/OTP older than 25

* Require Elixir 1.14 or higher, that's the lowest we can test automatically

e ejabberdctl: Support NetBSD and OpenBSD su (#4320)

* ejabberdctl.template : Show meaningful error when ERL_DIST_PORT is in use

* ejabberd_app : Print address and port where listens for erlang node connections
e Makefile.in: Add make relivectl similar to relive but using ejabberdctl

DATABASES

* Add db serialize support in mnesia modules

¢ Add db serialization to mod_muc_sql

* New database export/import infrastructure

* Add commands for new database export/import

e Apply timestamp pass in ?SQL_INSERT queries

» Update pl mysql to bring fix for timestamp decoding
* Extend timestamp type handling in sql macros

* Revert changes to conversion of pgsql int types
INSTALLER AND CONTAINER
* make-binaries: Bump Erlang/OTP 28.3.1 and Elixir 1.19.5
* Dockerfile : Bump Erlang/OTP 28.3.1 and Elixir 1.19.5
* Dockerfile : Expose also port 7777 for SOCKS5
* pockerfile: Configure TURN ports and expose 5478 50000-50099

* Dockerfile: Try to fix error with recent freetds Alpine package

- 464/512 - Copyright © 2008 - 2024 ProcessOne

https://github.com/processone/ejabberd/issues/4516
https://github.com/processone/ejabberd/issues/4521
https://github.com/processone/ejabberd/issues/4521
https://github.com/processone/ejabberd/issues/4523
https://github.com/processone/ejabberd/issues/4514
https://github.com/processone/ejabberd/issues/4515
https://github.com/processone/ejabberd/issues/4524
https://github.com/processone/ejabberd/issues/4320

Muc

Container: Setup new macro STARTTLS_REQUIRED to allow easy disabling

Add muc_online_rooms_count API command

Set enable_hats room option true by default

Allow vcard queries even when IQ queries are disabled (#4489)

Announce stable-id feature from XEP-0045 1.31, supported since long ago
Fix preload_rooms in case of SQL database (#4476)

Run new hooks: registering_nickmuc and registered_nickmuc (#4478)
When deleting account, unregister account's nicks in all MUC hosts (#4478)
mod_muc_log : Crash in terminate/2 when stopping module (#4486)
mod_muc_occupantid : Keep salt per MUC service, not individual rooms
mod_muc_room : Rewrite hats code that gets xdata values

mod_muc_room : Handle hats without definition (#4503)

mod_muc_room : When user has no hats, don't store in hats users

WEBADMIN

ejabberd_http : Run new http_request_handlers_init fold hook

ejabberd_http : Add helper get_auto _urls/2 that returns all URLs and TLS
ejabberd_web_admin : Add helper functions make _menu_system

ejabberd_web_admin : Show menu system only when can view vhosts
ejabberd_web_admin : Pass Level in webadmin_menu_system_post and inside hooks
mod_conversejs : Improve link to conversejs in WebAdmin (#4495)

When epmd isn't running show explanation in Clustering WebAdmin page

Use improved WebAdmin menu system in more modules

When building WebAdmin menu system, {URLPATH} in link text is substituted

WEB SERVICES

rest : Use separate httpc profile

ejabberd_captcha : Use mod_host_meta:get_auto_url/2

ejabberd_http : Support repeated module in request handlers

ejabberd_http : Get back handling when BOSH or WS are disabled
mod_host_meta : Move get_url functions from mod_host_meta to ejabberd_http
mod_host_meta : Allow calling get_url/2 for other modules, not only WebSocket
mod_host_meta : Cosmetic rename Module to Handler

mod_http_upload : New content_type option similar to mod_http_fileserver (#4488)
mod_http_upload : Pass ServerHost, not Host which may be "upload.HosT"
mod_http_upload : Amend the fix for #4450 to support IDNA correctly (#3519)
mod_http_fileserver : Support map of paths in docroot option

mod_conversejs : Add new Conversejs Paths and ContentTypes (#4511)
mod_conversejs : Use ContentType functions from mod_http_fileserver (#4511)

Use /websocket URL in default configuration like mod_conversejs, it's more meaningful

CORE AND MODULES

Add replaced_connection_timeout toplevel option

-465/512 -

Version 26.01

Copyright © 2008 - 2024 ProcessOne

https://github.com/processone/ejabberd/issues/4489
https://github.com/processone/ejabberd/issues/4476
https://github.com/processone/ejabberd/issues/4478
https://github.com/processone/ejabberd/issues/4478
https://github.com/processone/ejabberd/issues/4486
https://github.com/processone/ejabberd/issues/4503
https://github.com/processone/ejabberd/issues/4495
https://github.com/processone/ejabberd/issues/4488
https://github.com/processone/ejabberd/issues/3519
https://github.com/processone/ejabberd/issues/4511
https://github.com/processone/ejabberd/issues/4511

» Fix nasty SSL warnings (#4475)

* ejabberd_commands : Show meaningul error message when problem executing command (#4506)

e ejabberd_logger : Append "color clean" only in console template, not file

* ejabberd_oauth : Log error if oauth_list_tokens executed with unsupported DB (#4506)

e misc: Get back functions and mark them as deprecated

* mod_adhoc_api: Show nice command name, as WebAdmin already does

* mod_pubsub : Deliver pubsub notifications to remote servers for nodes with presence based delivery
* mod_scram_update : Don't hard-code iteration count

* Bump many XEPs versions that are already supported

e Improve documentation of install_contrib_modules (#4487)

Version 25.10
AD-HOC COMMANDS

* mod_configure : New ad-hoc commands that were missing from XEP-0133
e mod_adhoc_api : Add support for asynchronous command calling

* mod_adhoc_api : If argument is a list of jids, type is jid-multi

* mod_adhoc_api : If field has several values, type is text-multi

APl COMMANDS

* Add commands argument type binary_or_list

* mod_http_api: Format sub elements for tuples from maps

* mod_admin_extra : Improve roster API commands documentation

* mod_announce : New API commands, reusing existing ad-hoc functions

¢ ejabberd_admin: New API command restart_kindly , improve stop_kindly

* mod_admin_extra: New API commands list _banned and count_banned

* mod_admin_extra: Improve API command status_list : support for status to be a list
* mod_muc_admin : New API commands muc_get_registered_nick and nicks (#4468)

e Use mod_private:del data in unban_account API command
CONFIGURATION
¢ Rename New SQL schema to Multihost, and Default to Singlehost (#4456)

* Add config transformer from use_new_schema -> sql_multihost_schema

* mod_sip : Fix problem parsing via in yconf library (#4444)
ERLANG/OTP SUPPORT

* Enable feature maybe_expr in the compiler for Erlang/OTP 26 (#4459)

* Enable feature maybe_expr also in the runtime for Erlang/OTP 25

* Runtime: Remove Erlang 24 which won't work anymore with maybe_expr

* Remove Ex _RULE and Ex_STACK macros only used with ancient erlang
GITHUB WORKFLOWS

e CI: Bump XMPP-Interop-Testing/xmpp-interop-tests-action (#4469)

e CI: Don't care to include commit details in the CT logs HTML page

* CI and Runtime: Reorganize steps to run in parallel, and ARM runner (#4460)

* Add local composite actions to manage ejabberd and databases

-466/512 -

Version 25.10

Copyright © 2008 - 2024 ProcessOne

https://github.com/processon4475e/ejabberd/issues/
https://github.com/processone/ejabberd/issues/4506
https://github.com/processone/ejabberd/issues/4506
https://github.com/processone/ejabberd/issues/4487
https://github.com/processone/ejabberd/issues/4468
https://github.com/processone/ejabberd/issues/4456
https://github.com/processone/ejabberd/issues/4444
https://github.com/processone/ejabberd/issues/4459
https://github.com/processone/ejabberd/issues/4469
https://github.com/processone/ejabberd/issues/4460

* Container: Build ARM in native runner instead of QEMU, merge and clean
* Installers: Generate ARM installers in native runner

» Tests: Run agnostic-database tests only once, not for every backend

» Tests: The odbc backend is not actually used in Commont Tests

* Weekly: New workflow that condenses CI, test all erlang without caching

INSTALLERS AND CONTAINER

* Bump Erlang/OTP version to 27.3.4.3 in installers and container

* Bump Expat 2.7.3, OpenSSL 3.5.4, unixODBC 2.3.14 in installers
muc

* mod_mam : New option archive_muc_as_mucsub

e mod_muc : Check if room is hibernated before calling mod muc process

* mod_muc : Update implementation of XEP-0317 Hats to version 0.3.1 (#4380)
* mod_muc : Make mod muc sql properly handle new hats data (#4380)

* mod_muc_room : Don't require password if user is owner of room

* mod_muc_admin : Use in WebAdmin the new API commands that get nick registers

CORE AND MODULES

¢ ejabberd_http_ws : Pass HTTP headers from WS to C2S connection (#4471)

* ejabberd_listener : Properly pass send_timeout option to listener sockets

* ejabberdctl: When ping returns pang, return also status code 1 (#4327)

e ext_mod : Print module status message after installation

* misc: json encode should always call json with our filter

* mod_admin_update_sql : Use same index name than when creating database

* mod_block_strangers : Clarify access and captcha documentation (#4221)

* mod_http_upload : Encode URL before parsing, as done before bbailaile3dc (#4450)
* mod_private : Add del data/3, get_users_with_data/2, count_users_with_data/2
e mod_pubsub : Don't catch exit:{aborted, _} inside mnesia transactions

¢ mod_push : Run new hook push_send_notification (#4383)

* WebAdmin: Respect newline and whitespace characters in results

Version 25.08
API COMMANDS

e ban_account : Run sm_kick_user event when kicking account (#4415)
e ban_account : No need to change password (#4415)

* mnesia_change : New command in ejabberdctl script that helps changing the mnesia node name

CONFIGURATION

* Rename auth_password_types_hidden_in_scraml option to auth_password_types_hidden_in_sasl1
e econf : If a host in configuration is encoded IDNA, decode it (#3519)

e ejabberd_config : New predefined keyword HOST_URL_ENCODE

e ejabberd.yml.example : Use HOST_URL_ENCODE to handle case when vhost is non-latinl

* mod_conversejs : Add option conversejs_plugins (#4413)

* mod _matrix_gw: Add leave_timeout option (#4386)

-467/512 -

Version 25.08

Copyright © 2008 - 2024 ProcessOne

https://github.com/processone/ejabberd/issues/4380
https://github.com/processone/ejabberd/issues/4380
https://github.com/processone/ejabberd/issues/4471
https://github.com/processone/ejabberd/issues/4327
https://github.com/processone/ejabberd/issues/4221
https://github.com/processone/ejabberd/issues/4450
https://github.com/processone/ejabberd/issues/4383
https://github.com/processone/ejabberd/issues/4415
https://github.com/processone/ejabberd/issues/4415
https://github.com/processone/ejabberd/issues/3519
https://github.com/processone/ejabberd/issues/4413
https://github.com/processone/ejabberd/issues/4386

DOCUMENTATION AND TESTS

coMPILE.md : Mention dependencies and add link to Docs (#4431)
ejabberd_doc : Document commands tags for modules

CI: bump XMPP-Interop-Testing/xmpp-interop-tests-action (#4425)
Runtime: Raise the minimum Erlang tested to Erlang/OTP 24

INSTALLERS AND CONTAINER

Bump Erlang/OTP version to 27.3.4.2
Bump OpenSSL version to 3.5.2

make-binaries : Disable Linux-PAM's logind support

CORE AND MODULES

Bump pi1_acme to fix 'Attributepkcs-10' and OTP 28 (processone/pl acme#4)
Prevent loops in xml_compress:decode with corrupted data

ejabberd_auth_mnesia : Fix issue with filtering duplicates in get_users()
ejabberd_listener : Add secret in temporary unix domain socket path (#4422)
ejabberd_listener : Log error when cannot set definitive unix socket (#4422)
ejabberd_listener : Try to create provisional socket in final directory (#4422)
ejabberd_logger : Print log lines colorized in console when using rebar3
mod_conversejs : Ensure assets path ends in / as required by Converse (#4414)
mod_conversejs : Ensure plugins URL is separated with / (#4413)
mod_http_upload : Encode URLs into IDNA when showing to XMPP client (#3519)
mod_matrix_gw : Add support for null values in is_canonical_json (#4421)
mod_matrix_gw: Don't send empty direct Matrix messages (#4420)

mod_matrix_gw : Matrix gateway updates

mod_muc : Report db failures when restoring rooms

mod_muc : Unsubscribe users from members-only rooms when expelled (#4412)
mod_providers : New module to serve easily XMPP Providers files

mod_register : Don't duplicate welcome subject and message

mod_scram_upgrade : Fix format of passwords updates

mod_scram_upgrade : Only offer upgrades to methods that aren't already stored

Version 25.07

SECURITY FIX

ext_mod : Add temporary workaround for zip including absolute path

COMPILATION

Raise the minimum Elixir tested version to 1.14.0 (#4281)

Raise Erlang/OTP minimum requirement to 25.0 (#4281)

configure.ac : Allow to specify minimal erlang version using --with-min-erlang
Makefile.in : Add target test-<group>

rebar3-format.sh : Replace csplit with perl

Container: Bump Erlang/OTP 27.3.4.1, Elixir 1.18.4

Installers: Bump Erlang/OTP 27.3.4.1, Elixir 1.18.4, libexpat 2.7.1, OpenSSL 3.5.1

-468/512 -

Version 25.07

Copyright © 2008 - 2024 ProcessOne

https://github.com/processone/ejabberd/issues/4431
https://github.com/processone/ejabberd/issues/4425
https://github.com/processone/p1_acme/issues/4
https://github.com/processone/ejabberd/issues/4422
https://github.com/processone/ejabberd/issues/4422
https://github.com/processone/ejabberd/issues/4422
https://github.com/processone/ejabberd/issues/4414
https://github.com/processone/ejabberd/issues/4413
https://github.com/processone/ejabberd/issues/3519
https://github.com/processone/ejabberd/issues/4421
https://github.com/processone/ejabberd/issues/4420
https://github.com/processone/ejabberd/issues/4412
https://github.com/processone/ejabberd/issues/4281
https://github.com/processone/ejabberd/issues/4281

Version 25.07

CONFIGURATION AND TESTS

e Add rest_proxy* options to configure proxy used by rest module

* ejabberd_c2s: Add auth_password_types_hidden_in_scram1i option

* ejabberd http: Remove unused default _host option and state element

* ejabberd_http: New option hosts_alias and function resolve host_alias/1 (#4400)
* New predefined keywords: CONFIG_PATH and LOG_PATH

» Fix macro used in string options when defined in env var

» Use auxiliary function to get $HoME , use Mnesia directory when not set (#4402)

e ejabberd_config: Better lists:uniq substitute

» Tests: update readme and compose to work with current sw versions

* Update Elvis to 4.1.1, fix some warnings and enable their tests

ERLANG/OTP 28 SUPPORT

e Add workaround in p1_acme for Jose 1.11.10 not supporting OTP 28 ecPrivkeyver1i (#4393)
e Bump fast_xml and xmpp for improved Erlang/OTP 28 support

e Bump xmpp and pi_acme patched with Erlang/OTP 28 support

* Fix make options in Erlang/OTP 28 (#4352)

» Fix crash in rebar3 cover with Erlang/OTP 28 (#4353)

* Rebar/Rebar3: Update binaries to work with Erlang/OTP 25-28 (#4354)

e CI and Runtime: Add Erlang/OTP 28 to the versions matrix

sSQL

» Fix mnesia to sql exporter after changes to auth tables

* Update code for switching to new schema type to users table changes
* Add mssql specific implementation of delete_old_mam_messages

* Make delete_old_mam_messages_batch work with sqlite

e ejabberd_sm_sql: Use misc:encode pid/1

* mysql.sql: Fix typo in commit 7862c6a when creating users table

* pg.sql: Fix missing comma in postgres schema (#4409)

CORE AND MODULES

* ejabberd_s2s_in: Allow S2S connections to accept client certificates that have only server purpose (#4392)
e ext_mod : Recommend to write README.md instead txt (processone/ejabberd-contrib#363)
e ext_mod : Support library path installed from Debian (processone/ejabberd-contrib#363)

e ext_mod : When upgrading module, clean also the compiled directories

e gen_mod : Add support to prepare module stopping before actually stopping any module

* mod_antispam: Imported from ejabberd-contrib and improved (#4373)

* mod_auth_fast : Clear tokens on kick, change pass and unregister (#4397)(#4398)(#4399)
* mod_conversejs : Add link in WebAdmin to local Converse if configured

* mod_mam : Present mam full text search in xep-431 compatible way

* mod_mam_mnesia : Handle objects that don't need conversion in transform/0

* mod_matrix_gw: Don't send empty messages in Matrix rooms (#4385)

* mod_matrix_gw: Support older Matrix rooms versions starting from version 4

* mod_matrix_gw: When encoding JSON, handle term that is key-value list (#4379)

- 469/512 - Copyright © 2008 - 2024 ProcessOne

https://github.com/processone/ejabberd/issues/4400
https://github.com/processone/ejabberd/issues/4402
https://github.com/processone/ejabberd/issues/4393
https://github.com/processone/ejabberd/issues/4352
https://github.com/processone/ejabberd/issues/4353
https://github.com/processone/ejabberd/issues/4354
https://github.com/processone/ejabberd/issues/4409
https://github.com/processone/ejabberd/issues/4392
https://github.com/processone/ejabberd/issues/4373
https://github.com/processone/ejabberd/issues/4397
https://github.com/processone/ejabberd/issues/4398
https://github.com/processone/ejabberd/issues/4399
https://github.com/processone/ejabberd/issues/4385
https://github.com/processone/ejabberd/issues/4379

Version 25.04

* mod_matrix_gw_s2s : Fix key validation in check_signature

* mod_mix and mod_muc_rtbl: Support list of IDs in pubsub-items-retract (processone/xmpp#100)
* mod_pubsub_serverinfo : Imported module from ejabberd-contrib (#4408)

* mod_register : Normalize username when determining if user want to change pass

* mod_register : Strip query data when returning errors

* WebAdmin: New hooks webadmin_menu_system to add items to system menu

Version 25.04

SECURITY FIXES

* Fixes issue with handling of user provided occupant-id in messages and presences sent to muc room. Server was replacing just
first instance of occupant-id with its own version, leaving other ones untouched. That would mean that depending on order in
which clients send occupant-id, they could see value provided by sender, and that could be used to spoof as different sender.

