
ejabberd Docs

ejabberd Community Server

Copyright © 2008 - 2024 ProcessOne

Table of contents

5Overview

5Getting started 👋

8Features

10Frequently Asked Questions

12ejabberd Use Cases

15GNU GENERAL PUBLIC LICENSE

19Security Policy

20Readme

22Install

22Installation

23Install ejabberd using a Container Image

24ejabberd Container Image

33ecs Container Image

40Binary Installers

42Operating System Packages

43Install ejabberd from Source Code

50Install ejabberd on macOS

51Installing ejabberd development environment on OSX

54Next Steps

56Configure

56Configuring ejabberd

57File format

59Basic Configuration

69Authentication

74Database Configuration

79LDAP Configuration

89Listen Modules

98Listen Options

104Top-Level Options

132Modules Options

0Advanced

0Advanced ejabberd Administration

0Architecture

0Clustering

0Managing an ejabberd server

Table of contents

- 2/175 - Copyright © 2008 - 2024 ProcessOne

0Add More Modules

0Securing ejabberd

0Troubleshooting ejabberd

0Upgrade Procedure for ejabberd

0ejabberd and XMPP tutorials

0Getting started with MIX

0MQTT Support

0Setting vCards / Avatars for MUC rooms

0Using ejabberd with MySQL

0Development

0ejabberd for Developers

0ejabberd Developer Guide

0PubSub overview

0Roster versioning

0ejabberd Stanza Routing

0ejabberd SQL Database Schema

0External authentication

0Main contribution repository

0ejabberd API libraries

0Old / obsolete contributions

0Contributing to ejabberd

0Contributor Covenant Code of Conduct

0Contributors

0Understanding ejabberd and its dependencies

0ejabberd Docs Source Code

0ejabberd for Elixir Developers

0The ejabberd Developer Livebook

0Internationalization and Localization

0ejabberd Modules Development

0MucSub: Multi-User Chat Subscriptions

0ejabberd Test Suites

0Developing ejabberd with VSCode

0Getting Started with XMPPFramework

0API

0ejabberd Rest API

0API Reference

0API Tags

0Simple ejabberd Rest API Configuration

Table of contents

- 3/175 - Copyright © 2008 - 2024 ProcessOne

0API Permissions

0OAuth Support

0ejabberd commands

0API Versioning

0Archive

0ChangeLog

0Roadmap

0ejabberd Roadmap

Table of contents

- 4/175 - Copyright © 2008 - 2024 ProcessOne

Overview

Getting started 👋

Meet ejabberd, your superpowerful messaging framework

This web site is dedicated to help you use and develop for ejabberd XMPP messaging server.

ejabberd has been in development since 2002 and is used all over the world to power the largest XMPP deployments. This

project is so versatile that you can deploy it and customize it for very large scale, no matter what your use case is.

This incredible power comes with a price. You need to learn how to leverage it. Fortunately, the goal of this website is to get you

started on your path to mastery. Whether you are a sysadmin, an architect, a developer planning to extend it, or even a simple

XMPP user, we have something for you here.

Overview

ejabberd is the de facto XMPP server in the world. The fact that it is used to power the largest deployments in the world should

not intimidate you. ejabberd is equally suitable for small instances.

ejabberd has been designed from the ground-up, since 2002 for robust, enterprise deployment. The goal has always been to

shoot for the moon and this is what made it a long-lasting success.

ejabberd is specifically designed for enterprise purposes: it is fault-tolerant, can utilise the resources of multiple clustered

machines, and can easily scale when more capacity is required (by just adding a box/VM).

Designed at a moment when clients were mostly desktops that only supported a kind of HTTP polling call BOSH, the project

managed to adapt to recent changes by introducing support for WebSockets, BOSH improvements, and a solid mobile stack.

It was developed at a time when XMPP was still known as "Jabber", but quickly adopted an evolution process in order to support

the various versions of XMPP RFCs. It now encourages innovation and experimentation by supporting most, if not all, extensions

produced by the XSF.

ejabberd relies on a dynamic community all over the world. To get an idea of existing contributions, you can check ejabberd main

repository or the repository containing a great amount of contributed extensions.

This is possible thanks to a modular architecture based on a core router and an extremely powerful plugin mechanism that is

getting richer every day.

Welcome to the beginning of your journey of ejabberd mastery!

Options to use ejabberd

ejabberd can be used in different ways. The most common one is to use ejabberd Community Edition. This is the standard Open

Source version that everyone loves: highly scalable and flexible.

Fortunately, if you need more than just the ejabberd platform software, ProcessOne can help you with a commercial offering.

Commercial offering come in two type of packaging:

ejabberd Business Edition, including features for large companies (enhanced geodistributed companies and mobile support

to develop own, rich clients) and world-class support, that can please even the most demanding businesses, with 24/7 options.

Fluux.io being a way to access and benefit of all the features of ejabberd Business Edition at an attractive and scalable price.

Fluux.io allows you to keep control of your data thanks to integration API you can implement on your backend to become a

data provider for ejabberd SaaS.

•

•

Overview

- 5/175 - Copyright © 2008 - 2024 ProcessOne

https://www.github.com/processone/ejabberd
https://www.github.com/processone/ejabberd
https://github.com/processone/ejabberd-contrib
https://process-one.net
https://fluux.io

Whatever approach you choose, you can hardly make the wrong choice with ejabberd! In every case you can easily integrate

ejabberd with your existing application using:

REST API and ejabberdctl command-line tool

Mobile libraries for iOS: XMPPFramework, Jayme REST API

Mobile libraries for Android: Smack, Retrofit

Web library with WebSocket support and fallback to BOSH: Strophe

Architecture of an ejabberd service

ejabberd brings configurability, scalability and fault-tolerance to the core feature of XMPP – routing messages.

Its architecture is based on a set of pluggable modules that enable different features, including:

One-to-one messaging

Store-and-forward (offline messages)

Contact list (roster) and presence

Groupchat: MUC (Multi-User Chat)

Messaging archiving with Message Archive Management (MAM)

User presence extension: Personal Event Protocol (PEP) and typing indicator

Privacy settings, through privacy list and simple blocking extensions

User profile with vCards

Full feature web support, with BOSH and websockets

Stream management for message reliability on mobile (aka XEP-0198)

Message Delivery Receipts (aka XEP-184)

Last activity

Metrics and full command-line administration

and many many more.

The full list of supported protocol and extensions is available on Protocols Supported by ejabberd page.

This modular architecture allows high customisability and easy access to the required features.

ejabberd enables authenticating users using external or internal databases (Mnesia, SQL), LDAP or external scripts. It also

allows connecting anonymous users, when required.

For storing persistent data, ejabberd uses Mnesia (the distributed internal Erlang database), but you can opt for SQL database

like MySQL or PostgreSQL

And of course, thanks to its API, ejabberd can be customised to work with a database chosen by the customer.

Deploying and managing an ejabberd service

ejabberd can be deployed for a number of scenarios fitting end-user / developer / customer needs. The default installation setup

consists of a single ejabberd node using Mnesia, so it does not require any additional configuration. This primary system is

sufficient for fast deployment and connecting XMPP clients. It should be good enough for most of the small deployments (and

even medium ones).

A more scalable solution would be deploying ejabberd with an external database for persistent data. As Mnesia is caching part of

its data in ejabberd memory (actually in Erlang VM node), this kind of setup make your system more scalable and typically easier

to integrate with your usual database. As a sysadmin, yes, you can use your standard backup process.

Those larger setup can run as a cluster of ejabberd nodes. This is a clustering mode where all nodes are active, so it can be use

for fault-tolerance, but also to increase the capacity of your ejabberd deployment.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Architecture of an ejabberd service

- 6/175 - Copyright © 2008 - 2024 ProcessOne

https://github.com/robbiehanson/XMPPFramework
https://github.com/inaka/Jayme
https://github.com/igniterealtime/Smack
https://github.com/square/retrofit
https://strophe.im/
https://www.process-one.net/en/ejabberd/protocols/

With such a deployment you can load balance the traffic to your cluster node using one of the following solution:

traditional TCP/IP load balancer (beware of the cost of your solution, typical XMPP connections are persistent).

DNS load balancing.

Custom approach that requires client cooperation.

If deployed on a 16 GB RAM machine with at least 4 cores, a single ejabberd node can typically handle 200-300 K online users.

This setup is suitable for systems with up to 10 nodes.

Note that your mileage may vary depending on your use case, the feature your are using and how clean the architecture design

and the client is developed. That's why, if you plan to reach huge volume, it is recommended to start asking advices from day 1 to

an ejabberd expert. Initial mistakes in the solution design are harder to fix once the project is in production.

If the service requires a cluster of more than 10 nodes, we recommend not relying on Mnesia clustering mode. Many solutions

are available, the easiest and more inexpensive being to rely on ejabberd Software-as-a-Service approach.

ejabberd also allows connecting different clusters as parts of larger systems. This is a standard XMPP feature call server-to-

server (aka s2s in XMPP lingo). It is used in geo-localised services handling massive traffic from all over the world. Special

extension are also available from ProcessOne to handle geodistribution in an even more robust way.

To manage the users, rosters, messages and general settings, we provide a command-line tool, ejabberdctl. That command-line

allows you to gather metrics from ejabberd to be able to monitor what is happening in your system, understand and even

anticipate issues.

The main benefit of ejabberd is the ability to reach a command-line to type Erlang commands. This allows you to fix and

troubleshoot most of the tricky situation and even update and reload code without stopping the service. This is a life saver for

your uptime.

Welcome to the benefit of Erlang hot-code swapping!

ejabberd is more than XMPP

Thanks to the modular architecture of ejabberd, the platform is becoming a core component for messaging applications.

Messaging applications require to transfer more than text messages. ejabberd has grow a full set of media related features that

makes ejabberd a great choice to support voice and video applications, but also to proxy various kind of media transfer (images,

audio and video files for example).

As such, ejabberd support:

Jingle, XMPP based voice protocol

SIP (Session Initiation Protocol): Yes, you can pass SIP calls using ejabberd :)

ICE (Interactive Connectivity Establishment: A Protocol for Network Address Translator (NAT) Traversal)

STUN

TURN

Proxy65 media relay

This makes ejabberd the best XMPP server to support SIP and WebRTC based communication tools.

Helping us in the development process

With thousands of more or less official forks, the core ejabberd team, supported by ProcessOne, is constantly monitoring and

reviewing improvements. We use our 15 years of experience to filter the best ideas or improvements to make sure ejabberd is

always your most solid choice in term of scalability, robustness and manageability.

The best way to start developing for ejabberd is to clone, watch and star the project, to get in touch on our developer chatroom

(ejabberd@conference.process-one.net) or to join ejabberd community on StackOverflow.

•

•

•

•

•

•

•

•

•

ejabberd is more than XMPP

- 7/175 - Copyright © 2008 - 2024 ProcessOne

https://www.process-one.net
https://www.process-one.net/en/ejabberd/saas/
https://www.github.com/processone/ejabberd
mailto:ejabberd@conference.process-one.net
https://stackoverflow.com/questions/tagged/ejabberd?sort=newest

Features

ejabberd is a free and open source instant messaging server written in Erlang/OTP .

ejabberd is cross-platform, distributed, fault-tolerant, and based on open standards to achieve real-time communication.

ejabberd is designed to be a rock-solid and feature rich XMPP server.

ejabberd is suitable for small deployments, whether they need to be scalable or not, as well as extremely large deployments.

Check also the features in ejabberd.im, ejabberd at ProcessOne, and the list of supported protocols in ProcessOne and XMPP.org.

Key Features

ejabberd is:

Cross-platform: ejabberd runs under Microsoft Windows and Unix-derived systems such as Linux, FreeBSD and NetBSD.

Distributed: You can run ejabberd on a cluster of machines all serving the same Jabber domain(s). When you need more

capacity you can simply add a new cheap node to your cluster. Accordingly, you do not need to buy an expensive high-end

machine to support tens of thousands concurrent users.

Fault-tolerant: You can deploy an ejabberd cluster so that all the information required for a properly working service will be

replicated permanently on all nodes. This means that if one of the nodes crashes, the others will continue working without

disruption. In addition, nodes can be added or replaced on the fly.

Administrator Friendly: ejabberd is built on top of the Erlang programming language. As a result, if you wish, you can perform

self-contained deployments. You are not required to install an external database, an external web server, amongst others

because everything is already included, and ready to run out of the box. Other administrator benefits include:

Comprehensive documentation.

Straightforward installers for Linux, Mac OS X, and Windows.

Web Administration.

Shared Roster Groups.

Command line administration tool.

Can integrate with existing authentication mechanisms.

Capability to send announce messages.

Internationalized: ejabberd leads in internationalization and is well suited to build services available across the world. Related

features are:

Translated to 25 languages.

Support for IDNA .

Open Standards: ejabberd is the first Open Source Jabber server staking a claiming to full complyiance to the XMPP standard.

Fully XMPP compliant.

XML-based protocol.

Many protocols supported.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Features

- 8/175 - Copyright © 2008 - 2024 ProcessOne

https://erlang.org/
https://erlang.org/
https://ejabberd.im/
https://www.process-one.net/en/ejabberd/
https://www.process-one.net/en/ejabberd/protocols/
https://xmpp.org/software/servers/ejabberd/
https://tools.ietf.org/html/rfc3490
https://tools.ietf.org/html/rfc3490
https://ejabberd.im/protocols

Additional Features

ejabberd also comes with a wide range of other state-of-the-art features:

Modular

Load only the modules you want.

Extend ejabberd with your own custom modules.

Security

SASL and STARTTLS for c2s and s2s connections.

STARTTLS and Dialback s2s connections.

Web Admin accessible via HTTPS secure access.

Databases

Internal database for fast deployment (Mnesia).

Native MySQL support.

Native PostgreSQL support.

ODBC data storage support.

Microsoft SQL Server support.

SQLite support.

Authentication

Internal Authentication.

PAM, LDAP and SQL.

External Authentication script.

Others

Support for virtual hosting.

Compressing XML streams with Stream Compression (XEP-0138).

Statistics via Statistics Gathering (XEP-0039).

IPv6 support both for c2s and s2s connections.

Multi-User Chat module with support for clustering and HTML logging.

Users Directory based on users vCards.

Publish-Subscribe component with support for Personal Eventing via Pubsub .

Support for web clients: Support for XMPP subprotocol for WebSocket and HTTP Binding (BOSH) services.

IRC transport.

SIP support.

Component support: interface with networks such as AIM, ICQ and MSN installing special transports.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Additional Features

- 9/175 - Copyright © 2008 - 2024 ProcessOne

https://xmpp.org/extensions/xep-0138.html
https://xmpp.org/extensions/xep-0138.html
https://xmpp.org/extensions/xep-0039.html
https://xmpp.org/extensions/xep-0039.html
https://xmpp.org/extensions/xep-0045.html
https://xmpp.org/extensions/xep-0045.html
https://xmpp.org/extensions/xep-0060.html
https://xmpp.org/extensions/xep-0060.html
https://xmpp.org/extensions/xep-0163.html
https://xmpp.org/extensions/xep-0163.html
https://tools.ietf.org/html/rfc7395
https://xmpp.org/extensions/xep-0206.html
https://xmpp.org/extensions/xep-0206.html

Frequently Asked Questions

Development process

Why is there a commercial version of ejabberd?

Different needs for different users. Corporations and large scale deployments are very different from smaller deployments and

community projects.

While we put a huge development effort to have a product that is on the edge of innovation with ejabberd community version, we

are requested to provide a stable version with long term commitment and high level of quality, testing, audit, etc.

Maintaining such a version in parallel to the community version, along with extremely strong commitment in terms of availability

and 24/7 support has a tangible cost. With ejabberd business edition we commit to a level of scalability and optimize the software

until it is performing to the level agreed with the customer.

Covering all those costs, along with all our Research and Development cost on ejabberd community in general is the real reason

we need a business edition.

The business edition is also a way for our customers to share the code between our customers only, thus retaining a huge

competitive edge for a limited time (See next section).

So, even if you are not using our business edition, this is a great benefit for you as a user of the community edition and the

reason you have seen so many improvements since 2002. Thanks to our business edition customers, ejabberd project itself is a

major contributor to Erlang and Elixir community.

Does ProcessOne voluntarily hold some code in ejabberd community to push toward the business edition?

No. We never do that and have no plan doing so with the code we produce and we own.

However, when the code is paid by customer, they retain the ownership of the code. Part of our agreement is that the code

produced for them will be limited to a restricted user base, ejabberd business edition until an agreed time expires, generally

between 6 months and 1 year.

This is extremely important for both the users of the commercial edition and the users of the community edition:

For the business edition customers, this is a way to keep their business advantage. This is fair as they paid for the

development.

This is also a great incentive for our customers as they benefit from development for other customers (I guess they agree for

the reciprocal sharing of their own code with customers).

This is fair for the community as the community edition users know they will benefit from new extremely advanced features in

a relatively near future. For example, websocket module was contributed to ejabberd community as part of this process.

This is the model we have found to be fair to our broader user base and lets us produce an amazing code base that benefits all

our users.

This dual model is the core strength of our approach and our secret sauce to make sure everyone benefits.

•

•

•

Frequently Asked Questions

- 10/175 - Copyright © 2008 - 2024 ProcessOne

Performance

Is ejabberd the most scalable version?

Yes. Definitely. Despite claims that there is small change you can make to make it more scalable, we already performed the

changes during the past year, that make those claims unfunded:

ejabberd reduced memory consumption in 2013 by switching to binary representation of string instead of list. This can reduce

given string by 8.

We have improved the C code performance a lot, using new Erlang NIF. This provides better performance, removes

bottlenecks

We have a different clustering mechanism available to make sure we can scale to large clusters

This is a common misconception, but our feedback for production service on various customer sites shows that ejabberd is the

most scalable version. Once it is properly configured, optimized and tuned, you can handle tens of millions of users on ejabberd

systems.

... And we are still improving :)

As a reference, you should read the following blog post: ejabberd Massive Scalability: 1 Node — 2+ Million Concurrent Users

What are the tips to optimize performance?

Optimisation of XMPP servers performance, including ejabberd, is highly dependent on the use case. You really need to find your

bottleneck(s) by monitoring the process queues, finding out what is your limiting factor, tune that and then move to the next one.

The first step is to make sure you run the latest ejabberd. Each new release comes with a bunch of optimisations and a specific

bottleneck you are facing may have gone away in the latest version.

For perspective, ejabberd 15.07 is 2 to 3 times more efficient in memory, latency and CPU compared to ejabberd 2.1.

You should also make sure that you are using the latest Erlang version. Each release of Erlang comes with more optimisation

regarding locks, especially on SMP servers, and using the latest Erlang version can also help tremendously.

Erlang support

Is ejabberd conforming to the best Erlang practices?

Yes. Our build system is primarily based on rebar. However, as we are multiplatform and need to run in many various

environments, we rely on a toolchain that can detect required library dependencies using autotools.

This gives developers and admins the best of both worlds. A very flexible and very versatile build chain, that is very adequate to

make sure ejabberd can be used in most operating systems and even integrated in Linux distributions.

•

•

•

Performance

- 11/175 - Copyright © 2008 - 2024 ProcessOne

https://www.process-one.net/blog/ejabberd-massive-scalability-1node-2-million-concurrent-users/

ejabberd Use Cases

ejabberd is very versatile and is a solid choice to build messaging services across a large number of industries:

ejabberd

Mobile messaging

ejabberd's massive scalability makes it the most solid choice as the backbone for a very large number of mobile messaging

services.

This includes:

Chaatz

Libon

Nokia OVI Chat

Roo Kids : Safe & fun instant messaging app for kids with minimum yet critical parental controls.