COMMANDS API

e kick_users: New command to kick all logged users for a given host

BUGFIXES

* Fix issue with sql schema auto upgrade when using sqlite database
» Fix problem with container update, that could ignore previous data stored in mnesia database

* Revert limit of allowed characters in shared roster group names, that will again allow using symbols like :

Version 25.03

COMMANDS API

¢ ejabberdctl: New option CTL_OVER HTTP (#4340)

* ejabberd_web_admin : Support commands with tuple arguments

* mod_adhoc_api : New module to execute API Commands using Ad-Hoc Commands (#4357)
e mod_http_api: Sort list elements in a command result

e Show warning when registering command with an existing name

e Fix commands unregistration

e change_room_option : Add forgotten support to set enable_hats room option
* change_room_option : Verify room option value before setting it (#4337)

* create_room with_opts: Recommend using ; and = separators

e list _cluster_detailed: Fix crash when a node is down

* mnesia_list_tables : Allow using this internal command

* mnesia_table_change_storage : Allow using this internal command

e status: Separate command result with newline

* update_sql: Fix updating tables created by ejabberd internally

e update_sql: Fix MySQL support

CONFIGURATION

e acl: Fix bug matching the acl shared_group: NAME
e define_keyword : New option to define keywords (#4350)
e define _macro: Add option to globals() because it's useless inside host_config

* ejabberd.yml.example : Enable mod_muc_occupantid by default

- 470/512 - Copyright © 2008 - 2024 ProcessOne

https://github.com/processone/ejabberd/issues/4408
https://github.com/processone/ejabberd/issues/4340
https://github.com/processone/ejabberd/issues/4357
https://github.com/processone/ejabberd/issues/4337
https://github.com/processone/ejabberd/issues/4350

* Add support to use keywords in toplevel, listener and modules

* Show warning also when deprecated listener option is set as disabled (#4345)

CONTAINER

* Bump versions to Erlang/OTP 27.3 and Elixir 1.18.3

e Add ERL_FLAGS to compile elixir on gemu cross-platform

» Copy files to stable path, add ecs backwards compatibility
» Fix warning about relative workdir

» Improve entrypoint script: register account, or set random
e Link path to Mnesia spool dir for backwards compatibility
* Place sockets/ outside database/

* Use again direct METHOD, gemu got fixed (#4280)

* ejabberd.yml.example : Copy main example configuration file

* ejabberd.yml.example : Define and use macros in the default configuration file

* ejabberd.yml.example : Enable cTL_over HTTP by default

* ejabberd.yml.example : Listen for webadmin in a port number lower than any other

* ejabberdapi: Compile during build
* CONTAINER.md : Include documentation for ecs container image

CORE AND MODULES

* ejabberd_auth : Add support for auth_stored_password_types

e ejabberd_router : Don't rewrite "self-addressed" privileged 1Qs as results (#4348)

e misc : Fix json version of json_encode_with_kv_list for nested kv lists (#4338)

e OAuth: Fix crashes when oauth is feed with invalid jid (#4355)

e PubSub: Bubble up db errors in nodetree tree_sql:set _node

* mod_configure : Add option access to let configure the access name

mod_mix_pam : Remove

channels roster group of mix channels (#4297)

mod_muc : Document MUC room option vcard xupdate

mod_privilege : Accept non-privileged IQs from privileged components (#4341)

mod_private : Improve exception handling

mod_private : Don't warn on conversion errors

mod_private : Handle invalid PEP-native bookmarks

mod_private : Don't crash on invalid bookmarks

mod_s2s_bidi : Stop processing other handlers in s2s in handle info (#4344)

mod_s2s_bidi : Fix issue with wrong namespace

DEPENDENCIES

* ex_doc : Bump to 0.37.2

stringprep : Bump to 1.0.31

provider_asni: Bump to 0.4.1

xmpp Bump to bring fix for ssdp hash calculation

xmpp Bump to get support for webchat url (#3041)

xmpp Bump to get XEP-0317 Hats namespaces version 0.2.0

xmpp Bump to bring SSDP to XEP version 0.4

yconf Bump to support macro inside string

-471/512 -

Version 25.03

Copyright © 2008 - 2024 ProcessOne

https://github.com/processone/ejabberd/issues/4345
https://github.com/processone/ejabberd/issues/4280
https://github.com/processone/ejabberd/issues/4348
https://github.com/processone/ejabberd/issues/4338
https://github.com/processone/ejabberd/issues/4355
https://github.com/processone/ejabberd/issues/4297
https://github.com/processone/ejabberd/issues/4341
https://github.com/processone/ejabberd/issues/4344
https://github.com/processone/ejabberd/issues/3041

Version 25.03

DEVELOPMENT AND TESTING

e mix.exs : Keep debug info when building dev release

* mix.exs: The ex_doc dependency is only relevant for the edoc Mix environment
e ext_mod: add $libdir/include to include path

* ext_mod : fix greedy include path (#4359)

* gen_mod : Support registering commands and hook_subscribe in start/2 result

* c2s_handle_bind : New event in ejabberd_c2s (#4356)

¢ muc_disco_info_extras : New event mod_muc_room useful for mod_muc_webchat_url (#3041)
* VSCode: Fix compiling support

* Add tests for config features define_macro and define_keyword

* Allow test to run using ct_run

» Fixes to handle re-running test after update_sql

e Uninstall mod_example when the tests has finished

DOCUMENTATION

e Add XEPs that are indirectly supported and required by XEP-0479
* Document that XEP-0474 0.4.0 was recently upgraded

* Don't use backtick quotes for ejabberd name

» Fix values allowed in db_type of mod auth fast documentation

* Reword explanation about ACL names and definitions

* Update moved or broken URLs in documentation

INSTALLERS

* Bump Erlang/OTP 27.3 and Elixir 1.18.3
* Bump OpenSSL 3.4.1
* Bump crosstool-NG 1.27.0

 Fix building Termcap and Linux-PAM

MATRIX GATEWAY

* Preserve XMPP message IDs in Matrix rooms

* Better Matrix room topic and room roles to MUC conversion, support room aliases in invites
* Add muc#user element to presences and an initial empty subject

e Fix gen_iq_handler:remove_iq_handler call

* Properly handle IQ requests

e Support Matrix room aliases

* Fix handling of 3PI events

UNIX DOMAIN SOCKET

* Add support for socket relative path

* Use /tmp for temporary socket, as path is restricted to 107 chars
* Handle unix socket when logging remote client

* When stopping listener, delete Unix Domain Socket file

e get_auto_url option: Don't build auto URL if port is unix domain socket (#4345)

- 472/512 - Copyright © 2008 - 2024 ProcessOne

https://github.com/processone/ejabberd/issues/4359
https://github.com/processone/ejabberd/issues/4356
https://github.com/processone/ejabberd/issues/3041
https://github.com/processone/ejabberd/issues/4345

Version 24.12

MISCELANEA

Elixir: support loading Elixir modules for auth (#4315)

Environment variables EJABBERD_MACRO to define macros

Fix problem starting ejabberd when first host uses SQL, other one mnesia
HTTP Websocket: Enable allow_unencrypted_sas12 on websockets (#4323)
Relax checks for channels bindings for connections using external encryption
Redis: Add support for unix domain socket (#4318)

Redis: Use eredis 1.7.1 from Nordix when using mix/rebar3 and Erlang 21+
mod_auth_fast : New module with support XEP-0484: Fast Authentication Streamlining Tokens
mod_http_api : Fix crash when module not enabled (for example, in CT tests)
mod_http_api : New option default_version

mod_muc : Make rsm handling in disco items, correctly count skipped rooms
mod_offline : Only delete offline msgs when user has MAM enabled (#4287)
mod_priviled : Handle properly roster iq

mod_pubsub : Send notifications on PEP item retract

mod_s2s_bidi : Catch extra case in check for s2s bidi element
mod_scram_upgrade : Don't abort the upgrade

mod_shared_roster : The name of a new group is lowercased

mod_shared_roster : Get back support for groupid@vhost in displayed

mod_stun_disco : Fix syntax of credentials response

COMMANDS API

Change arguments and result to consistent names (API v3)
create_rooms_file : Improve to support vhosts with different config
evacuate_kindly : New command to kick users and prevent login (#4309)
join_cluster : Explain that this returns immediately (since 5a34020, 24.06)

mod_muc_admin : Rename argument name to room for consistency

DOCUMENTATION

Fix some documentation syntax, add links to toplevel, modules and API
CONTAINER.md : Add kubernetes yaml examples to use with podman
SECURITY.md : Add security policy and reporting guidelines
ejabberd.service : Disable the systemd watchdog by default

ejabberd.yml.example : Use non-standard STUN port

WEBADMIN

Shared group names are case sensitive, use original case instead of lowercase
Use lowercase username and server authentication credentials
Fix calculation of node's uptime days

Fix link to displayed group when it is from another vhost

-473/512 -

Version 24.12

Copyright © 2008 - 2024 ProcessOne

https://github.com/processone/ejabberd/issues/4315
https://github.com/processone/ejabberd/issues/4323
https://github.com/processone/ejabberd/issues/4318
https://github.com/processone/ejabberd/issues/4287
https://github.com/processone/ejabberd/issues/4309

Version 24.10

Version 24.10
MISCELANEA

* ejabberd_c2s : Optionally allow unencrypted SASL2

* ejabberd_system_monitor : Handle call by gen_event:swap_handler (#4233)

e ejabberd_http_ws : Remove support for old websocket connection protocol

* ejabberd_stun: Omit auth_realm log message

e ext_mod : Handle info message when contrib module transfers table ownership

¢ mod_block_strangers : Add feature announcement to disco-info (#4039)

¢ mod_mam : Advertise XEP-0424 feature in server disco-info (#3340)

* mod_muc_admin : Better handling of malformed jids in send_direct_invitation command
e mod_muc_rtbl: Fix call to gen_server:stop (#4260)

* mod_privilege : Support "IQ permission" from XEP-0356 0.4.1 (#3889)

* mod_pubsub : Don't blindly echo PEP notification

* mod_pubsub : Skip non-delivery errors for local pubsub generated notifications

* mod_pubsub : Fall back to default plugin options

* mod_pubsub : Fix choice of node config defaults

e mod_pubsub : Fix merging of default node options

e mod_pubsub : Fix default node config parsing

* mod_register : Support to block IPs in a vhost using append_host_config (#4038)

* mod_s2s_bidi: Add support for S2S Bidirectional

* mod_scram_upgrade : Add support for SCRAM upgrade tasks

* mod_vcard : Return error stanza when storage doesn't support vcard update (#4266)
e mod_vcard : Return explicit error stanza when user attempts to modify other's vcard
e Minor improvements to support mod_tombstones (#2456)

e Update fast xml to use use maps and remove obsolete elixir files

e Update fast tls and xmpp to improve s2s fallback for invalid direct tls connections
* make-binaries : Bump dependency versions: Elixir 1.17.2, OpenSSL 3.3.2, ...

ADMINISTRATION

e ejabberdctl: If ERLANG NODE lacks host, add hostname (#4288)
* ejabberd_app : At server start, log Erlang and Elixir versions

* MySQL: Fix column type in the schema update of archive table in schema update

COMMANDS API

e get_mam_count : New command to get number of archived messages for an account
e set_presence : Return error when session not found
e update : Fix command output
* Add mam and offline tags to the related purge commands
CODE QUALITY
» Fix warnings about unused macro definitions reported by Erlang LS
 Fix Elvis report: Fix dollar space syntax
* Fix Elvis report: Remove spaces in weird places

 Fix Elvis report: Don't use ignored variables

- 474/512 - Copyright © 2008 - 2024 ProcessOne

https://github.com/processone/ejabberd/issues/4233
https://github.com/processone/ejabberd/issues/4039
https://github.com/processone/ejabberd/issues/3340
https://github.com/processone/ejabberd/issues/4260
https://github.com/processone/ejabberd/issues/3889
https://github.com/processone/ejabberd/issues/4038
https://github.com/processone/ejabberd/issues/4266
https://github.com/processone/ejabberd/issues/4288

Version 24.07

 Fix Elvis report: Remove trailing whitespace characters

* Define the types of options that opt_type.sh cannot derive automatically
e ejabberd_http_ws : Fix dialyzer warnings

* mod_matrix_gw: Remove useless option persist

* mod_privilege : Replace try...catch with a clean alternative

DEVELOPMENT HELP

* elvis.config: Fix file syntax, set vim mode, disable many tests

e erlang_ls.config: Let it find paths, update to Erlang 26, enable crossref
* hooks_deps : Hide false-positive warnings about gen_mod

e Makefile: Add support for make elvis when using rebar3

e .vscode/launch.json : Experimental support for debugging with Neovim
* CI: Add Elvis tests

e CI: Add XMPP Interop tests

e Runtime: Cache hex.pm archive from rebar3 and mix

DOCUMENTATION

¢ Add links in top-level options documentation to their Docs website sections
* Document which SQL servers can really use update_sql_schema
* Improve documentation of ldap_servers and ldap_backups options (#3977)

¢ mod_register : Document behavior when access is set to none (#4078)

ELIXIR

* Handle case when elixir support is enabled but not available

e Start ExSync manually to ensure it's started if (and only if) Relive

* mix.exs: Fix mix release error: logger being regular and included application (#4265)
* mix.exs: Remove from extra_applications the apps already defined in deps (#4265)

WEBADMIN

e Add links in user page to offline and roster pages
* Add new "MAM Archive" page to webadmin
* Improve many pages to handle when modules are disabled

* mod_admin_extra : Move some webadmin pages to their modules

Version 24.07

CORE

* ejabberd_options : Add trailing @ to @VERSION@ parsing

* mod_http_api : Fix problem parsing tuples when using OTP 27 json library (#4242)

* mod_http_api: Restore args conversion of {"k":"v"} to tuple lists

* mod_matrix_gw: Add misc:json encode With kv lists and use it in matrix sign function

* mod_muc : Output muc#roominfo_avatarhash in room disco info as per updated XEP-0486 (#4234)
e mod_muc : Improve cross version handling of muc retractions

* node_pep : Add missing feature item-ids to node pep

* mod_register : Send welcome message as chat too (#4246)

* ejabberd_hooks : Support for ejabberd hook subscribers, useful for mod prometheus

- 475/512 - Copyright © 2008 - 2024 ProcessOne

https://github.com/processone/ejabberd/issues/3977
https://github.com/processone/ejabberd/issues/4078
https://github.com/processone/ejabberd/issues/4265
https://github.com/processone/ejabberd/issues/4265
https://github.com/processone/ejabberd/issues/4242
https://github.com/processone/ejabberd/issues/4234
https://github.com/processone/ejabberd/issues/4246
https://github.com/processone/ejabberd-contrib/tree/master/mod_prometheus

Version 24.06

* ejabberd.app: Don't add iex to included applications
* make-installers: Fix path in scripts in regular user install (#4258)

e Test: New tests for API commands
DOCUMENTATION

* mod matrix_gw: Fix matrix_id_as jid option documentation
* mod_register : Add example configuration of welcome_message option
* mix.exs : Add ejabberd example config files to the hex package

» Update CODE_OF CONDUCT.md
EXT_MOD

e Fetch dependencies from hex.pm when mix is available

« files to path is deprecated, use compile to path

* Compile all Elixir files in a library with one function call

» Improve error result when problem compiling elixir file

» Handle case when contrib module has no *.ex and no *.erl

e mix.exs : Include Elixir's Logger in the OTP release, useful for mod libcluster

LOGS

» Print message when starting ejabberd application fails
» Use error logger when printing startup failure message

* Use proper format depending on the formatter (#4256)
sSQL

* Add option update_sql_schema_timeout to allow schema update use longer timeouts
* Add ability to specify custom timeout for sql operations

* Allow to configure number of restart in sql_transaction()

* Make sql query in testsuite compatible with pg9.1

e In mysql.sql, fix update instructions for the archive table, origin_id column (#4259)

WEBADMIN

* ejabberd.yml.example : Add api_permissions group for webadmin (#4249)
* Don't use host from url in webadmin, prefer host used for authentication
» Fix number of accounts shown in the online-users page

» Fix crash when viewing old shared roster groups (#4245)

* Support groupid with spaces when making shared roster result (#4245)

Version 24.06
CORE

* econf : Add ability to use additional custom errors when parsing options

* ejabberd_logger : Reloading configuration will update logger settings

e gen_mod : Add support to specify a hook global, not vhost-specific

* mod_configure : Retract Get user Password command to update XEP-0133 1.3.0
* mod_conversejs : Simplify support for @H0osT@ in default_domain option (#4167)
* mod_mam : Document that XEP-0441 is implemented as well

* mod_mam : Update support for XEP-0425 version 0.3.0, keep supporting 0.2.1 (#4193)

- 476/512 - Copyright © 2008 - 2024 ProcessOne

https://github.com/processone/ejabberd/issues/4258
https://github.com/processone/ejabberd-contrib/tree/master/mod_libcluster
https://github.com/processone/ejabberd/issues/4256
https://github.com/processone/ejabberd/issues/4259
https://github.com/processone/ejabberd/issues/4249
https://github.com/processone/ejabberd/issues/4245
https://github.com/processone/ejabberd/issues/4245
https://github.com/processone/ejabberd/issues/4167
https://github.com/processone/ejabberd/issues/4193

Version 24.06

* mod_matrix_gw: Fix support for @HoST@ in matrix_domain option (#4167)

* mod_muc_log : Hide join/leave lines, add method to show them

* mod_muc_log : Support allowpm introduced in 2bd61ab

* mod_muc_room : Use ejabberd hooks instead of function calls to mod_muc_log (#4191)

* mod_private): Cope with bookmark decoding errors

* mod_vcard_xupdate : Send hash after avatar get set for first time

* prosody2ejabberd : Handle the approved attribute. As feature isn't implemented, discard it (#4188)

SQL

e update_sql_schema : Enable this option by default

e CI: Don't load database schema files for mysqgl and pgsql

e Support Unix Domain Socket with updated p1 pgsql and pl mysql (#3716)