Swisscom IO

Versapp

Whatsapp

Gaming

Electronic Arts

FACEIT

Kixeye

Machine Zone (Game of War)

Nokia nGage

Riot Games (League of Legends)

Voice and video messaging

Nimbuzz

ooVoo

Sipphone

WowApp

Internet of Things

AeroFS

IMA Teleassistance

Nabaztag (Violet, Mindscape, then Aldebaran Robotics)

Telecom / Hosting

Fastmail

GMX

Mailfence

Orange

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

ejabberd Use Cases

- 12/175 - Copyright © 2008 - 2024 ProcessOne

https://www.process-one.net/en/customers/case/libon/
https://en.wikipedia.org/wiki/Ovi_(Nokia)
http://highscalability.com/blog/2014/2/26/the-whatsapp-architecture-facebook-bought-for-19-billion.html
https://www.ea.com/
https://www.faceit.com/
https://www.kixeye.com/
https://www.machinezone.com
https://en.wikipedia.org/wiki/N-Gage_(service)
http://highscalability.com/blog/2014/10/13/how-league-of-legends-scaled-chat-to-70-million-players-it-t.html
https://en.wikipedia.org/wiki/Nimbuzz
https://www.oovoo.com/
https://www.process-one.net/resources/case_studies/ProcessOne_SIP_Phone_Case_Study_v3.pdf
https://en.wikipedia.org/wiki/Nabaztag
https://blog.fastmail.com/2011/08/24/new-xmppjabber-server/
https://blog.mailfence.com/mailfence-groups/

SAPO - Portugal Telecom

Customer chat / CRM

CoBrowser.net: Coder Interview.

iAdvize

LiveHelpercChat: Blog post: Full XMPP chat support for ejabberd

Media

AFP

BBC

Social media

Facebook

Nasza Klasa (NKTalk messenger)

StudiVZ

Sify

Tuenti

Sport

Major League of Baseball (MLB)

Education

Apollo group

Laureate

Push alerts

Nokia push notifications

Notify.me

Dating

Grindr

Meetic

Community sites

Jabber.at

Talkr.im

XMPP Use Cases

XMPP is a very versatile protocol designed to address many use cases of modern real-time messaging needs. However, it is also a

very large protocol and it is difficult to understand at first sight all the use cases that XMPP adequately addresses.

This page is gathering XMPP specifications that make XMPP a good fit for a given use case of industry.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

XMPP Use Cases

- 13/175 - Copyright © 2008 - 2024 ProcessOne

https://www.process-one.net/resources/case_studies/ProcessOne_SAPO_Case_Study_v7.pdf
https://www.process-one.net/blog/code-as-craft-interview-cobrowser-net/
https://livehelperchat.com
https://livehelperchat.com/full-xmpp-chat-support-for-ejabberd-423a.html
https://www.afp.com/en/
https://www.process-one.net/resources/case_studies/ProcessOne_BBC_Case_Study_v2.pdf
https://www.quora.com/Why-was-Erlang-chosen-for-use-in-Facebook-chat
https://en.wikipedia.org/wiki/StudiVZ
http://highscalability.com/blog/2010/5/10/sifycom-architecture-a-portal-at-3900-requests-per-second.html
https://en.wikipedia.org/wiki/Tuenti
https://www.process-one.net/resources/case_studies/ProcessOne_ML_Baseball_Case_Study_v5.pdf
https://www.process-one.net/blog/sea_beyond_2011_talk_7_jukka_alakontiola_on_nokia_push_notifications/
http://highscalability.com/blog/2008/10/27/notifyme-architecture-synchronicity-kills.html
https://www.meetic.com/
https://xmpp.org

Realtime web

XMPP was designed before the advent of realtime web. However, it managed to adapt thanks to the following specifications:

XMPP PubSub is defined in XEP-0060. This is a very powerful mechanism that defines channel based communication on top of

the XMPP protocol itself. A server can handle millions of channels, called Pubsub nodes. Users interested in specific channels

can subscribe to nodes. When data needs to be send to a given channel, authorized publishers can send data to that node. The

XMPP server will then broadcast the content to all subscribers. This is very adequate for realtime web as it allows you to

broadcast relevant events to web pages.

WebSocket: XMPP over WebSocket is defined in RFC 7395. It is more efficient and more scalable than XMPP for web's

previous specifications called BOSH. WebSocket being a true bidirectional channel, it allows lower latency messaging and is

very reliable. Note that BOSH can still be used transparently along with WebSocket to support old web browsers.

Use cases: News, interactive web page, web chat, web games.

Supported by ejabberd: Yes.

•

•

XMPP Use Cases

- 14/175 - Copyright © 2008 - 2024 ProcessOne

https://xmpp.org/extensions/xep-0060.html
https://tools.ietf.org/html/rfc7395
https://xmpp.org/extensions/xep-0124.html

As a special exception, the authors give permission to link this program with the OpenSSL library and distribute the resulting

binary.

GNU GENERAL PUBLIC LICENSE

Version 2, June 1991

Preamble

The licenses for most software are designed to take away your freedom to share and change it. By contrast, the GNU General

Public License is intended to guarantee your freedom to share and change free software--to make sure the software is free for all

its users. This General Public License applies to most of the Free Software Foundation's software and to any other program

whose authors commit to using it. (Some other Free Software Foundation software is covered by the GNU Lesser General Public

License instead.) You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are designed to make sure

that you have the freedom to distribute copies of free software (and charge for this service if you wish), that you receive source

code or can get it if you want it, that you can change the software or use pieces of it in new free programs; and that you know

you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these rights or to ask you to surrender the

rights. These restrictions translate to certain responsibilities for you if you distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must give the recipients all the rights

that you have. You must make sure that they, too, receive or can get the source code. And you must show them these terms so

they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this license which gives you legal permission

to copy, distribute and/or modify the software.

Also, for each author's protection and ours, we want to make certain that everyone understands that there is no warranty for this

free software. If the software is modified by someone else and passed on, we want its recipients to know that what they have is

not the original, so that any problems introduced by others will not reflect on the original authors' reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid the danger that redistributors of a free

program will individually obtain patent licenses, in effect making the program proprietary. To prevent this, we have made it clear

that any patent must be licensed for everyone's free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains a notice placed by the copyright holder saying it may be

distributed under the terms of this General Public License. The "Program", below, refers to any such program or work, and a

"work based on the Program" means either the Program or any derivative work under copyright law: that is to say, a work

containing the Program or a portion of it, either verbatim or with modifications and/or translated into another language.

(Hereinafter, translation is included without limitation in the term "modification".) Each licensee is addressed as "you".

Activities other than copying, distribution and modification are not covered by this License; they are outside its scope. The act of

running the Program is not restricted, and the output from the Program is covered only if its contents constitute a work based on

the Program (independent of having been made by running the Program). Whether that is true depends on what the Program

does.

Copyright (C) 1989, 1991 Free Software Foundation, Inc.
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

GNU GENERAL PUBLIC LICENSE

- 15/175 - Copyright © 2008 - 2024 ProcessOne

1. You may copy and distribute verbatim copies of the Program's source code as you receive it, in any medium, provided that you

conspicuously and appropriately publish on each copy an appropriate copyright notice and disclaimer of warranty; keep intact all

the notices that refer to this License and to the absence of any warranty; and give any other recipients of the Program a copy of

this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your option offer warranty protection in

exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming a work based on the Program, and copy

and distribute such modifications or work under the terms of Section 1 above, provided that you also meet all of these conditions:

a) You must cause the modified files to carry prominent notices stating that you changed the files and the date of any change.

b) You must cause any work that you distribute or publish, that in whole or in part contains or is derived from the Program or

any part thereof, to be licensed as a whole at no charge to all third parties under the terms of this License.

c) If the modified program normally reads commands interactively when run, you must cause it, when started running for such

interactive use in the most ordinary way, to print or display an announcement including an appropriate copyright notice and a

notice that there is no warranty (or else, saying that you provide a warranty) and that users may redistribute the program under

these conditions, and telling the user how to view a copy of this License. (Exception: if the Program itself is interactive but does

not normally print such an announcement, your work based on the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections of that work are not derived from the Program,

and can be reasonably considered independent and separate works in themselves, then this License, and its terms, do not apply

to those sections when you distribute them as separate works. But when you distribute the same sections as part of a whole

which is a work based on the Program, the distribution of the whole must be on the terms of this License, whose permissions for

other licensees extend to the entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely by you; rather, the intent is

to exercise the right to control the distribution of derivative or collective works based on the Program.

In addition, mere aggregation of another work not based on the Program with the Program (or with a work based on the

Program) on a volume of a storage or distribution medium does not bring the other work under the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under Section 2) in object code or executable form under the

terms of Sections 1 and 2 above provided that you also do one of the following:

a) Accompany it with the complete corresponding machine-readable source code, which must be distributed under the terms of

Sections 1 and 2 above on a medium customarily used for software interchange; or,

b) Accompany it with a written offer, valid for at least three years, to give any third party, for a charge no more than your cost of

physically performing source distribution, a complete machine-readable copy of the corresponding source code, to be distributed

under the terms of Sections 1 and 2 above on a medium customarily used for software interchange; or,

c) Accompany it with the information you received as to the offer to distribute corresponding source code. (This alternative is

allowed only for noncommercial distribution and only if you received the program in object code or executable form with such an

offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modifications to it. For an executable work,

complete source code means all the source code for all modules it contains, plus any associated interface definition files, plus the

scripts used to control compilation and installation of the executable. However, as a special exception, the source code

distributed need not include anything that is normally distributed (in either source or binary form) with the major components

(compiler, kernel, and so on) of the operating system on which the executable runs, unless that component itself accompanies the

executable.

If distribution of executable or object code is made by offering access to copy from a designated place, then offering equivalent

access to copy the source code from the same place counts as distribution of the source code, even though third parties are not

compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly provided under this License. Any attempt

otherwise to copy, modify, sublicense or distribute the Program is void, and will automatically terminate your rights under this

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

- 16/175 - Copyright © 2008 - 2024 ProcessOne

License. However, parties who have received copies, or rights, from you under this License will not have their licenses

terminated so long as such parties remain in full compliance.

5. You are not required to accept this License, since you have not signed it. However, nothing else grants you permission to

modify or distribute the Program or its derivative works. These actions are prohibited by law if you do not accept this License.

Therefore, by modifying or distributing the Program (or any work based on the Program), you indicate your acceptance of this

License to do so, and all its terms and conditions for copying, distributing or modifying the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the Program), the recipient automatically receives a license

from the original licensor to copy, distribute or modify the Program subject to these terms and conditions. You may not impose

any further restrictions on the recipients' exercise of the rights granted herein. You are not responsible for enforcing compliance

by third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringement or for any other reason (not limited to patent

issues), conditions are imposed on you (whether by court order, agreement or otherwise) that contradict the conditions of this

License, they do not excuse you from the conditions of this License. If you cannot distribute so as to satisfy simultaneously your

obligations under this License and any other pertinent obligations, then as a consequence you may not distribute the Program at

all. For example, if a patent license would not permit royalty-free redistribution of the Program by all those who receive copies

directly or indirectly through you, then the only way you could satisfy both it and this License would be to refrain entirely from

distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular circumstance, the balance of the section is

intended to apply and the section as a whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property right claims or to contest validity of

any such claims; this section has the sole purpose of protecting the integrity of the free software distribution system, which is

implemented by public license practices. Many people have made generous contributions to the wide range of software

distributed through that system in reliance on consistent application of that system; it is up to the author/donor to decide if he or

she is willing to distribute software through any other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the rest of this License.

8. If the distribution and/or use of the Program is restricted in certain countries either by patents or by copyrighted interfaces,

the original copyright holder who places the Program under this License may add an explicit geographical distribution limitation

excluding those countries, so that distribution is permitted only in or among countries not thus excluded. In such case, this

License incorporates the limitation as if written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the General Public License from time to time. Such

new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a version number of this License which applies to

it and "any later version", you have the option of following the terms and conditions either of that version or of any later version

published by the Free Software Foundation. If the Program does not specify a version number of this License, you may choose

any version ever published by the Free Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs whose distribution conditions are different, write to

the author to ask for permission. For software which is copyrighted by the Free Software Foundation, write to the Free Software

Foundation; we sometimes make exceptions for this. Our decision will be guided by the two goals of preserving the free status of

all derivatives of our free software and of promoting the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR THE PROGRAM, TO THE

EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS

AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR

IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A

PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU.

SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR

CORRECTION.

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

- 17/175 - Copyright © 2008 - 2024 ProcessOne

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER,

OR ANY OTHER PARTY WHO MAY MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO

YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF

THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING

RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO

OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE

POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public, the best way to achieve this is to

make it free software which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the start of each source file to most effectively

convey the exclusion of warranty; and each file should have at least the "copyright" line and a pointer to where the full notice is

found.

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when it starts in an interactive mode:

The hypothetical commands `show w' and `show c' should show the appropriate parts of the General Public License. Of course,

the commands you use may be called something other than `show w' and `show c'; they could even be mouse-clicks or menu

items--whatever suits your program.

You should also get your employer (if you work as a programmer) or your school, if any, to sign a "copyright disclaimer" for the

program, if necessary. Here is a sample; alter the names:

This General Public License does not permit incorporating your program into proprietary programs. If your program is a

subroutine library, you may consider it more useful to permit linking proprietary applications with the library. If this is what you

want to do, use the GNU Lesser General Public License instead of this License.

one line to give the program's name and an idea of what it does.
Copyright (C) yyyy name of author

This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.

Gnomovision version 69, Copyright (C) year name of author
Gnomovision comes with ABSOLUTELY NO WARRANTY; for details
type `show w'. This is free software, and you are welcome
to redistribute it under certain conditions; type `show c'
for details.

Yoyodyne, Inc., hereby disclaims all copyright
interest in the program `Gnomovision'
(which makes passes at compilers) written
by James Hacker.

signature of Ty Coon, 1 April 1989
Ty Coon, President of Vice

How to Apply These Terms to Your New Programs

- 18/175 - Copyright © 2008 - 2024 ProcessOne

https://www.gnu.org/licenses/lgpl.html

Security Policy

Supported Versions

We recommend that all users always use the latest version of ejabberd.

To ensure the best experience and security, upgrade to the latest version available on this repo.

Reporting a Vulnerability

Private Reporting

Preferred Method: Use GitHub's private vulnerability reporting system by clicking the "Report a Vulnerability" button in the

Security tab of this repository. This ensures your report is securely transmitted and tracked.

Alternative: If you cannot use the GitHub system, send an email to contact@process-one.net with the following details:

A clear description of the vulnerability.

Steps to reproduce the issue.

Any potential impact or exploitation scenarios.

Response Time

We aim to acknowledge receipt of your report within 72 hours. You can expect regular updates on the status of your report.

Resolution

If the vulnerability is confirmed, we will work on a patch or mitigation strategy.

We will notify you once the issue is resolved and coordinate a public disclosure if needed.

Acknowledgements

We value and appreciate the contributions of security researchers and community members.

If you wish, we are happy to acknowledge your efforts publicly by listing your name (or alias) below in this document.

Please let us know if you would like to be recognized when reporting the vulnerability.

Public Discussion

For general inquiries or discussions about the project’s security, feel free to chat with us here:

XMPP room: ejabberd@conference.process-one.net

GitHub Discussions

However, please note that if the issue is critical or potentially exploitable, do not share it publicly. Instead, we strongly

recommend you contact the maintainers directly via the private reporting methods outlined above to ensure a secure and timely

response.

Thank you for helping us improve the security of ejabberd!

•

•

•

•

•

Security Policy

- 19/175 - Copyright © 2008 - 2024 ProcessOne

https://github.com/processone/ejabberd
https://github.com/processone/ejabberd/security
https://github.com/processone/ejabberd/discussions

Readme

ejabberd is an open-source, robust, scalable and extensible realtime platform built using Erlang/OTP, that includes XMPP Server,

MQTT Broker and SIP Service.

Check the features in ejabberd.im, ejabberd Docs, ejabberd at ProcessOne, and the list of supported protocols in ProcessOne and

XMPP.org.

Installation

There are several ways to install ejabberd:

Source code: compile yourself, see COMPILE

Installers:

ProcessOne Download Page or GitHub Releases for releases.

GitHub Actions for master branch (run / deb / rpm for x64 and arm64)

Docker Containers:

ecs container image: Docker Hub and Github Packages, see ecs README (for x64)

ejabberd container image: Github Packages for releases and master branch, see CONTAINER (for x64 and arm64)

Using your Operating System package

Using the Homebrew package manager

More info can be found in the Installation part of ejabberd Docs.

Documentation

Please check the ejabberd Docs website.

When compiling from source code, you can get some help with:

Once ejabberd is installed, try:

v24.12v24.12 hexhex v24.12.0v24.12.0 homebrewhomebrew v24.12v24.12 ecsecs v24.12v24.12 ejabberdejabberd v24.12v24.12

CICI passingpassing coveragecoverage 33%33% translatedtranslated 67%67% docsdocs v24.12v24.12

•

•

•

•

•

•

•

•

•

./configure --help
make help

ejabberdctl help
man ejabberd.yml

Readme

- 20/175 - Copyright © 2008 - 2024 ProcessOne

https://github.com/processone/ejabberd/tags
https://github.com/processone/ejabberd/tags
https://hex.pm/packages/ejabberd
https://hex.pm/packages/ejabberd
https://formulae.brew.sh/formula/ejabberd
https://formulae.brew.sh/formula/ejabberd
https://hub.docker.com/r/ejabberd/ecs/
https://hub.docker.com/r/ejabberd/ecs/
https://github.com/processone/ejabberd/pkgs/container/ejabberd
https://github.com/processone/ejabberd/pkgs/container/ejabberd
https://github.com/processone/ejabberd/actions/workflows/ci.yml
https://github.com/processone/ejabberd/actions/workflows/ci.yml
https://coveralls.io/github/processone/ejabberd?branch=master
https://coveralls.io/github/processone/ejabberd?branch=master
https://hosted.weblate.org/projects/ejabberd/ejabberd-po/
https://hosted.weblate.org/projects/ejabberd/ejabberd-po/
https://docs.ejabberd.im/
https://docs.ejabberd.im/
https://ejabberd.im/
https://www.erlang.org/
https://xmpp.org/
https://mqtt.org/
https://en.wikipedia.org/wiki/Session_Initiation_Protocol
https://ejabberd.im/
https://docs.ejabberd.im/admin/introduction/
https://www.process-one.net/ejabberd/
https://www.process-one.net/ejabberd-features/
https://xmpp.org/software/servers/ejabberd/
https://www.process-one.net/download/ejabberd/
https://github.com/processone/ejabberd/releases
https://github.com/processone/ejabberd/actions/workflows/installers.yml
https://hub.docker.com/r/ejabberd/ecs/
https://github.com/processone/docker-ejabberd/pkgs/container/ecs
https://github.com/processone/docker-ejabberd/tree/master/ecs#readme
https://github.com/processone/ejabberd/pkgs/container/ejabberd
https://docs.ejabberd.im/admin/install/os-package/
https://docs.ejabberd.im/admin/install/homebrew/
https://docs.ejabberd.im/admin/install/
https://docs.ejabberd.im

Development

Bug reports and features are tracked using GitHub Issues, please check CONTRIBUTING for details.

Translations can be improved online using Weblate or in your local machine as explained in Localization.

Documentation for developers is available in ejabberd docs: Developers.

There are nightly builds of ejabberd, both for master branch and for Pull Requests:

Installers: go to GitHub Actions: Installers, open the most recent commit, on the bottom of that commit page, download the

ejabberd-packages.zip artifact.

ejabberd container image: go to ejabberd Github Packages

Security reports or concerns should preferably be reported privately, please send an email to the address: contact at process-one

dot net or some other method from ProcessOne Contact.

For commercial offering and support, including ejabberd Business Edition and Fluux (ejabberd in the Cloud), please check

ProcessOne ejabberd page.

Security

For information on how to report security vulnerabilities, please refer to the SECURITY.md file. It contains guidelines on how to

report vulnerabilities privately and securely, ensuring that any issues are addressed in a timely and confidential manner.

Community

There are several places to get in touch with other ejabberd developers and administrators:

ejabberd XMPP chatroom: ejabberd@conference.process-one.net

GitHub Discussions

Stack Overflow

License

ejabberd is released under the GNU General Public License v2 (see COPYING)

ejabberd translations under MIT License.