» Fix handling of mqtt_pub table definition from mysql.sql and fix should_update_schema/1 in ejabberd_sql_schema.erl
* Don't start sql connection pools for unknown hosts

e Add update_primary_key command to sql schema updater

e Fix crash running export2sql when MAM enabled but MUC disabled

* Improve detection of types in odbc

COMMANDS API

* New ban commands use private storage to keep ban information (#4201)

* join_cluster_here : New command to join a remote node into our local cluster
* Don't name integer and string results in API examples (#4198)

e get_user_subscriptions : Fix validation of user field in that command

¢ mod_admin_extra : Handle case when mod_private is not enabled (#4201)

* mod_muc_admin : Improve validation of arguments in several commands

COMPILE

* ejabberdctl: Comment ERTS VSN variable when not used (#4194)

e ejabberdctl: Fix iexlive after make prod when using Elixir

* ejabberdctl: If INET_DIST_INTERFACE is IPv6, set required option (#4189)

* ejabberdctl: Make native dynamic node names work when using fully qualified domain names
* rebar.config.script : Support relaxed dependency version (#4192)

* rebar.config: Update deps version to rebar3's relaxed versioning

e rebar.lock : Track file, now that rebar3 uses loose dependency versioning

e configure.ac : When using rebar3, unlock dependencies that are disabled (#4212)

e configure.ac : When using rebar3 with old Erlang, unlock some dependencies (#4213)

¢ mix:exs: Move xmpp from included_applications to applications

DEPENDENCIES

* Base64url: Use only when using rebar2 and Erlang lower than 24

e Idna: Bump from 6.0.0 to 6.1.1

« Jiffy: Use Json module when Erlang/OTP 27, jiffy with older ones

* Jose: Update to the new 1.11.10 for Erlang/OTP higher than 23

e Luerl: Update to 1.2.0 when OTP same or higher than 20, simplifies commit a09f222
* P1 acme: Update to support Jose 1.11.10 and Ipv6 support (#4170)

- 477/512 - Copyright © 2008 - 2024 ProcessOne

https://github.com/processone/ejabberd/issues/4167
https://github.com/processone/ejabberd/issues/4191
https://github.com/processone/ejabberd/issues/4188
https://github.com/processone/ejabberd/issues/3716
https://github.com/processone/ejabberd/issues/4201
https://github.com/processone/ejabberd/issues/4198
https://github.com/processone/ejabberd/issues/4201
https://github.com/processone/ejabberd/issues/4194
https://github.com/processone/ejabberd/issues/4189
https://github.com/processone/ejabberd/issues/4192
https://github.com/processone/ejabberd/issues/4212
https://github.com/processone/ejabberd/issues/4213
https://github.com/processone/ejabberd/issues/4170

Version 24.06

* P1_acme: Update to use Erlang's json library instead of jiffy when OTP 27
* Port compiler: Update to 1.15.0 that supports Erlang/OTP 27.0

DEVELOPMENT HELP

e .gitignore: Ignore ctags/etags files

* make dialyzer : Add support to run Dialyzer with Mix

* make format|indent : New targets to format and indent source code

* make relive: Add Sync tool with Rebar3, ExSync with Mix

* hook_deps : Use precise name: hooks are added and later deleted, not removed
* hook_deps : Fix to handle FileNo as tuple {FileNumber, CharacterPosition}

* Add support to test also EUnit suite

e Fix code:1lib_dir call to work with Erlang/OTP 27.0-rc2

» Set process flags when Erlang/OTP 27 to help debugging

 Test retractions in mam tests

DOCUMENTATION

* Add some XEPs support that was forgotten

* Fix documentation links to new URLs generated by MkDocs

* Remove ... in example configuration: it is assumed and reduces verbosity

* Support for version note in modules too

» Mark toplevel options, commands and modules that changed in latest version

¢ Now modules themselves can have version annotations in note

INSTALLERS AND CONTAINER

* make-binaries: Bump Erlang/OTP to 26.2.5 and Elixir 1.16.3

* make-binaries: Bump OpenSSL to 3.3.1

* make-binaries: Bump Linux-PAM to 1.6.1

* make-binaries: Bump Expat to 2.6.2

* make-binaries: Revert temporarily an OTP commit that breaks MSSQL (#4178)

* CONTAINER.md: Invalid cTL_ON_CREATE usage in docker-compose example

WEBADMIN

* ejabberd ctl: Improve parsing of commas in arguments

» ejabberd ctl: Fix output of UTF-8-encoded binaries

* WebAdmin: Remove webadmin view for now, as commands allow more fine-grained permissions
* WebAdmin: Unauthorized response: include some text to direct to the logs

* WebAdmin: Improve home page

* WebAdmin: Sort alphabetically the menu items, except the most used ones

* WebAdmin: New login box in the left menu bar

* WebAdmin: Add make command functions to produce HTML command element

* Document 'any' argument and result type, useful for internal commands

* Commands with 'internal' tag: don't list and block execution by frontends

* WebAdmin: Move content to commands; new pages; hook changes; new commands

-478/512 - Copyright © 2008 - 2024 ProcessOne

https://github.com/processone/ejabberd/issues/4178

Version 24.02

Version 24.02
CORE:

* Added Matrix gateway in mod_matrix_gw

e Support SASL2 and Bind2

e Support tls-server-end-point channel binding and sasl2 codec

* Support tls-exporter channel binding

e Support XEP-0474: SASL SCRAM Downgrade Protection

 Fix presenting features and returning results of inline bind2 elements

e disable sasl_scram_downgrade_protection: New option to disable XEP-0474
* negotiation_timeout : Increase default value from 30s to 2m

* mod_carboncopy: Teach how to interact with bind2 inline requests

OTHER:

ejabberdctl: Fix startup problem when having set EjaBBERD_0PTS and logger options

ejabberdctl: Set EJABBERD OPTS back to "", and use previous flags as example

eldap: Change logic for eldap tls_verify=soft and false

eldap: Don't set fail if no_peer_cert for eldap ssl client connections

Ignore hints when checking for chat states

mod mam: Support XEP-0424 Message Retraction

mod mam: Fix XEP-0425: Message Moderation with SQL storage

mod_ping: Support XEP-0198 pings when stream management is enabled

mod _pubsub: Normalize pubsub max_items node options on read

mod pubsub: PEP nodetree: Fix reversed logic in node fixup function

mod pubsub: Only care about PEP bookmarks options when creating node from scratch
SQL:

* MySQL: Support sha256_password auth plugin
* ejabberd sql schema: Use the first unique index as a primary key
* Update SQL schema files for MAM's XEP-0424

* New option sql_flags : right now only useful to enable mysql_alternative upsert
INSTALLERS AND CONTAINER:

* Container: Add ability to ignore failures in execution of cTL_oN_* commands
e Container: Update to Erlang/OTP 26.2, Elixir 1.16.1 and Alpine 3.19

* Container: Update this custom ejabberdctl to match the main one

* make-binaries: Bump OpenSSL 3.2.1, Erlang/OTP 26.2.2, Elixir 1.16.1

* make-binaries: Bump many dependency versions

COMMANDS API:

e print_sql_schema : New command available in ejabberdctl command-line script
» ejabberdctl: Rework temporary node name generation

» ejabberdctl: Print argument description, examples and note in help

* ejabberdctl: Document exclusive ejabberdctl commands like all the others

e Commands: Add a new muc_sub tag to all the relevant commands

¢ Commands: Improve syntax of many commands documentation

- 479/512 - Copyright © 2008 - 2024 ProcessOne

https://docs.ejabberd.im/admin/configuration/toplevel/#sql-flags
https://docs.ejabberd.im/admin/configuration/toplevel/#sql-flags

Version 23.10

* Commands: Use list arguments in many commands that used separators

* Commands: set_presence : switch priority argument from string to integer
e ejabberd commands: Add the command API version as a tag vx

* ejabberd ctl: Add support for list and tuple arguments

* ejabberd xmlrpc: Fix support for restuple error response

* mod http api: When no specific API version is requested, use the latest

COMPILATION WITH REBARS3/ELIXIR/MIX:

 Fix compilation with Erlang/OTP 27: don't use the reserved word 'maybe'
e configure: Fix explanation of --enable-group option (#4135)

* Add observer and runtime tools in releases when --enable-tools

e Update "make translations" to reduce build requirements

* Use Luerl 1.0 for Erlang 20, 1.1.1 for 21-26, and temporary fork for 27

* Makefile: Add install-rel and uninstall-rel

* Makefile: Rename make rel to make prod

* Makefile: Update make edoc to use ExDoc, requires mix

* Makefile: No need to use escript to run rebar|rebar3|mix

e configure: If --with-rebar=rebar3 but rebar3 not system-installed, use local one
» configure: Use Mix or Rebar3 by default instead of Rebar2 to compile ejabberd
* ejabberdctl: Detect problem running iex or etop and show explanation

* Rebar3: Include Elixir files when making a release

* Rebar3: Workaround to fix protocol consolidation

e Rebar3: Add support to compile Elixir dependencies

* Rebar3: Compile explicitly our Elixir files when --enable-elixir

* Rebar3: Provide proper path to iex

* Rebar/Rebar3: Update binaries to work with Erlang/OTP 24-27

* Rebar/Rebar3: Remove Elixir as a rebar dependency

e Rebar3/Mix: If dev profile/environment, enable tools automatically

« Elixir: Fix compiling ejabberd as a dependency (#4128)

« Elixir: Fix ejabberdctl start/live when installed

* Elixir: Fix: FORMATTER ERROR: bad return value (#4087)

* Elixir: Fix: Couldn't find file Elixir Hex API

e Mix: Enable stun by default when vars.config not found

* Mix: New option vars_config_path to set path to vars.config (#4128)

* Mix: Fix ejabberdctl iexlive problem locating iex in an OTP release

Version 23.10
COMPILATION:

* Erlang/OTP: Raise the requirement to Erlang/OTP 20.0 as a minimum
e CI: Update tests to Erlang/OTP 26 and recent Elixir

* Move Xref and Dialyzer options from workflows to rebar.config

* Add sections to rebar.config to organize its content

 Dialyzer dirty workarounds because re:mp() is not an exported type

- 480/512 - Copyright © 2008 - 2024 ProcessOne

https://docs.ejabberd.im/developer/ejabberd-api/admin-tags/#v1
https://docs.ejabberd.im/developer/ejabberd-api/admin-tags/#v1
https://github.com/processone/ejabberd/issues/4135
https://github.com/processone/ejabberd/issues/4128
https://github.com/processone/ejabberd/issues/4087
https://github.com/processone/ejabberd/issues/4128

Version 23.10

* When installing module already configured, keep config as example

e Elixir 1.15 removed support for --app

* Elixir: Improve support to stop external modules written in Elixir

« Elixir: Update syntax of function calls as recommended by Elixir compiler

¢ Elixir: When building OTP release with mix, keep ERLANG_NODE=ejabberd@localhost

* ejabberdctl: Pass ERLANG_OPTS when calling erl to parse the INET_DIST_INTERFACE (#4066

COMMANDS:

e create_room_with_opts : Fix typo and move examples to args_example (#4080)

e etop: Let ejabberdctl etop work in a release (if observer application is available)

e get_roster : Command now returns groups in a list instead of newlines (#4088)

* halt : New command to halt ejabberd abruptly with an error status code

* ejabberdctl: Fix calling ejabberdctl command with wrong number of arguments with Erlang 26
* ejabberdctl: Improve printing lists in results

* ejabberdctl: Support policy=user in the help and return proper arguments

* ejabberdctl: Document how to stop a debug shell: control+g

CONTAINER:

* Dockerfile: Add missing dependency for mssql databases

* Dockerfile: Reorder stages and steps for consistency

* Dockerfile: Use Alpine as base for METHOD=package

* Dockerfile: Rename packages to improve compatibility

» Dockerfile: Provide specific OTP and elixir vsn for direct compilation

* Halt ejabberd if a command in cTL_on_ fails during ejabberd startup

CORE:

* auth_external_user_exists_check : New option (#3377)

e gen_mod : Extend gen_mod API to simplify hooks and IQ handlers registration

¢ gen_mod : Add shorter forms for gen_mod hook/iq handler API

e gen_mod : Update modules to the new gen_mod API

* install_contrib_modules : New option to define contrib modules to install automatically
* unix_socket : New listener option, useful when setting unix socket files (#4059)

* ejabberd_systemd : Add a few debug messages

e ejabberd_systemd : Avoid using gen_server timeout (#4054)(#4058)

* ejabberd_listener : Increase default listen queue backlog value to 128, which is the default value on both Linux and FreeBSD
(#4025)

* OAuth: Handle badpass error message
* When sending message on behalf of user, trigger user_send_packet (#3990)
* Web Admin: In roster page move the Addiip textbox to top (#4067)

* Web Admin: Show a warning when visiting webadmin with non-privileged account (#4089)

DOCSs:

* Example configuration: clarify 5223 tls options; specify s2s shaper
* Make sure that policy=user commands have host instead of server arg in docs

» Improve syntax of many command descriptions for the Docs site

- 481/512 - Copyright © 2008 - 2024 ProcessOne

https://github.com/processone/ejabberd/issues/#4066
https://github.com/processone/ejabberd/issues/#4080
https://github.com/processone/ejabberd/issues/#4088
https://github.com/processone/ejabberd/issues/#3377
https://github.com/processone/ejabberd/issues/#4059
https://github.com/processone/ejabberd/issues/#4054
https://github.com/processone/ejabberd/issues/#4058
https://github.com/processone/ejabberd/issues/#4025
https://github.com/processone/ejabberd/issues/#3990
https://github.com/processone/ejabberd/issues/#4067
https://github.com/processone/ejabberd/issues/#4089

* Move example Perl extauth script from ejabberd git to Docs site

* Remove obsolete example files, and add link in Docs to the archived copies

INSTALLERS (make-binaries):

* Bump Erlang/OTP version to 26.1.1, and other dependencies

¢ Remove outdated workaround

e Don't build Linux-PAM examples

» Fix check for current Expat version

e Apply minor simplifications

e Don't duplicate config entries

e Don't hard-code musl version

* Omit unnecessary glibc setting

¢ Set kernel version for all builds

¢ Let curl fail on HTTP errors

MODULES:

MUC:

mod_muc_1log : Add trailing backslash to URLs shown in disco info

mod_muc_occupantid : New module with support for XEP-0421 Occupant Id (#3397)
mod_muc_rthl: Better error handling in (#4050)

mod_private : Add support for XEP-0402 PEP Native Bookmarks

mod_privilege : Don't fail to edit roster (#3942)

mod_pubsub : Fix usage of plugins option, which produced default_node_config ignore (#4070)
mod_pubsub : Add pubsub_delete_item hook

mod_pubsub : Report support of config-node-max in pep

mod_pubsub : Relay pubsub iq queries to muc members without using bare jid (#4093)
mod_pubsub : Allow pubsub node owner to overwrite items published by other persons
mod_push_keepalive : Delay wake_on_start

mod_push_keepalive : Don't let hook crash

mod_push : Add notify_on option

mod_push : Set last-message-sender to bare JID

mod_register_web : Make redirect to page that end with 7 (#3177)

mod_shared_roster_ldap : Don't crash in get_member_jid on empty output (#3614)

e Add support to register nick in a room (#3455)

e Convert allow_private_message MUC room option to allowpm (#3736)

e Update xmpp version to send roomconfig_changesubject in disco#info (#4085)

 Fix crash when loading room from DB older than ffa07c6, 23.04

» Fix support to retract a MUC room message

* Don't always store messages passed through muc_filter_message (#4083)

* Pass also MUC room retract messages over the muc_filter_message (#3397)

e Pass MUC room private messages over the muc_filter_message too (#3397)

 Store the subject author JID, and run muc_filter_message when sending subject (#3397)

* Remove existing role information for users that are kicked from room (#4035)

* Expand rule "mucsub subscribers are members in members only rooms" to more places

-482/512 -

Version 23.10

Copyright © 2008 - 2024 ProcessOne

https://github.com/processone/ejabberd/issues/#3397
https://github.com/processone/ejabberd/issues/#4050
https://github.com/processone/ejabberd/issues/#3942
https://github.com/processone/ejabberd/issues/#4070
https://github.com/processone/ejabberd/issues/#4093
https://github.com/processone/ejabberd/issues/#3177
https://github.com/processone/ejabberd/issues/#3614
https://github.com/processone/ejabberd/issues/#3455
https://github.com/processone/ejabberd/issues/#3736
https://github.com/processone/ejabberd/issues/#4085
https://github.com/processone/ejabberd/issues/#4083
https://github.com/processone/ejabberd/issues/#3397
https://github.com/processone/ejabberd/issues/#3397
https://github.com/processone/ejabberd/issues/#3397
https://github.com/processone/ejabberd/issues/#4035

SQL:

Add ability to force alternative upsert implementation in mysql
Properly parse mysql version even if it doesn't have type tag

Use prepared statement with mysql

Add alternate version of mysql upsert

ejabberd_auth_sql : Reset scram fields when setting plain password
mod_privacy_sql: Fix return values from calculate diff
mod_privacy_sql: Optimize set_list

mod_privacy_sql : Use more efficient way to calculate changes in set_privacy_list

Version 23.04

GENERAL:

New s2s_out_bounce_packet hook

Re-allow anonymous connection for connection without client certificates (#3985)

Stop ejabberd_system_monitor before stopping node

captcha_url option now accepts auto value, and it's the default

mod_mam : Add support for XEP-0425: Message Moderation

mod_mam_sql : Fix problem with results of mam queries using rsm with max and before
mod_muc_rtbl: New module for Real-Time Block List for MUC rooms (#4017)

mod_roster : Set roster name from XEP-0172, or the stored one (#1611)

mod_roster : Preliminary support to store extra elements in subscription request (#840)
mod_pubsub : Pubsub xdata fields max_item/item_expira/children_max use max not infinity

mod_vcard_xupdate : Invalidate vcard xupdate cache on all nodes when vcard is updated

ADMIN:

ext_mod : Improve support for loading *.so files from ext_mod dependencies
Improve output in gen_html_doc_for_commands command
Fix ejabberdctl output formatting (#3979)

Log HTTP handler exceptions

MUC:

New command get_room_history

Persist none role for outcasts

Try to populate room history from mam when unhibernating

Make mod_muc_room:set_opts process persistent flag first

Allow passing affiliations and subscribers to create_room_with_opts command
Store state in db in mod_muc:create_room()

Make subscribers members by default

SQL SCHEMAS:

Fix a long standing bug in new schema migration
update_sql command: Many improvements in new schema migration
update_sql command: Add support to migrate MySQL too

Change PostgreSQL SERIAL to BIGSERIAL columns

-483/512 -

Version 23.04

Copyright © 2008 - 2024 ProcessOne

https://github.com/processone/ejabberd/issues/3985
https://github.com/processone/ejabberd/issues/4017
https://github.com/processone/ejabberd/issues/1611
https://github.com/processone/ejabberd/issues/840
https://github.com/processone/ejabberd/issues/3979

Version 23.04

* Fix minor SQL schema inconsistencies
* Remove unnecessary indexes

* New SQL schema migrate fix
MS SQL:

¢ MS SQL schema fixes

* Add new schema for MS SQL

* Add MS SQL support for new schema migration

e Minor MS SQL improvements

e Fix MS SQL error caused by ORDER BY in subquery

SQL TESTS:

* Add support for running tests on MS SQL

* Add ability to run tests on upgraded DB

* Un-deprecate ejabberd_config:set _option/2

e Use python3 to run extauth.py for tests

e Correct README for creating test docker MS SQL DB
* Fix TSQLIlint warnings in MSSQL test script

TESTING:

* Fix Shellcheck warnings in shell scripts

» Fix Remark-lint warnings

» Fix Prospector and Pylint warnings in test extauth.py

 Stop testing ejabberd with Erlang/OTP 19.3, as Github Actions no longer supports ubuntu-18.04
» Test only with oldest OTP supported (20.0), newest stable (25.3) and bleeding edge (26.0-rc2)

* Upload Common Test logs as artifact in case of failure

ecs CONTAINER IMAGE:

e Update Alpine to 3.17 to get Erlang/OTP 25 and Elixir 1.14
* Add tini as runtime init

¢ Set ERLANG_NODE fixed to ejabberd@localhost

* Upload images as artifacts to Github Actions

» Publish tag images automatically to ghcr.io

ejabberd CONTAINER IMAGE:

* Update Alpine to 3.17 to get Erlang/OTP 25 and Elixir 1.14

e Add meTHOD to build container using packages (#3983)

* Add tini as runtime init

* Detect runtime dependencies automatically

* Remove unused Mix stuff: ejabberd script and static COOKIE

* Copy captcha scripts to /opt/ejabberd-*/1lib like the installers
* Expose only HoME volume, it contains all the required subdirs

* ejabberdctl: Don't use .../releases/CO0KIE, it's no longer included

INSTALLERS:

* make-binaries: Bump versions, e.g. erlang/otp to 25.3

» make-binaries: Fix building with erlang/otp v25.x

- 484/512 - Copyright © 2008 - 2024 ProcessOne

https://github.com/processone/ejabberd/issues/3983

Version 23.01

» make-packages: Fix for installers workflow, which didn't find lynx

Version 23.01
GENERAL:

* Add misc:uri_parse/2 to allow declaring default ports for protocols

e CAPTCHA: Add support to define module instead of path to script

* Clustering: Handle mnesia_system_event mnesia_up when other node joins this (#3842)

* Converse]S: Don't set i18n option because Converse enforces it instead of browser lang (#3951)
* Converse]S: Try to redirect access to files mod_conversejs to CDN when there is no local copies
* ext mod: compile C files and install them in ejabberd's priv

* ext mod: Support to get module status from Elixir modules

* make-binaries: reduce log output

* make-binaries: Bump zlib version to 1.2.13

* MUC: Don't store mucsub presence events in offline storage

e MUC: hibernation_time is not an option worth storing in room state (#3946)

e Multicast: Jid format when multicastc was cached (#3950)

e mysql: Pass ssl options to mysql driver

* pgsql: Do not set standard_conforming_strings to off (#3944)

* OAuth: Accept jid as a HTTP URL query argument

* OAuth: Handle when client is not identified

* PubSub: Expose the pubsub#type field in disco#info query to the node (#3914)

» Translations: Update German translation

ADMIN:

* api_permissions : Fix option crash when doesn't have who: section

* log_modules_fully : New option to list modules that will log everything

* outgoing_s2s_families : Changed option's default to IPv6, and fall back to IPv4
» Fix bash completion when using Relive or other install methods

 Fix portability issue with some shells (#3970)

¢ Allow admin command to subscribe new users to members_only rooms

» Use alternative split/2 function that works with Erlang/OTP as old as 19.3

* Silent warning in OTP24 about not specified cacerts in SQL connections

 Fix compilation warnings with Elixir 1.14
DOAP:
* Support extended -protocol erlang attribute
¢ Add extended RFCs and XEP details to some protocol attributes
* tools/generate-doap.sh : New script to generate DOAP file, add make doap (#3915)

* ejabberd.doap : New DOAP file describing ejabberd supported protocols
MQTT:
* Add MQTT bridge module

* Add support for certificate authentication in MQTT bridge

* Implement reload in MQTT bridge

- 485/512 - Copyright © 2008 - 2024 ProcessOne

https://github.com/processone/ejabberd/issues/3842
https://github.com/processone/ejabberd/issues/3951
https://github.com/processone/ejabberd/issues/3946
https://github.com/processone/ejabberd/issues/3950
https://github.com/processone/ejabberd/issues/3944
https://github.com/processone/ejabberd/issues/3914
https://github.com/processone/ejabberd/issues/3970
https://github.com/processone/ejabberd/issues/3915

* Add support for websockets to MQTT bridge
* Recognize ws5/wss5 urls in MQTT bridge
e mqtt_publish: New hook for MQTT publish event

* mgtt_(un)subscribe : New hooks for MQTT subscribe & unsubscribe events

VSCODE:

* Improve .devcontainer to use use devcontainer image and .vscode
* Add .vscode files to instruct VSCode how to run ejabberd
e Add Erlang LS default configuration

e Add Elvis default configuration

Version 22.10
CORE:

* Add 1log burst_limit_* options (#3865)

e Support ERL_DIST PORT option to work without epmd

e Auth JWT: Catch all errors from jose_jwt:verify and log debugging details (#3890)

* CAPTCHA: Support @VERSION@ and @SEMVER@ in captcha_cmd option (#3835)
e HTTP: Fix unix socket support (#3894)

* HTTP: Handle invalid values in X-Forwarded-For header more gracefuly
* Listeners: Let module take over socket

 Listeners: Don't register listeners that failed to start in config reload

* mod_admin_extra: Handle empty roster group names

* mod_conversejs : Fix crash when mod register not enabled (#3824)

* mod_host_meta : Complain at start if listener is not encrypted

* mod_ping : Fix regression on stop_ping in clustering context (#3817)

* mod_pubsub : Don't crash on command failures

* mod_shared_roster : Fix cache invalidation

* mod_shared_roster_ldap : Update roster get hook to use #roster_item{}

* prosody2ejabberd : Fix parsing of scram password from prosody

* Fix MIX's filter nodes

* Return user jid on join

e mod_mix_pam: Add new MIX namespaces to disco features

e mod_mix_pam: Add handling of IQs with newer MIX namespaces
* mod_mix_pam: Do roster pushes on join/leave

* mod_mix_pam: Parse sub elements of the mix join remote result
* mod_mix_pam: Provide MIX channels as roster entries via hook

* mod_mix_pam : Display joined channels on webadmin page

e mod_mix_pam : Adapt to renaming of participant-id from mix roster channel record

* mod_roster : Change hook type from #roster{} to #roster_item{}
* mod_roster : Respect MIX <annotate/> setting
* mod_roster : Adapt to change of mix annotate type to boolean in roster query

* mod_shared_roster : Fix wrong hook type #roster{} (now #roster_item{})

-486/512 -

Version 22.10

Copyright © 2008 - 2024 ProcessOne

https://github.com/processone/ejabberd/issues/3865
https://github.com/processone/ejabberd/issues/3890
https://github.com/processone/ejabberd/issues/3835
https://github.com/processone/ejabberd/issues/3894
https://github.com/processone/ejabberd/issues/3824
https://github.com/processone/ejabberd/issues/3817

Version 22.10

MUC:

e Store role, and use it when joining a moderated room (#3330)

e Don't persist none role (#3330)

* Allow MUC service admins to bypass max user conferences limitation

* Show allow_query users room option in disco info (#3830)

* mod_muc_room: Don't set affiliation to none if it's already none in process_item_change/3
» Fix mucsub unsubscribe notification payload to have muc unsubcribe in it

e Allow muc {un}subscribe hooks to modify sent packets

* Pass room state to muc_{un}subscribed hook

* The archive msg export fun requires MUC Service for room archives

e Export mod_muc_admin:get_room_pid/2

» Export function for getting room diagnostics
SQL:

* Handle errors reported from begin/commit inside transaction

e Make connection close errors bubble up from inside sql transaction

* Make first sql reconnect wait shorter time

* React to sql driver process exit earlier

» Skip connection exit message when we triggered reconnection

* Add syntax tools to applications, required when using ejabberd sql pt (#3869)
» Fix mam delete old messages batch for sql backend

e Use INSERT ... ON DUPLICATE KEY UPDATE for upsert on mysql

* Update mysql library

» Catch mysql connection being close earlier

BUILD:

* make all: Generate start scripts here, not in make install (#3821)

* make clean: Improve this and "distclean"

* make deps: Ensure deps configuration is ran when getting deps (#3823)
* make help: Update with recent changes

* make install: Don't leak DESTDIR in files copied by 'make install'

* make options : Fix error reporting on OTP24+

* make update : configure also in this case, similarly to make deps

e Add definition to detect OTP older than 25, used by ejabberd auth http
* Configure eimp with mix to detect image convert properly (#3823)

* Remove unused macro definitions detected by rebar3 hank

* Remove unused header files which content is already in xmpp library

CONTAINER:

* Get ejabberd-contrib sources to include them

* Copy .ejabberd-modules directory if available

* Do not clone repo inside container build

e Use make deps, which performs additional steps (#3823)

e Support ERL_DIST PORT option to work without epmd

- 487/512 - Copyright © 2008 - 2024 ProcessOne

https://github.com/processone/ejabberd/issues/3330
https://github.com/processone/ejabberd/issues/3330
https://github.com/processone/ejabberd/issues/3830
https://github.com/processone/ejabberd/issues/3869
https://github.com/processone/ejabberd/issues/3821
https://github.com/processone/ejabberd/issues/3823
https://github.com/processone/ejabberd/issues/3823
https://github.com/processone/ejabberd/issues/3823

* Copy ejabberd-docker-install.bat from docker-ejabberd git and rename it
» Set a less frequent healthcheck to reduce CPU usage (#3826)
 Fix build instructions, add more podman examples

INSTALLERS:

* make-binaries: Include CAPTCHA script with release

» make-binaries: Edit rebar.config more carefully

make-binaries: Fix linking of EIMP dependencies

make-binaries: Fix GitHub release version checks

make-binaries: Adjust Mnesia spool directory path

make-binaries: Bump Erlang/OTP version to 24.3.4.5

make-binaries: Bump Expat and libpng versions

make-packages: Include systemd unit with RPM

make-packages: Fix permissions on RPM systems

make-installers: Support non-root installation

make-installers: Override code on upgrade

make-installers: Apply cosmetic changes
EXTERNAL MODULES:
* ext mod: Support managing remote nodes in the cluster
* ext mod: Handle correctly when COMMIT.json not found
* Don't bother with COMMIT.json user-friendly feature in automated user case
e Handle not found COMMIT,json, for example in GH Actions
* Add WebAdmin page for managing external modules
WORKFLOWS ACTIONS:
» Update workflows to Erlang 25
* Update workflows: Ubuntu 18 is deprecated and 22 is added
* CI: Remove syntax tools from applications, as fast xml fails Dialyzer

* Runtime: Add Xref options to be as strict as CI

Version 22.05
CORE

* C2S: Don't expect that socket will be available in c2s_terminated hook

» Event handling process hook tracing

e Guard against erlang:system_info(logical_processors) not always returning a number

e domain_balancing : Allow for specifying type only, without specifying component_number
MQTT

* Add TLS certificate authentication for MQTT connections

» Fix login when generating client id, keep connection record (#3593)

 Pass property name as expected in mqtt codec (fixes login using MQTT 5)

e Support MQTT subscriptions spread over the cluster (#3750)

MuUcC

* Attach meta field with real jid to mucsub subscription events

-488/512 -

Version 22.05

Copyright © 2008 - 2024 ProcessOne

https://github.com/processone/ejabberd/issues/3826

Version 22.05

* Handle user removal
e Stop empty MUC rooms 30 seconds after creation
e default_room_options : Update options configurable

* subscribe_room_many_max_users : New option in mod_muc_admin

MOD_CONVERSEJS

* Improved options to support @HosT@ and auto values
* Set auth and register options based on ejabberd configuration
* conversejs_options: New option

* conversejs_resources : New option

PUBSUB

* mod_pubsub : Allow for limiting item_expire value
* mod_pubsub : Unsubscribe JID on whitelist removal

* node_pep : Add config-node and multi-items features (#3714)
sSQL

* Improve compatibility with various db engine versions
* Sync old-to-new schema script with reality (#3790)

» Slight improvement in MSSQL testing support, but not yet complete

OTHER MODULES

e auth_jwt : Checking if an user is active in SM for a JWT authenticated user (#3795)
e mod_configure : Implement Get List of Registered/Online Users from XEP-0133
* mod_host_meta : New module to serve host-meta files, see XEP-0156

* mod_mam : Store all mucsub notifications not only message notifications

* mod_ping : Delete ping timer if resource is gone after the ping has been sent

* mod_ping : Don't send ping if resource is gone

e mod_push : Fix notifications for pending sessions (XEP-0198)

e mod_push : Keep push session ID on session resume

* mod_shared_roster : Adjust special group cache size

* mod_shared_roster : Normalize JID on unset presence (#3752)

* mod_stun_disco : Fix parsing of IPv6 listeners

DEPENDENCIES

e autoconf: Supported from 2.59 to the new 2.71

e fast tls: Update to 1.1.14 to support OpenSSL 3

e jiffy: Update to 1.1.1 to support Erlang/OTP 25.0-rcl

e luerl: Update to 1.0.0, now available in hex.pm

* lager: This dependency is used only when Erlang is older than 22
e rebar2: Updated binary to work from Erlang/OTP 22 to 25
 rebar3: Updated binary to work from Erlang/OTP 22 to 25

e make update : Fix when used with rebar 3.18

COMPILE

* mix release: Copy include/ files for ejabberd, deps and otp, in mix.exs

* rebar3 release : Fix ERTS path in ejabberdctl

- 489/512 - Copyright © 2008 - 2024 ProcessOne

configure.ac : Set default ejabberd version number when not using git

mix.exs : Move some dependencies as optional

mix.exs : No need to use Distillery, Elixir has built-in support for OTP releases (#3788)
tools/make-binaries : New script for building Linux binaries

tools/make-installers : New script for building command line installers

START

New make relive similar to ejabberdctl live without installing
ejabberdctl: Fix some warnings detected by ShellCheck

ejabberdctl: Mention in the help: etop, ping and started/stopped

make rel: Switch to paths: conf/, database/, logs/

mix.exs : Add -boot and -boot_var in ejabberdctl instead of adding vm.args

tools/captcha.sh : Fix some warnings detected by ShellCheck

COMMANDS

Accept more types of ejabberdctl commands arguments as JSON-encoded
delete_old mam messages_batch : New command with rate limit

delete_old_messages_batch : New command with rate limit

get_room_occupants_number : Don't request the whole MUC room state (#3684, #1964)

get_vcard : Add support for MUC room vCard

oauth_revoke_token : Add support to work with all backends

room_unused_* : Optimize commands in SQL by reusing created_at

rooms_unused_. .. : Let get_all_rooms handle global argument (#3726)

stop|restart : Terminate ejabberd sm before everything else to ensure sessions closing (#3641)

subscribe_room_many : New command

TRANSLATIONS

Updated Catalan

Updated French

Updated German

Updated Portuguese
Updated Portuguese (Brazil)
Updated Spanish

WORKFLOWS

CI: Publish CT logs and Cover on failure to an external GH Pages repo
CI: Test shell scripts using ShellCheck (#3738)

Container: New workflow to build and publish containers

Installers: Add job to create draft release

Installers: New workflow to build binary packages

Runtime: New workflow to test compilation, rel, starting and ejabberdctl

Version 21.12

COMMANDS

create_room_with_opts : Fixed when using SQL storage

-490/512 -

Version 21.12

Copyright © 2008 - 2024 ProcessOne

change_room_option : Add missing fields from config inside mod_muc_admin:change_options

piefxis: Fixed arguments of all commands

MODULES

mod _caps: Don't forget caps on XEP-0198 resumption

mod_conversejs: New module to serve a simple page for Converse.js
mod_http upload quota: Avoid max_days race

mod _muc: Support MUC hats (XEP-0317, conversejs/prosody compatible)
mod muc: Optimize MucSub processing

mod muc: Fix exception in mucsub {un}subscription events multicast handler
mod multicast: Improve and optimize multicast routing code

mod offline: Allow storing non-composing x:events in offline

mod_ping: Send ping from server, not bare user JID

mod push: Fix handling of MUC/Sub messages

mod register: New allow modules option to restrict registration modules
mod register web: Handle unknown host gracefully

mod register web: Use mod register configured restrictions

PUBSUB

sSQL

Add delete_expired_pubsub_items command

Add delete_old_pubsub_items command

Optimize publishing on large nodes (SQL)

Support unlimited number of items

Support max_items=max node configuration

Bump default value for max_items limit from 10 to 1000
Use configured max_items by default

node flat: Avoid catch-all clauses for RSM

node flat sql: Avoid catch-all clauses for RSM

Use INSERT ... ON CoNFLICT in SQL UPSERT for PostgreSQL >= 9.5
mod mam export: assign MUC entries to the MUC service

MySQL: Fix typo when creating index

PgSQL: Add SASL auth support, PostgreSQL 14

PgSQL: Add missing SQL migration for table push_session

PgSQL: Fix vcard_search definition in pgsql new schema

OTHER

captcha-ng.sh : "sort -R" command not POSIX, added "shuf" and "cat" as fallback
Make s2s connection table cleanup more robust
Update export/import of scram password to XEP-0227 1.1