•

•

•

•

•

•

•

Development

- 21/175 - Copyright © 2008 - 2024 ProcessOne

https://github.com/processone/ejabberd/issues
https://hosted.weblate.org/projects/ejabberd/ejabberd-po/
https://docs.ejabberd.im/developer/extending-ejabberd/localization/
https://docs.ejabberd.im/developer/
https://github.com/processone/ejabberd/actions/workflows/installers.yml
https://github.com/processone/ejabberd/pkgs/container/ejabberd
https://www.process-one.net/contact/
https://www.process-one.net/ejabberd/
https://fluux.io/
https://www.process-one.net/ejabberd/
xmpp:ejabberd@conference.process-one.net
https://github.com/processone/ejabberd/discussions
https://stackoverflow.com/questions/tagged/ejabberd?sort=newest
https://github.com/processone/ejabberd-po/

Install

Installation

There are several ways to install ejabberd Community Server, depending on your needs and your infrastructure.

Self-hosted

Container Images

ejabberd and ecs Container Images – Ideal for Windows, macOS, Linux, ...

Binary Installers

Linux RUN Installer – Suitable for various Linux distributions

Linux DEB and RPM Installers – Specifically for DEB and RPM based Linux

Linux and *BSD

Operating System Package – Tailored for System Operators

MacOS

Homebrew – Optimized for MacOS

Source Code

Source Code – Geared towards developers and advanced administrators

On-Premise (eBE)

ejabberd Business Edition – Explore professional support and managed services on your infrastructure

Cloud Hosting (Fluux)

Fluux.io – Opt for ejabberd hosting with a user-friendly web dashboard

•

•

•

•

•

•

•

•

Install

- 22/175 - Copyright © 2008 - 2024 ProcessOne

https://www.process-one.net/en/ejabberd/
https://fluux.io

Install ejabberd using a Container Image

There are two official container images of ejabberd that you can install using docker (or podman):

ejabberd Container Image

The "ejabberd" container image is available in the GitHub Container Registry. It is available for x64 and arm64, both for stable

ejabberd releases and the master branch. Check the "ejabberd" container documentation.

For example, download the latest stable ejabberd release:

If you use Microsoft Windows 7, 10, or similar operating systems, check those tutorials:

Install ejabberd on Windows 10 using Docker Desktop

Install ejabberd on Windows 7 using Docker Toolbox

For bug reports and improvement suggestions, if you use the "ecs" container image please go to the docker-ejabberd GitHub

Issues, if using the "ejabberd" container image from github please go to the ejabberd GitHub Issues

ecs Container Image

The "ecs" container image allows to get ejabberd stable releases in x64 machines. Check the "ecs" container documentation.

Download ejabberd with:

docker pull ghcr.io/processone/ejabberd

•

•

docker pull docker.io/ejabberd/ecs

Install ejabberd using a Container Image

- 23/175 - Copyright © 2008 - 2024 ProcessOne

https://github.com/processone/ejabberd/pkgs/container/ejabberd
https://github.com/processone/ejabberd/pkgs/container/ejabberd
https://www.process-one.net/blog/install-ejabberd-on-windows-10-using-docker-desktop/
https://www.process-one.net/blog/install-ejabberd-on-windows-7-using-docker-toolbox/
https://github.com/processone/docker-ejabberd/issues
https://github.com/processone/docker-ejabberd/issues
https://github.com/processone/ejabberd/issues?q=is-3Aopen+is-3Aissue+label-3APackaging-3AContainer
https://hub.docker.com/r/ejabberd/ecs
https://hub.docker.com/r/ejabberd/ecs

ejabberd Container Image

ejabberd is an open-source, robust, scalable and extensible realtime platform built using Erlang/OTP, that includes XMPP Server,

MQTT Broker and SIP Service.

This document explains how to use the ejabberd container image available in ghcr.io/processone/ejabberd, built using the files in

.github/container/ . This image is based in Alpine 3.19, includes Erlang/OTP 26.2 and Elixir 1.16.1.

Alternatively, there is also the ecs container image available in docker.io/ejabberd/ecs, built using the docker-ejabberd/ecs

repository. Check the differences between ejabberd and ecs images.

If you are using a Windows operating system, check the tutorials mentioned in ejabberd Docs > Docker Image.

Start ejabberd

With default configuration

Start ejabberd in a new container:

That runs the container as a daemon, using ejabberd default configuration file and XMPP domain localhost .

Stop the running container:

Restart the stopped ejabberd container:

Start with Erlang console attached

Start ejabberd with an Erlang console attached using the live command:

That uses the default configuration file and XMPP domain localhost .

Start with your configuration and database

Pass a configuration file as a volume and share the local directory to store database:

Notice that ejabberd runs in the container with an account named ejabberd , and the volumes you mount must grant proper

rights to that account.

v24.12v24.12 ejabberdejabberd v24.12v24.12 ecsecs v24.12v24.12

docker run --name ejabberd -d -p 5222:5222 ghcr.io/processone/ejabberd

docker stop ejabberd

docker restart ejabberd

docker run --name ejabberd -it -p 5222:5222 ghcr.io/processone/ejabberd live

mkdir database
chown ejabberd database

cp ejabberd.yml.example ejabberd.yml

docker run --name ejabberd -it \
-v $(pwd)/ejabberd.yml:/opt/ejabberd/conf/ejabberd.yml \
-v $(pwd)/database:/opt/ejabberd/database \
-p 5222:5222 ghcr.io/processone/ejabberd live

ejabberd Container Image

- 24/175 - Copyright © 2008 - 2024 ProcessOne

https://github.com/processone/ejabberd/tags
https://github.com/processone/ejabberd/tags
https://github.com/processone/ejabberd/pkgs/container/ejabberd
https://github.com/processone/ejabberd/pkgs/container/ejabberd
https://hub.docker.com/r/ejabberd/ecs/
https://hub.docker.com/r/ejabberd/ecs/
https://ejabberd.im/
https://www.erlang.org/
https://xmpp.org/
https://mqtt.org/
https://en.wikipedia.org/wiki/Session_Initiation_Protocol
https://github.com/processone/ejabberd/pkgs/container/ejabberd
https://hub.docker.com/r/ejabberd/ecs/
https://github.com/processone/docker-ejabberd/tree/master/ecs
https://github.com/processone/docker-ejabberd/blob/master/ecs/HUB-README.md#alternative-image-in-github
https://github.com/processone/docker-ejabberd/blob/master/ecs/HUB-README.md#alternative-image-in-github
https://github.com/processone/docker-ejabberd/blob/master/ecs/HUB-README.md#alternative-image-in-github
https://docs.ejabberd.im/admin/install/container/#ejabberd-container-image

Next steps

Register the administrator account

The default ejabberd configuration does not grant admin privileges to any account, you may want to register a new account in

ejabberd and grant it admin rights.

Register an account using the ejabberdctl script:

Then edit conf/ejabberd.yml and add the ACL as explained in ejabberd Docs: Administration Account

Check ejabberd log files

Check the content of the log files inside the container, even if you do not put it on a shared persistent drive:

Inspect the container files

The container uses Alpine Linux. Start a shell inside the container:

Open ejabberd debug console

Open an interactive debug Erlang console attached to a running ejabberd in a running container:

CAPTCHA

ejabberd includes two example CAPTCHA scripts. If you want to use any of them, first install some additional required libraries:

Now update your ejabberd configuration file, for example:

and add this option:

Finally, reload the configuration file or restart the container:

If the CAPTCHA image is not visible, there may be a problem generating it (the ejabberd log file may show some error message);

or the image URL may not be correctly detected by ejabberd, in that case you can set the correct URL manually, for example:

For more details about CAPTCHA options, please check the CAPTCHA documentation section.

docker exec -it ejabberd ejabberdctl register admin localhost passw0rd

docker exec -it ejabberd tail -f logs/ejabberd.log

docker exec -it ejabberd sh

docker exec -it ejabberd ejabberdctl debug

docker exec --user root ejabberd apk add imagemagick ghostscript-fonts bash

docker exec -it ejabberd vi conf/ejabberd.yml

captcha_cmd: /opt/ejabberd-22.04/lib/captcha.sh

docker exec ejabberd ejabberdctl reload_config

captcha_url: https://localhost:5443/captcha

Next steps

- 25/175 - Copyright © 2008 - 2024 ProcessOne

https://docs.ejabberd.im/admin/install/next-steps/#administration-account
https://docs.ejabberd.im/admin/configuration/basic/#captcha

Advanced Container Configuration

Ports

This container image exposes the ports:

5222 : The default port for XMPP clients.

5269 : For XMPP federation. Only needed if you want to communicate with users on other servers.

5280 : For admin interface.

5443 : With encryption, used for admin interface, API, CAPTCHA, OAuth, Websockets and XMPP BOSH.

1883 : Used for MQTT

4369-4399 : EPMD and Erlang connectivity, used for ejabberdctl and clustering

5210 : Erlang connectivity when ERL_DIST_PORT is set, alternative to EPMD

Volumes

ejabberd produces two types of data: log files and database spool files (Mnesia). This is the kind of data you probably want to

store on a persistent or local drive (at least the database).

The volumes you may want to map:

/opt/ejabberd/conf/ : Directory containing configuration and certificates

/opt/ejabberd/database/ : Directory containing Mnesia database. You should back up or export the content of the directory to

persistent storage (host storage, local storage, any storage plugin)

/opt/ejabberd/logs/ : Directory containing log files

/opt/ejabberd/upload/ : Directory containing uploaded files. This should also be backed up.

All these files are owned by ejabberd user inside the container.

It's possible to install additional ejabberd modules using volumes, this comment explains how to install an additional module

using docker-compose.

Commands on start

The ejabberdctl script reads the CTL_ON_CREATE environment variable the first time the container is started, and reads

CTL_ON_START every time the container is started. Those variables can contain one ejabberdctl command, or several commands

separated with the blankspace and ; characters.

By default failure of any of commands executed that way would abort start, this can be disabled by prefixing commands with !