Update Jose to 1.11.1 (the last in hex.pm correctly versioned)

-491/512 -

Version 21.12

Copyright © 2008 - 2024 ProcessOne

Version 21.07

Version 21.07
COMPILATION

* Add rebar3 3.15.2 binary
¢ Add support for mix to: ./configure --enable-rebar=mix
e Improved make rel to work with rebar3 and mix
e Add make dev to build a development release with rebar3 or mix
* Hex: Add sql/ and vars.config to Hex package files
¢ Hex: Update mix applications list to fix error pi_utils is listed as both...
» There are so many targets in Makefile... add make help
» Fix extauth.py failure in test suite with Python 3
* Added experimental support for GitHub Codespaces
» Switch test service from TravisCI to GitHub Actions
COMMANDS:
* Display extended error message in ejabberdctl
* Remove SMP option from ejabberdctl.cfg, -smp was removed in OTP 21
e create_room: After creating room, store in DB if it's persistent
* help: Major changes in its usage and output
e srg_create : Update to use label parameter instead of name

MODULES:

ejabberd listener: New send_timeout option

mod_mix: Improvements to update to 0.14.1

mod muc_room: Don't leak owner JIDs

mod multicast: Routing for more MUC packets

mod multicast: Correctly strip only other bcc addresses

mod mgqtt: Allow shared roster group placeholder in mqtt topic

mod_pubsub: Several fixes when using PubSub with RSM

mod_push: Handle MUC/Sub events correctly

mod_shared roster: Delete cache after performing change to be sure that in cache will be up to date data

mod shared roster: Improve database and caching

mod_shared roster: Reconfigure cache when options change

mod vcard: Fix invalid encoding error when using extended plane characters in vcard

mod vcard: Update econf:vcard() to generate correct vcard temp record
* WebAdmin: New simple pages to view mnesia tables information and content
* WebSocket: Fix typos
SQL:
* MySQL Backend Patch for scram-sha512
* SQLite: When exporting for SQLite, use its specific escape options
* SQLite: Minor fixes for new sql schema support
* mod privacy: Cast as boolean when exporting privacy list data to PostgreSQL
* mod mqtt: Add mqtt pub table definition for MSSQL

* mod shared roster: Add missing indexes to sr_group tables in all SQL databases

-492/512 - Copyright © 2008 - 2024 ProcessOne

Version 21.04

Version 21.04
API COMMANDS:

* add_rosteritem/...: Add argument guards to roster commands

e get_user_subscriptions : New command for MUC/Sub

e remove_mam_for_user_with_peer : Fix when removing room archive
e send_message : Fix bug introduced in ejabberd 21.01

e set_vcard: Return modules errors

BUILD AND SETUP:

» Allow ejabberd to be compatible as a dependency for an Erlang project using rebar3
* CAPTCHA: New question/answer-based CAPTCHA script

e --enable-lua: new configure option for luerl instead of --enable-tools

* Remove support for HiPE, it was experimental and Erlang/OTP 24 removes it

* Update sql_query record to handle the Erlang/OTP 24 compiler reports

» Updated dependencies to fix Dialyzer warnings

MISCELLANEOUS:

* CAPTCHA: Update rorM_TYPE from captcha to register

* LDAP: fix eldap certificate verification

* MySQL: Fix for "specified key was too long"

e Translations: updated the Esperanto, Greek, and Japanese translations

* Websocket: Fix PONG responses

MODULES:

* mod_block_strangers : If stanza is type error, allow it passing

e mod_caps : Don't request roster when not needed

* mod_caps : Skip reading roster in one more case

¢ mod_mam: Remove queryid from MAM fin element

* mod_mqtt : When deregistering XMPP account, close its MQTT sessions
* mod_muc : Take in account subscriber's affiliation when checking access to moderated room
e mod_muc : Use monitors to track online and hard-killed rooms

e mod_muc : When occupant is banned, remove his subscriptions too

* mod_privacy : Make fetching roster lazy

¢ mod_pubsub : Don't fail on PEP unsubscribe

¢ mod_pubsub : Fix gen_pubsub_node:get_state return value

* mod_vcard : Obtain and provide photo type in vCard LDAP

Version 21.01

MISCELLANEOUS CHANGES:

* log_rotate_size option: Fix handling of ‘infinity’ value

e mod_time : Fix invalid timezone

e Auth JWT: New check_decoded jwt hook runs the default JWT verifier

* MUC: Allow non-occupant non-subscribed service admin send private MUC message

e MUC: New max_password and max_captcha_whitelist options

- 493/512 - Copyright © 2008 - 2024 ProcessOne

Version 20.12

* OAuth: New oauth_cache_rest_failure_life_time option

» PEP: Skip reading pep nodes that we know won’t be requested due to caps
e SQL: Add sql script to migrate mysql from old schema to new

* SQL: Don’t use REPLACE for upsert when there are “-” fields.

e Shared Rosters LDAP: Add multi-domain support (and flexibility)

» Sqlite3: Fix dependency version

* Stun: Block loopback addresses by default

¢ Several documentation fixes and clarifications
COMMANDS:

e decide_room: Use better fallback value for room activity time when skipping room
* delete_old_message : Fix when using sqlite spool table

* module_install: Make ext mod compile module with debug info flags

* room_unused_* : Don’t fetch subscribers list

e send_message : Don’t include empty in messages

e set_room affiliation : Validate affiliations
RUNNING:

¢ Docker: New Dockerfile and devcontainer.json
* New ejabberdctl foreground-quiet
» Systemd: Allow for listening on privileged ports

» Systemd: Integrate nicely with systemd
TRANSLATIONS:

* Moved gettext PO files to a new ejabberd-po repository

* Improved several translations: Catalan, Chinese, German, Greek, Indonesian, Norwegian, Portuguese (Brazil), Spanish.

Version 20.12

e Add support for SCrRAM-SHA-{256,512}-{PLUS} authentication

* Don't use same value in cache for user don't exist and wrong password

* outgoing_s2s_ipv*_address : New options to set ipv4/ipv6 outbound s2s out interface
* s2s send packet: this hook now filters outgoing s2s stanzas

* start room: new hook runs when a room process is started

* check decoded jwt: new hook to check decoded JWT after success authentication
ADMIN

* Docker: Fix DB initialization

* New sql odbc driver option: choose the mssgl ODBC driver

* Rebar3: Fully supported. Enable with ./configure --with-rebar=/path/to/rebar3

» systemd: start ejabberd in foreground
MODULES:

» MAM: Make sure that jid used as base in mam xml compress is bare
* MAM: Support for MAM Flipped Pages
* MUC: Always show MucSub subscribers nicks

* MUC: Don't forget not-persistent rooms in load permanent rooms

- 494/512 - Copyright © 2008 - 2024 ProcessOne

Version 20.07

* MUC Admin: Better error reporting

* MUC Admin: Fix commands with hibernated rooms

* MUC Admin: Many improvements in rooms unused list/destroy

e MUC Admin: create room with opts Store options only if room starts
e Pubsub: Remove 'dag' node plugin documentation

* Push: Fix API call return type on error

* Push: Support cache config changes on reload

» Register: Allow for account-removal-only setup again

* Roster: Make roster subscriptions work better with invalid roster state in db
e Vcard: Fix vCard search by User when using Mnesia

* WebAdmin: Allow vhost admins to view WebAdmin menus

* WebAdmin: Don't do double utf-8 conversion on translated strings

* WebAdmin: Mark dangerous buttons with CSS

* WebSocket: Make websocket send put back pressure on c2s process

Version 20.07

CHANGES IN THIS VERSION

* Add support for using unix sockets in listeners.

* Make this version compatible with erlang R23

* Make room permissions checks more strict for subscribers

* Fix problem with muc rooms crashing when using muc logger with some locales

e Limit stat calls that logger module issues

* Don't throw errors when using user regexp acl rule and having non-matching host

» Fix problem with leaving old data when updating shared rosters

» Fix edge case that caused failure of resuming old sessions with stream management.

» Fix crash when room that was started with logging enabled was later changed to logging disabled
¢ Increase default shaper limits (this should help with delays for clients that are using jingle)
» Fix couple compatibility problems which prevented working on erlang R19

» Fix sending presence unavailable when session terminates for clients that only send directed presences (helps with sometimes
not leaving muc rooms on disconnect).

* Prevent supervisor errors for sockets that were closed before they were passed to handler modules

e Make stun module work better with ipv6 addresses

Version 20.03

CHANGES IN THIS VERSION

* Add support of ssl connection when connection to mysql database (configured with sql_ssl: true option)
» Experimental support for cockroachdb when configured with postgres connector

* Add cache and optimize queries issued by mod_shared_roster , this should greatly improve performance of this module when
used with sql backend

 Fix problem with accessing webadmin
* Make webadmin work even when url is missing trailing slash

* When compiling external modules with ext mod, use flags that were detected during compilation of ejabberd

- 495/512 - Copyright © 2008 - 2024 ProcessOne

Version 20.02

* Make config changed to ldap options be updated when issued reload_config command
* Fix room_empty_destory command

» Fix reporting errors in send_stanza command when xml passed to it couldn't be passed correctly

Version 20.02
CHANGES IN THIS VERSION

* Fix problems when trying to use string format with unicode values directly in xmpp nodes
* Add missing oauth_client table declaration in lite.new.sql

* Improve compatibility with CocroachDB

» Fix importing of piefxis files that did use scram passwords

» Fix importing of piefxis files that had multiple includes in them

* Update jiffy dependency

» Allow storage of emojis when using mssql database (Thanks to Christoph Scholz)

* Make ejabberd auth http be able to use auth opts

* Make custom headers options in http modules correctly override built-in values

* Fix return value of reload config and dump config commands

Version 20.01
NEW FEATURES

* Implement OAUTH authentication in mqtt

* Make logging infrastructure use new logger introduced in Erlang (requires OTP22)

* New configuration parser/validator

¢ Initial work on being able to use CockroachDB as database backend

* Add gc command

* Add option to disable using prepared statements on Postgresql

* Implement routine for converting password to SCRAM format for all backends not only SQL

* Add infrastructure for having module documentation directly in individual module source code
* Generate man page automatically

e Implement copy feature in mod_carboncopy

FIXES

* Make webadmin work with configurable paths

 Fix handling of result in xmlrpc module

* Make webadmin work even when accessed through not declared domain
* Better error reporting in xmlrpc

e Limit amount of results returned by disco queries to pubsub nodes
* Improve validation of configured JWT keys

» Fix race condition in Redis/SQL startup

 Fix loading order of third party modules

* Fix reloading of ACL rules

» Make account removal requests properly route response

e Improve handling of malformed inputs in send message command

* Omit push notification if storing message in offline storage failed

- 496/512 - Copyright © 2008 - 2024 ProcessOne

Version 19.09

* Fix crash in stream management when timeout was not set

Version 19.09
ADMIN

e The minimum required Erlang/OTP version is now 19.3
* Fix API call using OAuth (#2982)

* Rename MUC command arguments from Host to Service (#2976)

WEBADMIN

* Don't treat 'Host' header as a virtual XMPP host (#2989)

¢ Fix some links to Guide in WebAdmin and add new ones (#3003)

* Use select fields to input host in WebAdmin Backup (#3000)

e Check account auth provided in WebAdmin is a local host (#3000)

ACME

* Improve ACME implementation

e Fix IDA support in ACME requests

* Fix unicode formatting in ACME module

* Log an error message on IDNA failure

e Support IDN hostnames in ACME requests

* Don't attempt to create ACME directory on ejabberd startup

* Don't allow requesting certificates for localhost or IP-like domains
* Don't auto request certificate for localhost and IP-like domains

e Add listener for ACME challenge in example config
AUTHENTICATION
* JWT-only authentication for some users (#3012)
mMuc
» Apply default role after revoking admin affiliation (#3023)
* Custom exit message is not broadcast (#3004)
* Revert "Affiliations other than admin and owner cannot invite to members only rooms" (#2987)
* When join new room with password, set pass and password protected (#2668)
* Improve rooms_* commands to accept 'global' as MUC service argument (#2976)
* Rename MUC command arguments from Host to Service (#2976)
sQL
¢ Fix transactions for Microsoft SQL Server (#2978)
e Spawn SQL connections on demand only

MISC

* Add support for XEP-0328: JID Prep

* Added gsfonts for captcha

* Log Mnesia table type on creation

* Replicate Mnesia 'bosh' table when nodes are joined

 Fix certificate selection for s2s (#3015)

-497/512 - Copyright © 2008 - 2024 ProcessOne

Version 19.08

* Provide meaningful error when adding non-local users to shared roster (#3000)
* Websocket: don't treat 'Host' header as a virtual XMPP host (#2989)

¢ Fix sm ack related c2s error (#2984)

* Don't hide the reason why c2s connection has failed

e Unicode support

* Correctly handle unicode in log messages

» Fix unicode processing in ejabberd.yml

Version 19.08

ADMINISTRATION

e Improve ejabberd halting procedure
* Process unexpected erlang messages uniformly: logging a warning
* mod configure: Remove modules management

CONFIGURATION

* Use new configuration validator

* ejabberd http: Use correct virtual host when consulting trusted proxies
 Fix Elixir modules detection in the configuration file

* Make option 'validate stream' global

» Allow multiple definitions of host config and append host config

* Introduce option 'captcha url'

* mod stream mgmt: Allow flexible timeout format

* mod mqtt: Allow flexible timeout format in session expiry option

MISC

* Fix SQL connections leakage

* New authentication method using JWT tokens

 extauth: Add 'certauth' command

* Improve SQL pool logic

* Add and improve type specs

* Improve extraction of translated strings

* Improve error handling/reporting when loading language translations
* Improve hooks validator and fix bugs related to hooks registration

* Gracefully close inbound s2s connections

* mod mqtt: Fix usage of TLS

* mod offline: Make count offline messages cache work when using mam for storage
* mod privacy: Don't attempt to query 'undefined' active list

* mod privacy: Fix race condition

Muc

* Add code for hibernating inactive muc room processes
* Improve handling of unexpected iq in mod muc room
* Attach mod muc room processes to a supervisor

* Restore room when receiving message or generic iq for not started room

- 498/512 - Copyright © 2008 - 2024 ProcessOne

Version 19.05

 Distribute routing of MUC messages across all CPU cores

PUBSUB

 Fix pending nodes retrieval for SQL backend
e Check access model when publishing PEP
* Remove deprecated pubsub plugins

* Expose access model and publish model in pubsub#metadata

Version 19.05

ADMIN

e The minimum required Erlang/OTP version is now 19.1

* Provide a suggestion when unknown command, module, option or request handler is detected
* Deprecate some listening options: captcha, register, web _admin, http bind and xmlrpc

* Add commands to get Mnesia info: mnesia info and mnesia table info

» Fix Register command to respect mod register's Access option

 Fixes in Prosody import: privacy and rooms

* Remove TLS options from the example config

e Improve request_handlers validator

» Fix syntax in example Elixir config file

AUTH

» Correctly support cache tags in ejabberd auth
* Don't process failed EXTERNAL authentication by mod fail2ban
e Don't call to mod register when it's not loaded

* Make anonymous auth don't {de}register user when there are other resources

DEVELOPER

* Rename listening callback from start/2 to start/3
* New hook called when room gets destroyed: room destroyed
* New hooks for tracking mucsub subscriptions changes: muc subscribed, muc unsubscribed

* Make static hooks analyzer working again

MucC

» Service admins are allowed to recreate room even if archive is nonempty
* New option user mucsub_from muc_archive

 Avoid late arrival of get disco item response

* Handle get subscribed rooms call from mod muc room pid

* Fix room state cleanup from db on change of persistent option change

* Make get subscribed rooms work even for non-persistant rooms

» Allow non-moderator subscribers to get list of room subscribers

OFFLINE
* New option bounce groupchat: make it not bounce mucsub/groupchat messages
* New option use mam for storage: fetch data from mam instead of spool table

* When applying limit of max msgs in spool check only spool size

* Do not store mucsub wrapped messages with no-store hint in offline storage

- 499/512 - Copyright © 2008 - 2024 ProcessOne

Version 19.02

» Always store ActivityMarker messages

* Don't issue count/message fetch queries for offline from mam when not needed
* Properly handle infinity as max number of message in mam offline storage

* Sort messages by stanza id when using mam storage in mod _offline

* Return correct value from count offline messages with mam storage option

* Make mod_offline put msg ignored by mam in spool when mam storage is on
SQL:

* Add SQL schemas for MQTT tables

* Report better errors on SQL terms decode failure

» Fix PostgreSQL compatibility in mod offline sql:remove old messages
 Fix handling of list arguments on pgsql

* Preliminary support for SQL in process rosteritems command

TESTS

* Add tests for user mucsub mam from muc mam

* Add tests for offline with mam storage

* Add tests for offline use mam for storage

* Initial Docker environment to run ejabberd test suite

» Test offline:use mam for storage, mam:user mucsub from muc archive used together

WEBSOCKET

* Add WebSockets support to mod mqtt
e Return "Bad request" error when origin in websocket connection doesn't match
» Fix RFC6454 violation on websocket connection when validating Origin header

* Origin header validation on websocket connection

OTHER MODULES

mod _adhoc: Use xml:lang from stanza when it's missing in element

mod announce: Add 'sessionid' attribute when required

mod_bosh: Don't put duplicate polling attribute in bosh payload

mod_http api: Improve argument error messages and log messages

mod_http upload: Feed whole image to eimp:identify/1

mod_http upload: Log nicer warning on unknown host

mod http upload: Case-insensitive host comparison

mod mqtt: Support other socket modules

mod_push: Check for payload in encrypted messages

Version 19.02
ADMIN

» Fix in configure.ac the Erlang/OTP version: from 17.5 to 19.0

* reload config command: Fix crash when sql pool size option is used
 reload config command: Fix crash when SQL is not configured

* rooms_empty destroy command: Several fixes to behave more conservative

 Fix serverhost->host parameter name for muc_(un)register nick API

- 500/512 - Copyright © 2008 - 2024 ProcessOne

CONFIGURATION

« Allow specifying tag for listener for api permission purposes

* Change default ciphers to intermediate

* Define default ciphers/protocol option in example config

* Don't crash on malformed 'modules' section

* mod_mam: New option clear archive on room destroy to prevent archive removal on room destroy
* mod mam: New option access preferences to restrict who can modify the MAM preferences

*» mod muc: New option access mam to restrict who can modify that room option

* mod offline: New option store groupchat to allow storing group chat messages

CORE

* Add MQTT protocol support
» Fix (un)setting of priority
* Use OTP application startup infrastructure for starting dependencies

* Improve starting order of several dependencies

MAM

* mod mam mnesia/sql: Improve check for empty archive

» disallow room creation if archive not empty and clear archive on room destroy is false
* allow check if archive is empty for or user or room

» Additional checks for database failures

MuUC

* Make sure that room destroyed is called even when some code throws in terminate
* Update muc room state after adding extra access field to it

* MUC/Sub: Send mucsub subscriber notification events with from set to room jid
SHARED ROSTER

e Don't perform roster push for non-local contacts
* Handle versioning result when shared roster group has remote account
e Fix SQL queries

MISCELANEA

e CAPTCHA: Add no-store hint to CAPTCHA challenge stanzas

e HTTP: Reject http api request with malformed Authentication header

* mod_carboncopy: Don't lose carbons on presence change or session resumption
* mod mix: Fix submission-id and channel resource

* mod ping: Fix ping IQ reply/timeout processing (17.x regression)

» mod_private: Hardcode item ID for PEP bookmarks

* mod push: Improve notification error handling

* PIEFXIS: Fix user export when password is scrammed

* Prosody: Improve import of roster items, rooms and attributes

* Translations: fixed "make translations"

* WebAdmin: Fix support to restart module with new options

-501/512 -

Version 19.02

Copyright © 2008 - 2024 ProcessOne

Version 18.12

Version 18.12

* MAM data store compression
* Proxy protocol support
* MUC Self-Ping optimization (XEP-0410)

¢ Bookmarks conversion (XEP-0411)

-502/512 - Copyright © 2008 - 2024 ProcessOne

Roadmap

Roadmap

ejabberd Roadmap

In the Works

Planned

* Remove support for Rebar2

ejabberd includes many tweaks to support rebar3 and rebar2. By removing support for rebar2, we could simplify rebar.config
and other files a lot. But more importantly, dependencies would not need to be updated just because other dependencies are
updated: Rebar2 requires exact version numbers to be provided, Rebar3 doesn't require that, and neither does Mix.