Example usage (or check the full example):

Macros in environment

ejabberd reads EJABBERD_MACRO_* environment variables and uses them to define the * macros, overwriting the corresponding

macro definition if it was set in the configuration file. This is supported since ejabberd 24.12.

For example, if you configure this in ejabberd.yml :

•

•

•

•

•

•

•

•

•

•

•

environment:
- CTL_ON_CREATE=! register admin localhost asd
- CTL_ON_START=stats registeredusers ;

check_password admin localhost asd ;
status

acl:
admin:

user: ADMINJID

Advanced Container Configuration

- 26/175 - Copyright © 2008 - 2024 ProcessOne

https://github.com/processone/docker-ejabberd/issues/81#issuecomment-1036115146
https://docs.ejabberd.im/admin/configuration/file-format/#macros-in-configuration-file

now you can define the admin account JID using an environment variable:

Check the full example for other example.

Clustering

When setting several containers to form a cluster of ejabberd nodes, each one must have a different Erlang Node Name and the

same Erlang Cookie.

For this you can either:

edit conf/ejabberdctl.cfg and set variables ERLANG_NODE and ERLANG_COOKIE

set the environment variables ERLANG_NODE_ARG and ERLANG_COOKIE

Example to connect a local ejabberdctl to a containerized ejabberd:

When creating the container, export port 5210, and set ERLANG_COOKIE :

Set ERL_DIST_PORT=5210 in ejabberdctl.cfg of container and local ejabberd

Restart the container

Now use ejabberdctl in your local ejabberd deployment

To connect using a local ejabberd script:

Example using environment variables (see full example docker-compose.yml):

Build a Container Image

This container image includes ejabberd as a standalone OTP release built using Elixir. That OTP release is configured with:

mix.exs : Customize ejabberd release

vars.config : ejabberd compilation configuration options

config/runtime.exs : Customize ejabberd paths

ejabberd.yml.template : ejabberd default config file

Direct build

Build ejabberd Community Server container image from ejabberd master git repository:

environment:
- EJABBERD_MACRO_ADMINJID=admin@localhost

•

•

1.

docker run --name ejabberd -it \
-e ERLANG_COOKIE=`cat $HOME/.erlang.cookie` \
-p 5210:5210 -p 5222:5222 \
ghcr.io/processone/ejabberd

2.

3.

4.

ERL_DIST_PORT=5210 _build/dev/rel/ejabberd/bin/ejabberd ping

environment:
- ERLANG_NODE_ARG=ejabberd@node7
- ERLANG_COOKIE=dummycookie123

•

•

•

•

docker buildx build \
-t personal/ejabberd \
-f .github/container/Dockerfile \
.

Build a Container Image

- 27/175 - Copyright © 2008 - 2024 ProcessOne

https://docs.ejabberd.im/admin/guide/clustering/
https://docs.ejabberd.im/admin/guide/security/#erlang-node-name
https://docs.ejabberd.im/admin/guide/security/#erlang-cookie
https://github.com/processone/docker-ejabberd/issues/64#issuecomment-887741332

Podman build

To build the image using Podman, please notice:

EXPOSE 4369-4399 port range is not supported, remove that in Dockerfile

It mentions that healthcheck is not supported by the Open Container Initiative image format

to start with command live , you may want to add environment variable EJABBERD_BYPASS_WARNINGS=true

Package build for arm64

By default, .github/container/Dockerfile builds this container by directly compiling ejabberd, it is a fast and direct method.

However, a problem with QEMU prevents building the container in QEMU using Erlang/OTP 25 for the arm64 architecture.

Providing --build-arg METHOD=package is an alternate method to build the container used by the Github Actions workflow that

provides amd64 and arm64 container images. It first builds an ejabberd binary package, and later installs it in the image. That

method avoids using QEMU, so it can build arm64 container images, but is extremely slow the first time it's used, and

consequently not recommended for general use.

In this case, to build the ejabberd container image for arm64 architecture:

Composer Examples

Minimal Example

This is the barely minimal file to get a usable ejabberd.

If using Docker, write this docker-compose.yml file and start it with docker-compose up :

If using Podman, write this minimal.yml file and start it with podman kube play minimal.yml :

•

•

•

podman build \
-t ejabberd \
-f .github/container/Dockerfile \
.

podman run --name eja1 -d -p 5222:5222 localhost/ejabberd

podman exec eja1 ejabberdctl status

podman exec -it eja1 sh

podman stop eja1

podman run --name eja1 -it -e EJABBERD_BYPASS_WARNINGS=true -p 5222:5222 localhost/ejabberd live

docker buildx build \
--build-arg METHOD=package \
--platform linux/arm64 \
-t personal/ejabberd:$VERSION \
-f .github/container/Dockerfile \
.

services:
main:

image: ghcr.io/processone/ejabberd
container_name: ejabberd
ports:

- "5222:5222"
- "5269:5269"
- "5280:5280"
- "5443:5443"

apiVersion: v1

kind: Pod

metadata:
name: ejabberd

spec:
containers:

- name: ejabberd
image: ghcr.io/processone/ejabberd

Composer Examples

- 28/175 - Copyright © 2008 - 2024 ProcessOne

Customized Example

This example shows the usage of several customizations: it uses a local configuration file, defines a configuration macro using an

environment variable, stores the mnesia database in a local path, registers an account when it's created, and checks the number

of registered accounts every time it's started.

Download or copy the ejabberd configuration file:

Use a macro in ejabberd.yml to set the served vhost, with localhost as default value:

Create the database directory and allow the container access to it:

If using Docker, write this docker-compose.yml file and start it with docker-compose up :

If using Podman, write this custom.yml file and start it with podman kube play custom.yml :

ports:
- containerPort: 5222

hostPort: 5222
- containerPort: 5269

hostPort: 5269
- containerPort: 5280

hostPort: 5280
- containerPort: 5443

hostPort: 5443

wget https://raw.githubusercontent.com/processone/ejabberd/master/ejabberd.yml.example
mv ejabberd.yml.example ejabberd.yml

define_macro:
XMPPHOST: localhost

hosts:
- XMPPHOST

mkdir database
sudo chown 9000:9000 database

version: '3.7'

services:

main:
image: ghcr.io/processone/ejabberd
container_name: ejabberd
environment:

- EJABBERD_MACRO_XMPPHOST=example.com
- CTL_ON_CREATE=register admin example.com asd
- CTL_ON_START=registered_users example.com ;

status
ports:

- "5222:5222"
- "5269:5269"
- "5280:5280"
- "5443:5443"

volumes:
- ./ejabberd.yml:/opt/ejabberd/conf/ejabberd.yml:ro
- ./database:/opt/ejabberd/database

apiVersion: v1

kind: Pod

metadata:
name: ejabberd

spec:
containers:

- name: ejabberd
image: ghcr.io/processone/ejabberd
env:
- name: CTL_ON_CREATE

value: register admin example.com asd
- name: CTL_ON_START

value: registered_users example.com ;
status

ports:
- containerPort: 5222

hostPort: 5222
- containerPort: 5269

Composer Examples

- 29/175 - Copyright © 2008 - 2024 ProcessOne

Clustering Example

In this example, the main container is created first. Once it is fully started and healthy, a second container is created, and once

ejabberd is started in it, it joins the first one.

An account is registered in the first node when created (and we ignore errors that can happen when doing that - for example

when account already exists), and it should exist in the second node after join.

Notice that in this example the main container does not have access to the exterior; the replica exports the ports and can be

accessed.

If using Docker, write this docker-compose.yml file and start it with docker-compose up :

If using Podman, write this cluster.yml file and start it with podman kube play cluster.yml :

hostPort: 5269
- containerPort: 5280

hostPort: 5280
- containerPort: 5443

hostPort: 5443
volumeMounts:
- mountPath: /opt/ejabberd/conf/ejabberd.yml

name: config
readOnly: true

- mountPath: /opt/ejabberd/database
name: db

volumes:
- name: config

hostPath:
path: ./ejabberd.yml
type: File

- name: db
hostPath:

path: ./database
type: DirectoryOrCreate

version: '3.7'

services:

main:
image: ghcr.io/processone/ejabberd
container_name: ejabberd
environment:

- ERLANG_NODE_ARG=ejabberd@main
- ERLANG_COOKIE=dummycookie123
- CTL_ON_CREATE=! register admin localhost asd

replica:
image: ghcr.io/processone/ejabberd
container_name: replica
depends_on:

main:
condition: service_healthy

environment:
- ERLANG_NODE_ARG=ejabberd@replica
- ERLANG_COOKIE=dummycookie123
- CTL_ON_CREATE=join_cluster ejabberd@main
- CTL_ON_START=registered_users localhost ;

status
ports:

- "5222:5222"
- "5269:5269"
- "5280:5280"
- "5443:5443"

apiVersion: v1

kind: Pod

metadata:
name: cluster

spec:
containers:

- name: first
image: ghcr.io/processone/ejabberd
env:
- name: ERLANG_NODE_ARG

value: main@cluster
- name: ERLANG_COOKIE

value: dummycookie123

Composer Examples

- 30/175 - Copyright © 2008 - 2024 ProcessOne

Your configuration file should use those macros to allow each ejabberd node use different listening port numbers:

- name: CTL_ON_CREATE
value: register admin localhost asd

- name: CTL_ON_START
value: stats registeredusers ;

status
- name: EJABBERD_MACRO_PORT_C2S

value: 6222
- name: EJABBERD_MACRO_PORT_C2S_TLS

value: 6223
- name: EJABBERD_MACRO_PORT_S2S

value: 6269
- name: EJABBERD_MACRO_PORT_HTTP_TLS

value: 6443
- name: EJABBERD_MACRO_PORT_HTTP

value: 6280
- name: EJABBERD_MACRO_PORT_MQTT

value: 6883
- name: EJABBERD_MACRO_PORT_PROXY65

value: 6777
volumeMounts:
- mountPath: /opt/ejabberd/conf/ejabberd.yml

name: config
readOnly: true

- name: second
image: ghcr.io/processone/ejabberd
env:
- name: ERLANG_NODE_ARG

value: replica@cluster
- name: ERLANG_COOKIE

value: dummycookie123
- name: CTL_ON_CREATE

value: join_cluster main@cluster ;
started ;
list_cluster

- name: CTL_ON_START
value: stats registeredusers ;

check_password admin localhost asd ;
status

ports:
- containerPort: 5222

hostPort: 5222
- containerPort: 5280

hostPort: 5280
volumeMounts:
- mountPath: /opt/ejabberd/conf/ejabberd.yml

name: config
readOnly: true

volumes:
- name: config

hostPath:
path: ./conf/ejabberd.yml
type: File

diff --git a/ejabberd.yml.example b/ejabberd.yml.example
index 39e423a64..6e875b48f 100644
--- a/ejabberd.yml.example
+++ b/ejabberd.yml.example
@@ -24,9 +24,19 @@ loglevel: info
- /etc/letsencrypt/live/domain.tld/fullchain.pem
- /etc/letsencrypt/live/domain.tld/privkey.pem

+define_macro:
+ PORT_C2S: 5222
+ PORT_C2S_TLS: 5223
+ PORT_S2S: 5269
+ PORT_HTTP_TLS: 5443
+ PORT_HTTP: 5280
+ PORT_STUN: 5478
+ PORT_MQTT: 1883
+ PORT_PROXY65: 7777
+
listen:
 -

- port: 5222
+ port: PORT_C2S
 ip: "::"
 module: ejabberd_c2s
 max_stanza_size: 262144

@@ -34,7 +44,7 @@ listen:
 access: c2s
 starttls_required: true
 -

- port: 5223
+ port: PORT_C2S_TLS
 ip: "::"
 module: ejabberd_c2s
 max_stanza_size: 262144

@@ -42,13 +52,13 @@ listen:

Composer Examples

- 31/175 - Copyright © 2008 - 2024 ProcessOne

 access: c2s
 tls: true
 -

- port: 5269
+ port: PORT_S2S
 ip: "::"
 module: ejabberd_s2s_in
 max_stanza_size: 524288
 shaper: s2s_shaper
 -

- port: 5443
+ port: PORT_HTTP_TLS
 ip: "::"
 module: ejabberd_http
 tls: true

@@ -60,14 +70,14 @@ listen:
 /upload: mod_http_upload
 /ws: ejabberd_http_ws
 -

- port: 5280
+ port: PORT_HTTP
 ip: "::"
 module: ejabberd_http
 request_handlers:
 /admin: ejabberd_web_admin
 /.well-known/acme-challenge: ejabberd_acme
 -

- port: 5478
+ port: PORT_STUN
 ip: "::"
 transport: udp
 module: ejabberd_stun

@@ -77,7 +87,7 @@ listen:
 ## The server's public IPv6 address:
 # turn_ipv6_address: "2001:db8::3"
 -

- port: 1883
+ port: PORT_MQTT
 ip: "::"
 module: mod_mqtt
 backlog: 1000

@@ -207,6 +217,7 @@ modules:
 mod_proxy65:
 access: local
 max_connections: 5

+ port: PORT_PROXY65
 mod_pubsub:
 access_createnode: pubsub_createnode
 plugins:

Composer Examples

- 32/175 - Copyright © 2008 - 2024 ProcessOne

ecs Container Image

ejabberd is an open-source XMPP server, robust, scalable and modular, built using Erlang/OTP, and also includes MQTT Broker

and SIP Service.

This container image allows you to run a single node ejabberd instance in a container.

There is an Alternative Image in GitHub Packages, built using a different method and some improvements.

If you are using a Windows operating system, check the tutorials mentioned in ejabberd Docs > Docker Image.

Start ejabberd

With default configuration

You can start ejabberd in a new container with the following command:

This command will run the container image as a daemon, using ejabberd default configuration file and XMPP domain "localhost".

To stop the running container, you can run:

If needed, you can restart the stopped ejabberd container with:

Start with Erlang console attached

If you would like to start ejabberd with an Erlang console attached you can use the live command:

This command will use default configuration file and XMPP domain "localhost".

Start with your configuration and database

This command passes the configuration file using the volume feature and shares the local directory to store database:

Next steps

Register the administrator account

The default ejabberd configuration has already granted admin privilege to an account that would be called admin@localhost , so

you just need to register such an account to start using it for administrative purposes. You can register this account using the

ejabberdctl script, for example:

v24.12v24.12 ejabberdejabberd v24.12v24.12 ecsecs v24.12v24.12

TestsTests passingpassing image sizeimage size 35.2 MiB35.2 MiB docker starsdocker stars 6868 docker pullsdocker pulls 5.9M5.9M StarsStars 9494

docker run --name ejabberd -d -p 5222:5222 ejabberd/ecs

docker stop ejabberd

docker restart ejabberd

docker run -it -p 5222:5222 ejabberd/ecs live

mkdir database
docker run -d --name ejabberd -v $(pwd)/ejabberd.yml:/home/ejabberd/conf/ejabberd.yml -v $(pwd)/database:/home/ejabberd/database -p 5222:5222 ejabberd/ecs

docker exec -it ejabberd ejabberdctl register admin localhost passw0rd

ecs Container Image

- 33/175 - Copyright © 2008 - 2024 ProcessOne

https://github.com/processone/ejabberd/tags
https://github.com/processone/ejabberd/tags
https://github.com/processone/ejabberd/pkgs/container/ejabberd
https://github.com/processone/ejabberd/pkgs/container/ejabberd
https://hub.docker.com/r/ejabberd/ecs/
https://hub.docker.com/r/ejabberd/ecs/
https://github.com/processone/docker-ejabberd/actions/workflows/tests.yml
https://github.com/processone/docker-ejabberd/actions/workflows/tests.yml
https://hub.docker.com/r/ejabberd/ecs/
https://hub.docker.com/r/ejabberd/ecs/
https://hub.docker.com/r/ejabberd/ecs/
https://hub.docker.com/r/ejabberd/ecs/
https://hub.docker.com/r/ejabberd/ecs/
https://hub.docker.com/r/ejabberd/ecs/
https://github.com/processone/docker-ejabberd
https://github.com/processone/docker-ejabberd
https://docs.ejabberd.im/admin/installation/#docker-image

Check ejabberd log files

Check the ejabberd log file in the container:

Inspect the container files

The container uses Alpine Linux. You can start a shell there with:

Open ejabberd debug console

You can open a live debug Erlang console attached to a running container:

CAPTCHA

ejabberd includes two example CAPTCHA scripts. If you want to use any of them, first install some additional required libraries:

Now update your ejabberd configuration file, for example:

and add this option:

Finally, reload the configuration file or restart the container:

If the CAPTCHA image is not visible, there may be a problem generating it (the ejabberd log file may show some error message);

or the image URL may not be correctly detected by ejabberd, in that case you can set the correct URL manually, for example:

For more details about CAPTCHA options, please check the CAPTCHA documentation section.

Use ejabberdapi

When the container is running (and thus ejabberd), you can exec commands inside the container using ejabberdctl or any other

of the available interfaces, see Understanding ejabberd "commands"

Additionally, this container image includes the ejabberdapi executable. Please check the ejabberd-api homepage for

configuration and usage details.

For example, if you configure ejabberd like this:

docker exec -it ejabberd tail -f logs/ejabberd.log

docker exec -it ejabberd sh

docker exec -it ejabberd ejabberdctl debug

docker exec --user root ejabberd apk add imagemagick ghostscript-fonts bash

docker exec -it ejabberd vi conf/ejabberd.yml

captcha_cmd: /home/ejabberd/lib/ejabberd-21.1.0/priv/bin/captcha.sh

docker exec ejabberd ejabberdctl reload_config

captcha_url: https://localhost:5443/captcha

listen:
-

port: 5282
module: ejabberd_http
request_handlers:

"/api": mod_http_api

acl:
loopback:

ip:
- 127.0.0.0/8
- ::1/128

Next steps

- 34/175 - Copyright © 2008 - 2024 ProcessOne

https://docs.ejabberd.im/admin/configuration/basic/#captcha
https://docs.ejabberd.im/developer/ejabberd-api/#understanding-ejabberd-commands
https://github.com/processone/ejabberd-api

Then you could register new accounts with this query:

Advanced container configuration

Ports

This container image exposes the ports:

5222 : The default port for XMPP clients.

5269 : For XMPP federation. Only needed if you want to communicate with users on other servers.

5280 : For admin interface.

5443 : With encryption, used for admin interface, API, CAPTCHA, OAuth, Websockets and XMPP BOSH.

1883 : Used for MQTT

4369-4399 : EPMD and Erlang connectivity, used for ejabberdctl and clustering

Volumes

ejabberd produces two types of data: log files and database (Mnesia). This is the kind of data you probably want to store on a

persistent or local drive (at least the database).

Here are the volume you may want to map:

/home/ejabberd/conf/ : Directory containing configuration and certificates

/home/ejabberd/database/ : Directory containing Mnesia database. You should back up or export the content of the directory to

persistent storage (host storage, local storage, any storage plugin)

/home/ejabberd/logs/ : Directory containing log files

/home/ejabberd/upload/ : Directory containing uploaded files. This should also be backed up.

All these files are owned by ejabberd user inside the container. Corresponding UID:GID is 9000:9000 . If you prefer bind mounts

instead of volumes, then you need to map this to valid UID:GID on your host to get read/write access on mounted directories.

Commands on start

The ejabberdctl script reads the CTL_ON_CREATE environment variable the first time the container is started, and reads

CTL_ON_START every time the container is started. Those variables can contain one ejabberdctl command, or several commands

separated with the blankspace and ; characters.

By default failure of any of commands executed that way would abort start, this can be disabled by prefixing commands with !