Released

This is a brief summary for each released version. For details, please consult ejabberd's ChangelLog.

2026

* 26.02

* Bugfixes

* 26.01

» Database Serialization

* mod_invites: Roster Invites and Invite-based Account Registration

2025

* 25.10

» mod_configure: Added more Ad-Hoc Commands from XEP-0133: Service Administration
* mod muc: Updated support for XEP-0317: Hats

* Removed support for Erlang/OTP older than 25.0

¢ Rename New SQL schema to Multihost, and Default to Singlehost

* 25.08

* New module mod providers

* mod matrix gw: Support for Hydra rooms (room version 12, and other improvements
 Fixed ACME in Erlang/OTP 28.0.2

* 25.07

* New module mod antispam

* New module mod pubsub_serverinfo

*» mod matrix gw: Support for joining old versions of Matrix rooms too

* New options rest_proxy, hosts_alias, auth password_types hidden_in sasl1

* Erlang/OTP 25 required, OTP 28 supported

* 25.04

* Fix handling multiple occupant-id

-503/512 - Copyright © 2008 - 2024 ProcessOne

https://rebar3.org/docs/configuration/dependencies/#dependency-version-handling
https://hexdocs.pm/elixir/Version.html#module-requirements
https://www.process-one.net/blog/ejabberd-26-02/
https://www.process-one.net/blog/ejabberd-26-01/
https://www.process-one.net/blog/ejabberd-25-10/
https://xmpp.org/extensions/xep-0133.html
https://xmpp.org/extensions/xep-0317.html
https://www.process-one.net/blog/ejabberd-25-08/
https://www.process-one.net/blog/ejabberd-25-07/
https://www.process-one.net/blog/ejabberd-25-04/

* 25.03

» mod matrix gw: Support for joining Matrix rooms as MUC rooms

e auth stored password types: Multiple Simultaneous Password Types

* mod adhoc api: New module to execute API commands using XMPP client

e Macros and Keywords Improvements

 CTL_OVER HTTP: New option in ejabberdctl script

» Container images: reduce friction, use macros, webadmin port

2024

°24.12
* XEP-0484:

Fast Authentication Streamlining Tokens

» Deprecation schedule for Erlang/OTP older than 25.0

e Commands API v3

*24.10

* New module mod s2s bidi

* New module mod scram upgrade

* IQ permission in privileged entities

¢ PubSub varied fixes

* WebAdmin improvements

* 24.07

* Bugfixes and minor improvements

* 24.06

* Reworked the ejabberd Docs and moved to MkDocs+Material

e Automatic SQL schema is now enabled by default

e Improved the ejabberd WebAdmin with support to use API commands

e Support for UNIX Socket Domain in MySQL and PostgreSQL

* Support Elixir 1.17 and Erlang/OTP 27.0

* 24.02

* Matrix gateway

* RFC 9266 Channel Bindings for TLS 1.3

* XEP-0386:
* XEP-0388:
* XEP-0424:
* XEP-0440:
* XEP-0474:
* XEP-0480:

Bind 2

Extensible SASL Profile (SASL2)
Message Retraction

SASL Channel-Binding Type Capability
SASL SCRAM Downgrade Protection
SASL Upgrade Tasks

¢ Automatic SQL schema creation and update

e Commands API versioning

e Support Elixir 1.16 and Erlang/OTP 27.0-rcl

-504/512 -

Released

Copyright © 2008 - 2024 ProcessOne

https://www.process-one.net/blog/ejabberd-25-03/
https://www.process-one.net/blog/ejabberd-24-12/
https://www.process-one.net/blog/ejabberd-24-10/
https://www.process-one.net/blog/ejabberd-24-07/
https://www.process-one.net/blog/ejabberd-24-06/
https://docs.ejabberd.im/
https://www.process-one.net/blog/automatic-schema-update-in-ejabberd/
https://www.process-one.net/blog/ejabberd-24-02/
https://www.rfc-editor.org/rfc/rfc9266
https://xmpp.org/extensions/xep-0386.html
https://xmpp.org/extensions/xep-0388.html
https://xmpp.org/extensions/xep-0424.html
https://xmpp.org/extensions/xep-0440.html
https://xmpp.org/extensions/xep-0474.html
https://xmpp.org/extensions/xep-0480.html
https://www.process-one.net/blog/automatic-schema-update-in-ejabberd/
https://github.com/processone/ejabberd/pull/4118

Released

2023

*23.10

e Support for XEP-0402: PEP Native Bookmarks

* Support for XEP-0421: Occupant Id

* MySQL Performance enhancements

* 23.04

e mod_mam support for XEP-0425: Message Moderation

* New mod_muc_rtbl: Real-Time Block List for MUC rooms
* Binaries use Erlang/OTP 25.3, and changes in containers
* 23.01

* New mod_mqtt_bridge : MQTT bridge

2022

*22.10

e Improved MIX support

e Improved SQL reconnection Mechanism

* Better burst traffix handling

* 22.05

e Improved MQTT, MUC and Converse]S integration
* New installers and container image

e Support for Erlang/OTP 25

2021

°«21.12

* New mod_conversejs : built-in Converse]S web client
e Support for MUC Hats extension

e PubSub, MucSub and Multicast improvements

* 21.07

» Improved database and caching for shared rosters
* Broader multicast support for MUC

e Improved rebar3 and Elixir support

*21.04

 Full support for Erlang/OTP 24 and rebar3

* New API commands

* New CAPTCHA script

«21.01

* Systemd watchdog support

e STUN improvements

-505/512 - Copyright © 2008 - 2024 ProcessOne

https://www.process-one.net/blog/ejabberd-23-10/
https://xmpp.org/extensions/xep-0402.html
https://xmpp.org/extensions/xep-0421.html
https://www.process-one.net/blog/ejabberd-23-04/
https://xmpp.org/extensions/xep-0425.html
https://xmppbl.org/
https://www.erlang.org/
https://www.process-one.net/blog/ejabberd-23-01/
https://www.process-one.net/blog/ejabberd-22-10/
https://xmpp.org/extensions/xep-0369.html
https://www.process-one.net/blog/ejabberd-22-05/
https://conversejs.org/
https://www.erlang.org/
https://www.process-one.net/blog/ejabberd-21-12/
https://conversejs.org/
https://xmpp.org/extensions/xep-0317.html
https://xmpp.org/extensions/xep-0033.html
https://www.process-one.net/blog/ejabberd-21-07/
https://www.process-one.net/blog/ejabberd-21-04/
https://www.erlang.org/
https://www.process-one.net/blog/ejabberd-21-01/

Released

2020

*20.12

* Extended SCRAM-SHA support

* Microsoft ODBC Driver support

* 20.07

e Support for Unix Domain Sockets

e Erlang/OTP 23 compatibility

*20.04

e New mod_stun_disco : support XEP-0215 including Audio/Video calls
e Improved MS SQL support

* 20.03

e SSL connection to MySQL

e Improved performance of mod shared_roster
* 20.02

* Improved compatibility with CockroachDB
* Emoji storage in MSSQL

* 20.01

¢ OAuth support for ejabberd's MQTT

* New OTP 22 event logger

* New config parser & validator

2019

* 19.09

 Significant improvements in ACME support: ACME v2
* Erlang/OTP 19.3 is required

* 19.08

* New JWT (JSON Web Token) authentication
* New configuration validator, yconf

* Improved MUC scalability

* Removed Riak support

* 19.05

* MQTT over WebSocket

e Improved MucSub

e Erlang/OTP 19.1 is required

*19.02

e MQTT Support

* MIX improvements

- 506/512 - Copyright © 2008 - 2024 ProcessOne

https://www.process-one.net/blog/ejabberd-20-12/
https://www.process-one.net/blog/ejabberd-20-07/
https://www.erlang.org/
https://www.process-one.net/blog/ejabberd-20-04/
https://xmpp.org/extensions/xep-0215.html
https://www.process-one.net/blog/ejabberd-20-03/
https://www.process-one.net/blog/ejabberd-20-02/
https://www.process-one.net/blog/ejabberd-20-01/
https://www.process-one.net/blog/ejabberd-19-09/
https://www.process-one.net/blog/ejabberd-19-08/
https://www.process-one.net/blog/ejabberd-19-05/
https://www.process-one.net/blog/ejabberd-19-02-the-mqtt-edition/

Released

2018

*18.12

* XML Compression in message archive storage
* PROXY protocol support versions 1 and 2

* MUC Self-Ping server optimisation (XEP-0410)
¢ Bookmarks Conversion (XEP-0411)

*18.09

* Default configuration file simplification

* Improved logging

* OpenSSL 1.1.1 support

* Modular ejabberd core

* 18.06

» Stop ejabberd initialization on invalid/unknown options
e Support SASL PLAIN

* Drop support of mod irc

*18.04

*18.03

* New SQL schemas with server host

» 18.01

2017

°17.12

* SNI (Server Name Indication) for inbound connections
» Rewrite ejabberd system monitor

e Support PubSub v1.14 and OMEMO
°17.11

e ACME Support

 Introduce ‘certfiles’ global option

e PubSub improved, and SQL storage
*17.09

* New mod avatar

* SRV for XMPP over TLS

*17.08

* XEP-0357: Push Notifications

e Modular cluster with cluster backend
*17.07

*17.06

* New Caching system

* Extended Riak support

 Certificate manager

*17.04

- 507/512 - Copyright © 2008 - 2024 ProcessOne

https://www.process-one.net/blog/ejabberd-18-12/
https://www.process-one.net/blog/ejabberd-18-09/
https://www.process-one.net/blog/ejabberd-18-06/
https://www.process-one.net/blog/ejabberd-18-04/
https://www.process-one.net/blog/ejabberd-18-03/
https://www.process-one.net/blog/ejabberd-18-01/
https://www.process-one.net/blog/ejabberd-17-12/
https://www.process-one.net/blog/ejabberd-17-11-happy-birthday-ejabberd/
https://www.process-one.net/blog/ejabberd-17-09/
https://www.process-one.net/blog/ejabberd-17-08/
https://www.process-one.net/blog/ejabberd-17-07/
https://www.process-one.net/blog/ejabberd-17-06/
https://www.process-one.net/blog/ejabberd-17-04/

Released

*17.03

* Modular code

e Dynamic configuration reload

* mod blockstrangers for spam protection
» S28S dialback

*17.01

* PostgreSQL SSL support

2016

*16.12

* New BOSH module

* New Commands API permissions framework

* XMPP packet handling using dedicated xmpp erlang library
* New ejaberd/mix Docker container

* 16.09

» Support for Elixir configuration file

* XEP-0355 Namespace Delegation

* XEP-0356 Privileged Entity

* 16.08

* New MUC/Sub

e Improved Elixir support

* Major clean-up and improvement on OAuth ReST API

*+ 16.06

* New ACL (Access Control List) infrastructure

*16.04

* 16.03

* Experimental support for MIX (Mediated Information eXchange)
* Erlang/OTP 17.5 required

* 16.02

* XEP-0013 Flexible Offline Message Retrieval

e Improved Message Archive Management (MAM)

e Published ejabberd on hex.pm

» Faster and more memory efficient XML parsing and TLS encryption.
e Stream compression after SASL

e Migration script from Prosody

* 16.01

2015

*15.11

* Improved join_cluster and leave_cluster

- 508/512 - Copyright © 2008 - 2024 ProcessOne

https://www.process-one.net/blog/ejabberd-17-03/
https://www.process-one.net/blog/ejabberd-17-01/
https://www.process-one.net/blog/ejabberd-16-12/
https://www.process-one.net/blog/ejabberd-development-with-docker/
https://www.process-one.net/blog/ejabberd-16-09/
https://www.process-one.net/blog/ejabberd-16-08/
https://www.process-one.net/blog/xmpp-mobile-groupchat-introducing-muc-subscription/
https://www.process-one.net/blog/ejabberd-16-06/
https://www.process-one.net/blog/ejabberd-16-04/
https://www.process-one.net/blog/ejabberd-16-03-experimental-mix-support-ldap-sql-and-riak-improvements/
https://www.process-one.net/blog/experimental-mix-support-for-group-conversations-added-to-ejabberd/
https://www.process-one.net/blog/ejabberd-16-02-happy-leap-day/
https://hex.pm/packages/ejabberd
https://www.process-one.net/blog/ejabberd-16-01/
https://www.process-one.net/blog/ejabberd-15-11-simpler-cluster-setup/

Released

*+15.10

* New mod http upload with support for XEP-0363 HTTP File Upload
* Added support for Grapherl

*15.09

* OAuth 2.0 delegation framework

* Preliminary OAuth and HTTP based ejabberd API

* X-AUTH2 authentication mechanism

* 15.07

* 15.06

* New mod mam with XEP-0313 Message Archive Management
* Configuration checking on launch

* Added Windows 7/8 installers, RPM and DEB packages

* Document protocol support and version inside each module

* 15.04

* Added mod admin extra and mod muc admin

* Added XEP-0033 Extended Stanza Addressing

* Support to embed ejabberd in an Elixir app

* Erlang/OTP R16B03-1 is required

*15.03

e Added support for WebSocket

e Customizable session backends

* SCRAM support for SQL authentication backend

* Documentation was converted from LaTeX to Markdown and published in docs.ejabberd.im/
*15.02

* Added Elixir support

* New command to reload configuration withour restart

* Bug tracker moves from JIRA to GitHub Issues

* Revamped ejabberd website, new logo, new development process and bugtracking migrated from JIRA to GitHub

2014

° 14.12

* New mod client state with XEP-0352: Client State Indication
* New mod fail2ban

* 14.07

» SIP Outbound (RFC 5626)

* 14.05

* RFC-3261 SIP proxy/registrar

* RFC-5766 TURN: Traversal Using Relays around NAT
* XEP-0198 Stream Management

* XEP-0321 Remote Roster Management

» Several improvements regarding encryption

* New Bash completion script for ejabberdctl

- 509/512 - Copyright © 2008 - 2024 ProcessOne

https://www.process-one.net/blog/ejabberd-15-10-http-upload-metrics-and-performance/
https://xmpp.org/extensions/xep-0363.html
https://www.process-one.net/blog/grapherl-google-summer-of-code-metrics-for-ejabberd/
https://www.process-one.net/blog/ejabberd-15-09-oauth/
https://www.process-one.net/blog/ejabberd-15-07-released-summer-progress/
https://www.process-one.net/blog/ejabberd-15-06/
https://xmpp.org/extensions/xep-0313.html
https://www.process-one.net/blog/ejabberd-15-04/
https://www.process-one.net/blog/embedding-ejabberd-into-an-elixir-phoenix-web-application/
https://www.process-one.net/blog/ejabberd-15-03/
https://www.process-one.net/blog/ejabberd-new-documentation-site-a-community-effort/
https://docs.ejabberd.im/
https://www.process-one.net/blog/ejabberd-community-15-02/
https://www.process-one.net/blog/ejabberd-joins-the-elixir-revolution/
https://www.process-one.net/blog/revamped-ejabberd-im-website-logo/
https://www.process-one.net/blog/revamped-ejabberd-im-website-logo/
https://www.process-one.net/blog/ejabberd-community-14-12/
https://www.process-one.net/blog/ejabberd-community-14-07/
https://www.process-one.net/blog/ejabberd-community-14-05/

Released

2013

*13.12

* New OpenSSL ciphers option in c2s, s2s and s2s_out
* ejabberd xmlrpc included

*13.10

* ejabberd configuration file in YAML format

* Log files are created using Lager

* Rebar2 is used to manage dependencies

* Erlang/OTP R15 is required

¢ 13.03-betal (announcement)

 Binarize and indent code

* New versioning scheme

2012

°+2.1.11

¢ Added ODBC support for several modules

2011

*2.1.10
«2.1.9
e New SASL SCRAM-SHA-1 authentication mechanism

2010

°2.1.6

* mod register: New captcha protected option to require CAPTCHA

* Support PostgreSQL 9.0

* October: the source code repository and the bug tracker were finally moved to GitHub
°2.15

°«2.14

e Full support for XEP-0115 Entity Capabilities v1.5

«2.1.2

2009

°+2.1.1

*2.1.0

* LDAPS support

* STUN server

* New XEPs supported: XMPP Ping, Roster Versioning, Import/Export Format
e Erlang/OTP R13 is supported

¢ 2.0.5 (announcement)

- 510/512 - Copyright © 2008 - 2024 ProcessOne

https://www.process-one.net/blog/ejabberd-community-13-12/
https://www.process-one.net/blog/ejabberd-community-13-10/
https://www.process-one.net/blog/switch-ejabberd-configuration-to-yaml/
https://www.process-one.net/blog/ejabberd-community-server-13-03-is-launched-in-beta/
https://web.archive.org/web/20220128081349/http://lists.jabber.ru/pipermail/ejabberd/2013-March/007974.html
https://www.process-one.net/blog/ann-bugfix-release-ejabberd-2-1-11/
https://www.process-one.net/blog/new-releases-ejabberd-2110-and-exmpp-099/
https://www.process-one.net/blog/new-releases-ejabberd-219-300-alpha-4-and-exmpp-098/
https://www.process-one.net/blog/ejabberd-216-release/
https://www.process-one.net/blog/ejabberd-215-and-exmpp-095-bugfix-releases/
https://www.process-one.net/blog/ejabberd-214-and-exmpp-094-bugfix-releases/
https://www.process-one.net/blog/ann-ejabberd-212-bugfix-release/
https://www.process-one.net/blog/ann-ejabberd-211-bugfix-release/
https://www.process-one.net/blog/ejabberd-210-finally-released/
https://www.process-one.net/blog/ejabberd-migration-kit/
https://web.archive.org/web/20120122013929/https://www.process-one.net/en/ejabberd/release_notes/release_note_ejabberd_2.0.5/
https://www.process-one.net/blog/ejabberd-205-has-been-released/

Released

¢ 2.0.4 (announcement)

¢ 2.0.3 (announcement)

2008

* 2.0.2 (announcement)

* 2.0.1 (announcement)

¢ 2.0.0 (announcement)

* New front-end and back-end cluster architecture
e Complete rewrite of the PubSub module

* New Proxy65 file transfer proxy

* BOSH support

* Many more improvements

2007

«1.1.4
«1.1.3

2006

* 1.1.2 (announcement)

* LDAP improvements

* Microsoft SQL supported

* New Windows installer

¢ 1.1.1 (announcement)

* Erlang/OTP R9C-2 required

* 1.1.0 (announcement)

* JEP-0050: Ad-Hoc Commands
» JEP-0138: Stream Compression
e JEP-0175: SASL anonymous

* Native MySQL support

* MUC improvement: Chatroom logging

2005

¢ 1.0.0 (announcement)

* S2S encryption: STARTTLS + SASL EXTERNAL and STARTTLS + Dialback
« Different certificates can be defined for each virtual host.

» Support for vCard storage in ODBC

* New tool to convert Mnesia to ODBC

» Native PostgreSQL support

-51 1/512 - Copyright © 2008 - 2024 ProcessOne

https://web.archive.org/web/20120122014454/https://www.process-one.net/en/ejabberd/release_notes/release_note_ejabberd_2.0.4/
https://www.process-one.net/blog/ejabberd-204-has-been-released/
https://web.archive.org/web/20120122014449/https://www.process-one.net/en/ejabberd/release_notes/release_note_ejabberd_2.0.3/
https://www.process-one.net/blog/ejabberd-203-has-been-released/
https://web.archive.org/web/20120122014509/https://www.process-one.net/en/ejabberd/release_notes/release_note_ejabberd_202/
https://www.process-one.net/blog/ejabberd-202/
https://web.archive.org/web/20120122013959/https://www.process-one.net/en/ejabberd/release_notes/release_note_ejabberd_201/
https://www.process-one.net/blog/ejabberd-201/
https://web.archive.org/web/20120122013537/https://www.process-one.net/en/ejabberd/release_notes/release_note_ejabberd_200/
https://www.process-one.net/blog/ejabberd-200/
https://www.process-one.net/blog/ejabberd-114-released/
https://web.archive.org/web/20220124230040/http://lists.jabber.ru/pipermail/ejabberd/2007-February/002440.html
https://web.archive.org/web/20061206003138/http://www.process-one.net/en/projects/ejabberd/releases/release_1.1.2.html
https://web.archive.org/web/20220124221010/http://lists.jabber.ru/pipermail/ejabberd/2006-September/002209.html
https://web.archive.org/web/20060617072935/http://ejabberd.jabber.ru/ejabberd-1.1.1
https://web.archive.org/web/20220127211621/http://lists.jabber.ru/pipermail/ejabberd/2006-April/001751.html
https://web.archive.org/web/20060624222148/http://www.process-one.net/en/projects/ejabberd/releases/release_1.1.0.html
https://web.archive.org/web/20220127203655/http://lists.jabber.ru/pipermail/ejabberd/2006-April/001726.html
https://web.archive.org/web/20060613001514/http://www.process-one.net/en/projects/ejabberd/releases/release_1.0.0.html
https://web.archive.org/web/20220120011006/http://lists.jabber.ru/pipermail/ejabberd/2005-December/001481.html

Released

* 0.9.8 (announcement)

* Enhanced virtual hosting

¢ Enhanced PubSub

¢ 0.9.1 (announcement)

* 0.9 (announcement)

¢ Added support for virtual hosts

* New mod shared roster

* Added PostgreSQL support

* February: source code moved from SVN to Git, and the bug tracker from Bugzilla to JIRA

* Beginning of 2005, source code moved from JabberStudio CVS to ProcessOne SVN

2004

* October: website moved from JabberStudio to ejabberd.jabber.ru, and the bug tracker to Jabber.ru’s Bugzilla
*0.7.5

e Support for STARTTLS with C2S connections

* Support for authentification via external script

* Added module which implement JUD and vCard services using LDAP

* Improvements in web-based administration interface (user creation/removal, roster and offline queue management)
* Support for message expiration (JEP-0023)

* Support for HTTPS in web interface

* 0.7

e Support for LDAP authentification

» Support for HTTP Polling

» Support for web-based administration interface

¢ Added command-line administration utility "ejabberdctl"

* Support for history management in MUC rooms

2003

¢ 16th November, 0.5
* First release
 January, initial documentation in LaTeX: Ejabberd Installation and Operation Guide

2002

¢ 18th November, first commit to CVS

* 16th November, first erlang modules written

- 512/512 - Copyright © 2008 - 2024 ProcessOne

https://web.archive.org/web/20060706014203/http://www.process-one.net/en/projects/ejabberd/releases/release_0.9.8.html
https://web.archive.org/web/20220118153712/http://lists.jabber.ru/pipermail/ejabberd/2005-August/001278.html
https://web.archive.org/web/20060706014255/http://www.process-one.net/en/projects/ejabberd/releases/release_0.9.1.html
https://web.archive.org/web/20220116215413/http://lists.jabber.ru/pipermail/ejabberd/2005-May/001101.html
https://web.archive.org/web/20060613001412/http://www.process-one.net/en/projects/ejabberd/releases/release_0.9.html
https://web.archive.org/web/20220125230349/http://lists.jabber.ru/pipermail/ejabberd/2005-April/000987.html
https://www.process-one.net/blog/ejabberd-bug-tracker-open-for-registration/
https://web.archive.org/web/20050730000817/http://ejabberd.jabber.ru/
https://web.archive.org/web/20220128023940/http://lists.jabber.ru/pipermail/ejabberd/2004-October/000337.html
https://web.archive.org/web/20220122152308/http://lists.jabber.ru/pipermail/ejabberd/2004-July/000129.html
https://web.archive.org/web/20211208160408/http://lists.jabber.ru/pipermail/ejabberd/2003-November/000052.html
https://web.archive.org/web/20030409163941/http://ejabberd.jabberstudio.org/guide.html
https://github.com/processone/ejabberd/commit/e0b348319ad6902ffcbb663e81c29b229c551b61

	ejabberd Docs
	Overview
	Getting started 👋
	Meet ejabberd, your superpowerful messaging framework
	Overview
	Options to use ejabberd
	Architecture of an ejabberd service
	Deploying and managing an ejabberd service
	ejabberd is more than XMPP
	Helping us in the development process

	Features
	Key Features
	Additional Features

	Frequently Asked Questions
	Development process
	Why is there a commercial version of ejabberd?
	Does ProcessOne voluntarily hold some code in ejabberd community to push toward the business edition?

	Performance
	Is ejabberd the most scalable version?
	What are the tips to optimize performance?

	Erlang support
	Is ejabberd conforming to the best Erlang practices?

	ejabberd Use Cases
	ejabberd
	Mobile messaging
	Gaming
	Voice and video messaging
	Internet of Things
	Telecom / Hosting
	Customer chat / CRM
	Media
	Social media
	Sport
	Education
	Push alerts
	Dating
	Community sites

	XMPP Use Cases
	Realtime web

	GNU GENERAL PUBLIC LICENSE
	Preamble
	TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
	How to Apply These Terms to Your New Programs

	Security Policy
	Supported Versions
	Reporting a Vulnerability
	Private Reporting
	Response Time
	Resolution
	Acknowledgements

	Public Discussion

	Glossary
	Readme
	Installation
	Documentation
	Development
	Security
	Community
	License

	Install
	Installation
	Self-hosted
	Container Images
	Binary Installers
	Linux and *BSD
	MacOS
	Source Code

	On-Premise (eBE)
	Cloud Hosting (Fluux)

	ejabberd Container Images
	Start ejabberd
	daemon
	with Erlang console
	with your data

	Next steps
	Register admin account
	🔅

	Check ejabberd log
	Inspect container files
	Open debug console
	CAPTCHA

	Advanced
	Ports 🟠
	Volumes
	Commands on start
	Macros in environment
	ejabberd-contrib
	Download source code
	Install a module
	Install git for dependencies
	Install your module

	ejabberdapi
	Clustering
	Change Mnesia Node Name
	Setup Old Container
	Change Mnesia Node
	Create Temporary Container

	Build Container Image
	Build ejabberd
	Direct build
	Podman build

	Build ecs

	Composer Examples
	Minimal Example
	Customized Example
	Clustering Example

	Images Comparison

	Binary Installers
	Linux RUN Installer
	Linux DEB and RPM Installers

	Operating System Packages
	Install ejabberd from Source Code
	Requirements
	Download
	Compile
	./configure
	make

	Install
	System Install
	System Install Release
	Production Release
	Development Release
	Relivectl 🟠
	Relive

	Specific notes
	asdf
	BSD
	Erlang Configuration
	Erlang Local Install
	Install Comparison 🟠
	macOS
	man
	rebar with old Erlang

	Start

	Install ejabberd on macOS
	Homebrew

	Installing ejabberd development environment on OSX
	Before you start
	Homebrew
	Installation
	Running ejabberd
	Registering a user
	Adium
	Command line

	Domains
	Get chatting

	Next Steps
	Starting ejabberd
	Autostart on Linux
	Administration Account
	Configuring ejabberd

	Configure
	Configuring ejabberd
	File format
	Yaml File Format
	Reload at Runtime
	Legacy Configuration File
	Include Additional Files
	Macros and Keywords
	Atom
	Integer
	Map
	String
	Inside string
	Macro over keyword
	Keyword inside macro
	Predefined keywords
	Macro and host_config
	Keyword and host_config

	Basic Configuration
	XMPP Domains
	Host Names
	Virtual Hosting

	Logging
	Default Language
	CAPTCHA
	ACME
	Setting up ACME
	ACME implementation details

	Access Rights
	ACL
	Access Rules
	Shaper Rules
	Limiting Opened Sessions
	Connections to Remote Server

	Shapers

	Authentication
	Supported Methods
	General Options
	Internal
	External Script
	Anonymous Login and SASL Anonymous
	PAM Authentication
	JWT Authentication
	SCRAM
	Internal storage
	SQL Database
	Foreign authentication

	Database Configuration
	Supported storages
	Virtual Hosting
	Default database
	Database Schema
	Singlehost or Multihost
	SQL Options
	SQL with SSL Connection
	SQL Authentication
	SQL Storage
	Microsoft SQL Server
	Redis

	LDAP Configuration
	Supported storages
	LDAP
	LDAP Connection
	LDAP Authentication
	LDAP Examples
	Common example
	Active Directory

	Shared Roster in LDAP
	Filters
	Control parameters
	Retrieving the roster
	Multi-Domain
	Configuration examples
	Flat DIT
	Deep DIT

	vCard in LDAP

	Listen Modules
	Listen Option
	ejabberd_c2s
	ejabberd_s2s_in
	ejabberd_service
	mod_mqtt
	ejabberd_stun
	ejabberd_sip
	ejabberd_http
	ejabberd_http_ws
	WebSocket Config
	WebSocket Discovery
	Testing WebSocket

	ejabberd_xmlrpc

	Examples

	Listen Options
	access
	allow_unencrypted_sasl2
	backlog
	cafile
	certfile
	check_from
	ciphers
	custom_headers
	dhfile
	global_routes
	hosts
	ip
	max_fsm_queue
	max_payload_size
	max_stanza_size
	module
	password
	port
	protocol_options
	request_handlers
	send_timeout
	shaper
	shaper_rule
	starttls
	starttls_required
	tag
	timeout
	tls
	tls_compression
	tls_verify
	transport
	unix_socket
	use_proxy_protocol
	zlib

	Top-Level Options
	access_rules
	acl
	acme
	allow_contrib_modules
	allow_multiple_connections
	anonymous_protocol
	api_permissions
	append_host_config
	auth_cache_life_time
	auth_cache_missed
	auth_cache_size
	auth_external_user_exists_check
	auth_method
	auth_opts
	auth_password_format
	auth_password_types_hidden_in_sasl1
	auth_scram_hash
	auth_stored_password_types
	auth_use_cache
	c2s_cafile
	c2s_ciphers
	c2s_dhfile
	c2s_protocol_options
	c2s_tls_compression
	ca_file
	cache_life_time
	cache_missed
	cache_size
	captcha_cmd
	captcha_host
	captcha_limit
	captcha_url
	certfiles
	cluster_backend
	cluster_nodes
	default_db
	default_ram_db
	define_keyword
	define_macro
	disable_sasl_mechanisms
	disable_sasl_scram_downgrade_protection
	domain_balancing
	ext_api_headers
	ext_api_http_pool_size
	ext_api_path_oauth
	ext_api_url
	extauth_pool_name
	extauth_pool_size
	extauth_program
	fqdn
	hide_sensitive_log_data
	host_config
	hosts
	hosts_alias
	include_config_file
	install_contrib_modules
	jwt_auth_only_rule
	jwt_jid_field
	jwt_key
	language
	ldap_backups
	ldap_base
	ldap_deref_aliases
	ldap_dn_filter
	ldap_encrypt
	ldap_filter
	ldap_password
	ldap_port
	ldap_rootdn
	ldap_servers
	ldap_tls_cacertfile
	ldap_tls_certfile
	ldap_tls_depth
	ldap_tls_verify
	ldap_uids
	listen
	log_burst_limit_count
	log_burst_limit_window_time
	log_modules_fully
	log_rotate_count
	log_rotate_size
	loglevel
	max_fsm_queue
	modules
	negotiation_timeout
	net_ticktime
	new_sql_schema
	oauth_access
	oauth_cache_life_time
	oauth_cache_missed
	oauth_cache_rest_failure_life_time
	oauth_cache_size
	oauth_client_id_check
	oauth_db_type
	oauth_expire
	oauth_use_cache
	oom_killer
	oom_queue
	oom_watermark
	outgoing_s2s_families
	outgoing_s2s_ipv4_address
	outgoing_s2s_ipv6_address
	outgoing_s2s_port
	outgoing_s2s_timeout
	pam_service
	pam_userinfotype
	pgsql_users_number_estimate
	queue_dir
	queue_type
	redis_connect_timeout
	redis_db
	redis_password
	redis_pool_size
	redis_port
	redis_queue_type
	redis_server
	registration_timeout
	replaced_connection_timeout
	resource_conflict
	rest_proxy
	rest_proxy_password
	rest_proxy_port
	rest_proxy_username
	router_cache_life_time
	router_cache_missed
	router_cache_size
	router_db_type
	router_use_cache
	rpc_timeout
	s2s_access
	s2s_cafile
	s2s_ciphers
	s2s_dhfile
	s2s_dns_retries
	s2s_dns_timeout
	s2s_max_retry_delay
	s2s_protocol_options
	s2s_queue_type
	s2s_timeout
	s2s_tls_compression
	s2s_use_starttls
	s2s_zlib
	shaper
	shaper_rules
	sm_cache_life_time
	sm_cache_missed
	sm_cache_size
	sm_db_type
	sm_use_cache
	sql_connect_timeout
	sql_database
	sql_flags
	sql_keepalive_interval
	sql_odbc_driver
	sql_password
	sql_pool_size
	sql_port
	sql_prepared_statements
	sql_query_timeout
	sql_queue_type
	sql_schema_multihost
	sql_server
	sql_ssl
	sql_ssl_cafile
	sql_ssl_certfile
	sql_ssl_verify
	sql_start_interval
	sql_type
	sql_username
	trusted_proxies
	update_sql_schema
	update_sql_schema_timeout
	use_cache
	validate_stream
	version
	websocket_origin
	websocket_ping_interval
	websocket_timeout

	Modules Options
	mod_adhoc
	mod_adhoc_api
	mod_admin_extra
	mod_admin_update_sql
	mod_announce
	mod_antispam
	mod_auth_fast
	mod_avatar
	mod_block_strangers
	mod_blocking
	mod_bosh
	mod_caps
	mod_carboncopy
	mod_client_state
	mod_configure
	mod_conversejs
	mod_delegation
	mod_disco
	mod_fail2ban
	mod_host_meta
	mod_http_api
	mod_http_fileserver
	mod_http_upload
	mod_http_upload_quota
	mod_invites
	mod_jidprep
	mod_last
	mod_legacy_auth
	mod_mam
	mod_matrix_gw
	mod_metrics
	mod_mix
	mod_mix_pam
	mod_mqtt
	mod_mqtt_bridge
	mod_muc 🟠
	mod_muc_admin
	mod_muc_log
	mod_muc_rtbl
	mod_multicast
	mod_offline
	mod_ping
	mod_pres_counter
	mod_privacy
	mod_private
	mod_privilege
	mod_providers
	mod_proxy65
	mod_pubsub
	mod_pubsub_serverinfo
	mod_push
	mod_push_keepalive
	mod_register
	mod_register_web
	mod_roster
	mod_s2s_bidi
	mod_s2s_dialback
	mod_scram_upgrade
	mod_service_log
	mod_shared_roster
	mod_shared_roster_ldap
	mod_sic
	mod_sip
	mod_stats
	mod_stream_mgmt
	mod_stun_disco
	mod_time
	mod_vcard
	mod_vcard_xupdate
	mod_version

	Advanced
	Advanced ejabberd Administration
	Architecture
	Overview
	Typical large scale deployments
	Virtual hosting

	Clustering
	Purpose
	How it Works
	Router
	Local Router
	Session Manager
	s2s Manager

	Managing nodes in a cluster
	Preparation
	Adding a node to a cluster
	Removing a node from the cluster
	Restarting cluster nodes

	Service Load-Balancing
	Domain Load-Balancing Algorithm
	Load-Balancing Buckets

	Understanding ejabberd and its dependencies
	Overview
	Build tools
	Mandatory
	Optional

	Erlang Distribution
	Overview
	Cookie
	Node Name
	ERL_DIST_PORT
	epmd

	Managing an ejabberd server
	ejabberdctl
	Bash Completion
	ejabberdctl Commands
	CTL_OVER_HTTP
	Erlang Runtime System

	Web Admin
	Basic Setup
	Additional Security
	Vhost permissions
	Commands permissions
	Developer: Add Pages
	Developer: Use Commands

	ejabberd Commands
	Ad-hoc Commands
	Change Computer Hostname

	Get More Modules
	ejabberd-modules
	ejabberd-contrib
	Modules Management
	List Modules
	Install Module
	Uninstall Module

	Securing ejabberd
	Firewall Settings
	Sensitive Files

	Troubleshooting ejabberd
	Log Files
	Debug Console
	Too many db tables

	Upgrade Procedure for ejabberd
	Generic upgrade process
	Soft upgrade process
	Module update process
	Note on database schema update
	Specific version upgrade notes

	ejabberd and XMPP tutorials
	Text tutorials
	Architecture
	XMPP on mobile devices (smartphones)
	XMPP for the Web
	Multi-User Chat
	Developer tools and techniques
	ejabberd and XMPP server-side implementation

	Getting started with MIX
	Configuration
	Usage
	Creating a MIX Channel
	Joining a MIX Channel
	Setting a nick
	Sending and receiving messages
	Querying participants list

	Caveats
	Conclusion

	MQTT Support
	Benefits
	Basic Setup
	Test Setup
	Access Control
	Encryption
	Self-Signed Certificate
	Configure Encryption
	Test Encryption

	WebSocket
	Setup WS
	Test WS
	Encrypted WS

	MUC Hats
	Configuration
	Adding a Hat
	Admin Requests to Add a Hat
	Service Returns Form to Admin
	Admin Submits Form
	Service Informs Admin of Completion

	Listing Hats
	Admin Requests to List Hats
	Service Returns List of Hats

	Including a Hat in Presence
	Removing a Hat
	Admin Requests to Remove a Hat
	Service Informs Admin of Completion

	Setting vCards / Avatars for MUC rooms
	How does it work?
	Setting up MUC vCard
	Retrieving a MUC room vCard

	Using ejabberd with MySQL
	ejabberd installation
	MySQL installation
	Requirements
	MySQL on Linux
	Amazon RDS compliance
	MySQL on OSX with Homebrew
	MySQL on Windows with Bash

	MySQL database creation
	Create ejabberd user and database
	Decide which SQL schema to use
	Use automatic schema update
	Load database schema manually

	ejabberd configuration
	Setup MySQL connection
	Authentication use MySQL
	Modules use MySQL

	Migrating data from internal to MySQL
	Converting database from singlehost to multihost schema
	Getting further

	Development
	ejabberd for Developers
	Getting started
	Source code
	Development Environment

	Customizing ejabberd

	ejabberd Developer Guide
	Introduction
	Coding style convention
	Format
	Indent with Emacs

	Start-up procedure
	Core
	Network Layer
	XMPP Stream Layer
	ejabberd_c2s, ejabberd_s2s_in and ejabberd_service

	Routing Layer
	ejabberd_router
	ejabberd_local
	ejabberd_sm
	route-registered processes
	ejabberd_s2s and ejabberd_s2s_out

	Adding new functionality
	IQ Handlers
	Hooks

	Modules
	gen_mod behaviour
	Stateful modules
	gen_mod module

	Configuration
	Validation
	Fetching options

	Using XMPP library
	xmpp module
	XMPP codec
	Getting sub-elements
	Setting and removing sub-elements
	from and to
	Metadata
	Text elements
	Generating errors
	Namespaces

	jid module

	External Authentication
	Extauth Interface
	Perl Example Script
	Python Example Script

	PubSub overview
	History
	Implementation
	Nodetree plugins
	Node plugins
	node_flat
	node_hometree
	node_pep
	node_dag

	Plugin design
	Create Node
	Delete Node
	Subscribe
	Unsubscribe
	Publish item
	Delete item
	Purge Node
	Get item

	Available backends
	Customisation
	Clustering

	Roster versioning
	Example

	ejabberd Stanza Routing
	Message Routing

	ejabberd SQL Database Schema
	Authentication
	Table users

	Rosters
	Table rosterusers
	Table rostergroups
	Table sr_group
	Table sr_user

	Messages
	Table spool
	Table privacy_list_data

	Multiuser Chat Rooms
	Table muc_room
	Table muc_registered
	Table room_history
	Table muc_online_room
	Table muc_online_users
	Table muc_room_subscribers

	VCard
	Table vcard
	Table vcard_search

	Others
	Table last
	Table caps_features
	Table private_storage

	External authentication
	Main contribution repository
	ejabberd API libraries
	Old / obsolete contributions
	Contributing to ejabberd
	Code of Conduct
	Questions, Bugs, Features
	Got a Question or Problem?
	Found an Issue or Bug?
	Missing a Feature?

	Issue Submission Guidelines
	Pull Request Submission Guidelines
	Signing the Contributor License Agreement (CLA)

	Contributor Covenant Code of Conduct
	Our Pledge
	Our Standards
	Guidelines for Respectful and Efficient Communication on Issues, Discussions, and PRs
	Our Responsibilities
	Scope
	Enforcement
	Attribution

	Contributors
	ejabberd Docs Source Code
	Installation
	pip
	Debian

	Building
	Testing
	Updating content
	Markdown Shorthands
	Glossary
	Directly in markdown file
	In ejabberd source code

	ejabberd for Elixir Developers
	Building ejabberd with Mix
	Embed ejabberd in an elixir app
	Call elixir code in erlang code
	Use elixir library in erlang code
	Write ejabberd module in elixir
	Elixir module in ejabberd-contrib
	Record definition
	mod_qrcode.ex
	mod_webadmin_pid.ex

	The ejabberd Developer Livebook
	Setup ejabberd inside livebook
	Execute some Erlang code
	Execute some Elixir code
	Run API commands
	Draw process structure
	Connect Livebook to your ejabberd node
	Get erlang node name
	Setup ejabberd node
	Get erlang cookie
	Connect this livebook to your ejabberd node
	Test the connection

	Stop ejabberd

	Internationalization and Localization
	ejabberd Modules Development
	Introduction
	What is a module ?
	How to write a custom module ?
	The gen_mod behaviour
	mod_hello_world
	Add module to ejabberd-modules
	Next steps

	MucSub: Multi-User Chat Subscriptions
	Motivation
	General principle
	Discovering support
	Discovering support on MUC service
	Discovering support on a specific MUC

	Option MUC room support for subscriptions
	Subscriber role
	Subscribing to MUC/Sub events
	Unsubscribing from a MUC Room
	Subscriber actions
	Sending a message
	Joining a MUC Room

	Receiving events
	Getting List of subscribed rooms
	Getting list of subscribers of a room
	Compliance with existing MUC clients
	Synchronization of MUC messages: Leveraging MAM support
	Push support compliance

	ejabberd Test Suites
	XMPP end-to-end protocol test suite
	Running ejabberd test suite
	Test suite conventions

	Dependency tests
	Build test status

	Developing ejabberd with VSCode
	Visual Studio Code
	VSCodium
	Coder's code-server
	GitHub Codespaces
	Basic Usage

	Getting Started with XMPPFramework
	Introduction
	XMPPFramework

	API
	ejabberd ReST API
	Introduction
	API Backends
	API Frontends
	Process Flow
	The role of ejabberd API
	Learning the basics
	Next steps

	API Reference
	abort_delete_old_mam_messages
	abort_delete_old_messages
	add_blocked_domain
	add_rosteritem
	add_to_spam_filter_cache
	announce_motd_delete
	announce_motd_get
	announce_motd_set_online
	announce_motd_update
	announce_send_all
	announce_send_online
	backup
	ban_account
	bookmarks_to_pep
	change_password
	change_room_option
	check_account
	check_password
	check_password_hash
	cleanup_expired_invite_tokens
	clear_cache
	compile
	connected_users
	connected_users_info
	connected_users_number
	connected_users_vhost
	convert_to_scram
	convert_to_yaml
	count_banned
	create_room
	create_room_with_opts
	create_rooms_file
	delete_expired_messages
	delete_expired_pubsub_items
	delete_mnesia
	delete_old_mam_messages
	delete_old_mam_messages_batch
	delete_old_mam_messages_status
	delete_old_messages
	delete_old_messages_batch
	delete_old_messages_status
	delete_old_pubsub_items
	delete_old_push_sessions
	delete_old_users
	delete_old_users_vhost
	delete_rosteritem
	destroy_room
	destroy_rooms_file
	drop_from_spam_filter_cache
	dump
	dump_config
	dump_table
	evacuate_kindly
	expire_invite_tokens
	expire_spam_filter_cache
	export2sql
	export_db
	export_db_abort
	export_db_status
	export_piefxis
	export_piefxis_host
	gc
	gen_html_doc_for_commands
	gen_markdown_doc_for_commands
	gen_markdown_doc_for_tags
	generate_invite
	generate_invite_with_username
	get_ban_details
	get_blocked_domains
	get_cookie
	get_last
	get_loglevel
	get_mam_count
	get_master
	get_offline_count
	get_presence
	get_room_affiliation
	get_room_affiliations
	get_room_history
	get_room_occupants
	get_room_occupants_number
	get_room_options
	get_roster
	get_roster_count
	get_spam_filter_cache
	get_subscribers
	get_user_rooms
	get_user_subscriptions
	get_vcard
	get_vcard2
	get_vcard2_multi
	halt
	help
	import_db
	import_db_abort
	import_db_status
	import_dir
	import_file
	import_piefxis
	import_prosody
	incoming_s2s_number
	install_fallback
	join_cluster
	join_cluster_here
	kick_session
	kick_user
	kick_users
	leave_cluster
	list_banned
	list_certificates
	list_cluster
	list_cluster_detailed
	list_invites
	load
	man
	mnesia_change
	mnesia_change_nodename
	mnesia_info
	mnesia_info_ctl
	mnesia_list_tables
	mnesia_table_change_storage
	mnesia_table_info
	module_check
	module_install
	module_uninstall
	module_upgrade
	modules_available
	modules_installed
	modules_update_specs
	muc_get_registered_nick
	muc_get_registered_nicks
	muc_online_rooms
	muc_online_rooms_by_regex
	muc_online_rooms_count
	muc_register_nick
	muc_unregister_nick
	num_resources
	oauth_add_client_implicit
	oauth_add_client_password
	oauth_issue_token
	oauth_list_tokens
	oauth_remove_client
	oauth_revoke_token
	outgoing_s2s_number
	print_sql_schema
	privacy_set
	private_get
	private_set
	process_rosteritems
	push_alltoall
	push_roster
	push_roster_all
	register
	registered_users
	registered_vhosts
	reload_config
	reload_spam_filter_files
	remove_blocked_domain
	remove_mam_for_user
	remove_mam_for_user_with_peer
	reopen_log
	request_certificate
	resource_num
	restart
	restart_kindly
	restart_module
	restore
	revoke_certificate
	rooms_empty_destroy
	rooms_empty_list
	rooms_unused_destroy
	rooms_unused_list
	rotate_log
	send_direct_invitation
	send_message
	send_stanza
	send_stanza_c2s
	set_last
	set_loglevel
	set_master
	set_nickname
	set_presence
	set_room_affiliation
	set_vcard
	set_vcard2
	set_vcard2_multi
	srg_add
	srg_add_displayed
	srg_create
	srg_del_displayed
	srg_delete
	srg_get_displayed
	srg_get_info
	srg_get_members
	srg_list
	srg_set_info
	srg_user_add
	srg_user_del
	stats
	stats_host
	status
	status_list
	status_list_host
	status_num
	status_num_host
	stop
	stop_kindly
	stop_s2s_connections
	subscribe_room
	subscribe_room_many
	unban_account
	unban_ip
	unregister
	unsubscribe_room
	update
	update_list
	update_sql
	user_resources
	user_sessions_info

	API Tags
	accounts
	acme
	announce
	async
	cluster
	config
	db
	documentation
	ejabberdctl
	erlang
	last
	logs
	mam
	mnesia
	modules
	muc
	muc_room
	muc_sub
	oauth
	offline
	private
	purge
	roster
	s2s
	server
	session
	shared_roster_group
	spam
	sql
	stanza
	statistics
	v1
	v2
	v3
	vcard

	Simple ejabberd Rest API Configuration
	Restrict to Local network
	Encryption
	Basic Authentication
	OAuth Authentication

	API Permissions
	Rules inside who section
	Examples of who rules

	Rules in what section
	Example of what rules

	Rules in from section
	Examples

	OAuth Support
	Introduction
	Configuration
	Authentication method
	ejabberd listeners
	Module configuration
	OAuth specific parameters

	authorization_token
	redirect_uri
	Scopes
	X-OAuth2 Authentication
	ReST Example
	Configuring
	Obtain bearer token
	Passing credentials
	Query examples

	XML-RPC Example

	ejabberd commands
	Structure of #ejabberd_commands record
	Writing ejabberd commands supporting OAuth

	API Versioning
	API Versions History
	Introduction
	Command Definition
	API Documentation
	ejabberdctl
	mod_adhoc_api
	mod_http_api

	Archive
	ChangeLog
	Version 26.02
	Version 26.01
	Compile and Start
	Databases
	Installer and Container
	MUC
	WebAdmin
	Web Services
	Core and Modules

	Version 25.10
	Ad-hoc Commands
	API Commands
	Configuration
	Erlang/OTP support
	GitHub Workflows
	Installers and Container
	MUC
	Core and Modules

	Version 25.08
	API Commands
	Configuration
	Documentation and Tests
	Installers and Container
	Core and Modules

	Version 25.07
	Security fix
	Compilation
	Configuration and Tests
	Erlang/OTP 28 support
	SQL
	Core and Modules

	Version 25.04
	Security fixes
	Commands API
	Bugfixes

	Version 25.03
	Commands API
	Configuration
	Container
	Core and Modules
	Dependencies
	Development and Testing
	Documentation
	Installers
	Matrix Gateway
	Unix Domain Socket

	Version 24.12
	Miscelanea
	Commands API
	Documentation
	WebAdmin

	Version 24.10
	Miscelanea
	Administration
	Commands API
	Code Quality
	Development Help
	Documentation
	Elixir
	WebAdmin

	Version 24.07
	Core
	Documentation
	ext_mod
	Logs
	SQL
	WebAdmin

	Version 24.06
	Core
	SQL
	Commands API
	Compile
	Dependencies
	Development Help
	Documentation
	Installers and Container
	WebAdmin

	Version 24.02
	Core:
	Other:
	SQL:
	Installers and Container:
	Commands API:
	Compilation with Rebar3/Elixir/Mix:

	Version 23.10
	Compilation:
	Commands:
	Container:
	Core:
	Docs:
	Installers (make-binaries):
	Modules:
	MUC:
	SQL:

	Version 23.04
	General:
	Admin:
	MUC:
	SQL schemas:
	MS SQL:
	SQL Tests:
	Testing:
	ecs container image:
	ejabberd container image:
	Installers:

	Version 23.01
	General:
	Admin:
	DOAP:
	MQTT:
	VSCode:

	Version 22.10
	Core:
	MIX:
	MUC:
	SQL:
	Build:
	Container:
	Installers:
	External modules:
	Workflows Actions:

	Version 22.05
	Core
	MQTT
	MUC
	mod_conversejs
	PubSub
	SQL
	Other Modules
	Dependencies
	Compile
	Start
	Commands
	Translations
	Workflows

	Version 21.12
	Commands
	Modules
	PubSub
	SQL
	Other

	Version 21.07
	Compilation
	Commands:
	Modules:
	SQL:

	Version 21.04
	API Commands:
	Build and setup:
	Miscellaneous:
	Modules:

	Version 21.01
	Miscellaneous changes:
	Commands:
	Running:
	Translations:

	Version 20.12
	Admin
	Modules:

	Version 20.07
	Changes in this version

	Version 20.03
	Changes in this version

	Version 20.02
	Changes in this version

	Version 20.01
	New features
	Fixes

	Version 19.09
	Admin
	Webadmin
	ACME
	Authentication
	MUC
	SQL
	Misc

	Version 19.08
	Administration
	Configuration
	Misc
	MUC
	PubSub

	Version 19.05
	Admin
	Auth
	Developer
	MUC
	Offline
	SQL:
	Tests
	Websocket
	Other modules

	Version 19.02
	Admin
	Configuration
	Core
	MAM
	MUC
	Shared Roster
	Miscelanea

	Version 18.12

	Roadmap
	ejabberd Roadmap
	In the Works
	Planned
	Released
	2026
	2025
	2024
	2023
	2022
	2021
	2020
	2019
	2018
	2017
	2016
	2015
	2014
	2013
	2012
	2011
	2010
	2009
	2008
	2007
	2006
	2005
	2004
	2003
	2002