Example usage (or check the full example):

- ::FFFF:127.0.0.1/128

api_permissions:
"admin access":

who:
access:

allow:
acl: loopback

what:
- "register"

docker exec -it ejabberd ejabberdapi register --endpoint=http://127.0.0.1:5282/ --jid=admin@localhost --password=passw0rd

•

•

•

•

•

•

•

•

•

•

environment:
- CTL_ON_CREATE=! register admin localhost asd
- CTL_ON_START=stats registeredusers ;

check_password admin localhost asd ;
status

Advanced container configuration

- 35/175 - Copyright © 2008 - 2024 ProcessOne

Clustering

When setting several containers to form a cluster of ejabberd nodes, each one must have a different Erlang Node Name and the

same Erlang Cookie. For this you can either: - edit conf/ejabberdctl.cfg and set variables ERLANG_NODE and ERLANG_COOKIE - set the

environment variables ERLANG_NODE_ARG and ERLANG_COOKIE

Once you have the ejabberd nodes properly set and running, you can tell the secondary nodes to join the master node using the

join_cluster API call.

Example using environment variables (see the full docker-compose.yml clustering example):

Change Mnesia Node Name

To use the same Mnesia database in a container with a different hostname, it is necessary to change the old hostname stored in

Mnesia.

This section is equivalent to the ejabberd Documentation Change Computer Hostname, but particularized to containers that use

this ecs container image from ejabberd 23.01 or older.

SETUP OLD CONTAINER

Let's assume a container running ejabberd 23.01 (or older) from this ecs container image, with the database directory binded

and one registered account. This can be produced with:

Methods to know the Erlang node name:

CHANGE MNESIA NODE

First of all let's store the Erlang node names and paths in variables. In this example they would be:

environment:
- ERLANG_NODE_ARG=ejabberd@replica
- ERLANG_COOKIE=dummycookie123
- CTL_ON_CREATE=join_cluster ejabberd@main

OLDCONTAINER=ejaold
NEWCONTAINER=ejanew

mkdir database
sudo chown 9000:9000 database
docker run -d --name $OLDCONTAINER -p 5222:5222 \

-v $(pwd)/database:/home/ejabberd/database \
ejabberd/ecs:23.01

docker exec -it $OLDCONTAINER ejabberdctl started
docker exec -it $OLDCONTAINER ejabberdctl register user1 localhost somepass
docker exec -it $OLDCONTAINER ejabberdctl registered_users localhost

ls database/ | grep ejabberd@
docker exec -it $OLDCONTAINER ejabberdctl status
docker exec -it $OLDCONTAINER grep "started in the node" logs/ejabberd.log

OLDCONTAINER=ejaold
NEWCONTAINER=ejanew
OLDNODE=ejabberd@95145ddee27c
NEWNODE=ejabberd@localhost
OLDFILE=/home/ejabberd/database/old.backup
NEWFILE=/home/ejabberd/database/new.backup

Advanced container configuration

- 36/175 - Copyright © 2008 - 2024 ProcessOne

https://docs.ejabberd.im/admin/guide/clustering/
https://docs.ejabberd.im/admin/guide/security/#erlang-node-name
https://docs.ejabberd.im/admin/guide/security/#erlang-cookie
https://docs.ejabberd.im/developer/ejabberd-api/admin-api/#join-cluster
https://docs.ejabberd.im/developer/ejabberd-api/admin-api/#join-cluster
https://docs.ejabberd.im/admin/guide/managing/#change-computer-hostname

Start your old container that can still read the Mnesia database correctly. If you have the Mnesia spool files, but don't have access

to the old container anymore, go to Create Temporary Container and later come back here.

Generate a backup file and check it was created:

Stop ejabberd:

Create the new container. For example:

Convert the backup file to new node name:

Install the backup file as a fallback:

Restart the container:

Check that the information of the old database is available. In this example, it should show that the account user1 is registered:

When the new container is working perfectly with the converted Mnesia database, you may want to remove the unneeded files: the

old container, the old Mnesia spool files, and the backup files.

CREATE TEMPORARY CONTAINER

In case the old container that used the Mnesia database is not available anymore, a temporary container can be created just to

read the Mnesia database and make a backup of it, as explained in the previous section.

This method uses --hostname command line argument for docker, and ERLANG_NODE_ARG environment variable for ejabberd. Their

values must be the hostname of your old container and the Erlang node name of your old ejabberd node. To know the Erlang

node name please check Setup Old Container.

Command line example:

Check the old database content is available:

Now that you have ejabberd running with access to the Mnesia database, you can continue with step 2 of previous section

Change Mnesia Node.

1.

2.

docker exec -it $OLDCONTAINER ejabberdctl backup $OLDFILE
ls -l database/*.backup

3.

docker stop $OLDCONTAINER

4.

docker run \
--name $NEWCONTAINER \
-d \
-p 5222:5222 \
-v $(pwd)/database:/home/ejabberd/database \
ejabberd/ecs:latest

5.

docker exec -it $NEWCONTAINER ejabberdctl mnesia_change_nodename $OLDNODE $NEWNODE $OLDFILE $NEWFILE

6.

docker exec -it $NEWCONTAINER ejabberdctl install_fallback $NEWFILE

7.

docker restart $NEWCONTAINER

8.

docker exec -it $NEWCONTAINER ejabberdctl registered_users localhost

9.

OLDHOST=${OLDNODE#*@}
docker run \

-d \
--name $OLDCONTAINER \
--hostname $OLDHOST \
-p 5222:5222 \
-v $(pwd)/database:/home/ejabberd/database \
-e ERLANG_NODE_ARG=$OLDNODE \
ejabberd/ecs:latest

docker exec -it $OLDCONTAINER ejabberdctl registered_users localhost

Advanced container configuration

- 37/175 - Copyright © 2008 - 2024 ProcessOne

Generating ejabberd release

Configuration

Image is built by embedding an ejabberd Erlang/OTP standalone release in the image.

The configuration of ejabberd Erlang/OTP release is customized with:

rel/config.exs : Customize ejabberd release

rel/dev.exs : ejabberd environment configuration for development release

rel/prod.exs : ejabberd environment configuration for production release

vars.config : ejabberd compilation configuration options

conf/ejabberd.yml : ejabberd default config file

Build ejabberd Community Server base image from ejabberd master on Github:

Build ejabberd Community Server base image for a given ejabberd version:

Composer Examples

Minimal Example

This is the barely minimal file to get a usable ejabberd. Store it as docker-compose.yml :

Create and start the container with the command:

Customized Example

This example shows the usage of several customizations: it uses a local configuration file, stores the mnesia database in a local

path, registers an account when it's created, and checks the number of registered accounts every time it's started.

Download or copy the ejabberd configuration file:

Create the database directory and allow the container access to it:

Now write this docker-compose.yml file:

•

•

•

•

•

docker build -t ejabberd/ecs .

./build.sh 18.03

services:
main:

image: ejabberd/ecs
container_name: ejabberd
ports:

- "5222:5222"
- "5269:5269"
- "5280:5280"
- "5443:5443"

docker-compose up

wget https://raw.githubusercontent.com/processone/ejabberd/master/ejabberd.yml.example
mv ejabberd.yml.example ejabberd.yml

mkdir database
sudo chown 9000:9000 database

version: '3.7'

services:

main:
image: ejabberd/ecs
container_name: ejabberd

Generating ejabberd release

- 38/175 - Copyright © 2008 - 2024 ProcessOne

Clustering Example

In this example, the main container is created first. Once it is fully started and healthy, a second container is created, and once

ejabberd is started in it, it joins the first one.

An account is registered in the first node when created (and we ignore errors that can happen when doing that - for example

when account already exists), and it should exist in the second node after join.

Notice that in this example the main container does not have access to the exterior; the replica exports the ports and can be

accessed.

environment:
- CTL_ON_CREATE=register admin localhost asd
- CTL_ON_START=registered_users localhost ;

status
ports:

- "5222:5222"
- "5269:5269"
- "5280:5280"
- "5443:5443"

volumes:
- ./ejabberd.yml:/home/ejabberd/conf/ejabberd.yml:ro
- ./database:/home/ejabberd/database

version: '3.7'

services:

main:
image: ejabberd/ecs
container_name: main
environment:

- ERLANG_NODE_ARG=ejabberd@main
- ERLANG_COOKIE=dummycookie123
- CTL_ON_CREATE=! register admin localhost asd

healthcheck:
test: netstat -nl | grep -q 5222
start_period: 5s
interval: 5s
timeout: 5s
retries: 120

replica:
image: ejabberd/ecs
container_name: replica
depends_on:

main:
condition: service_healthy

ports:
- "5222:5222"
- "5269:5269"
- "5280:5280"
- "5443:5443"

environment:
- ERLANG_NODE_ARG=ejabberd@replica
- ERLANG_COOKIE=dummycookie123
- CTL_ON_CREATE=join_cluster ejabberd@main
- CTL_ON_START=registered_users localhost ;

status

Composer Examples

- 39/175 - Copyright © 2008 - 2024 ProcessOne

Binary Installers

Linux RUN Installer

The *.run binary installer will deploy and configure a full featured ejabberd server and does not require any extra dependencies.

It includes a stripped down version of Erlang. As such, when using ejabberd installer, you do not need to install Erlang

separately.

Those instructions assume installation on localhost for development purposes. In this document, when mentioning ejabberd-

YY.MM , we assume YY.MM is the release number, for example 18.01.

Installation using the *.run binary installer:

Go to ejabberd GitHub Releases.

Download the run package for your architecture

Right-click on the downloaded file and select "Properties", click on the "Permissions" tab and tick the box that says "Allow

executing file as program". Alternatively, you can set the installer as executable using the command line:

If the installer runs as superuser (by root or using sudo), it installs ejabberd binaries in /opt/ejabberd-XX.YY/ ; installs your

configuration, Mnesia database and logs in /opt/ejabberd/ , and setups an ejabberd service unit in systemd :

If the installer runs as a regular user, it asks the base path where ejabberd should be installed. In that case, the ejabberd service

unit is not set in systemd , and systemctl cannot be used to start ejabberd; start it manually.

After successful installation by root, ejabberd is automatically started. Check its status with

Now that ejabberd is installed and running with the default configuration, it's time to do some basic setup: edit /opt/ejabberd/conf/

ejabberd.yml and setup in the hosts option the domain that you want ejabberd to serve. By default it's set to the name of your

computer on the local network.

Restart ejabberd completely using systemctl, or using ejabberdctl, or simply tell it to reload the configuration file:

Quite probably you will want to register an account and grant it admin rights, please check Next Steps: Administration Account.

Now you can go to the web dashboard at http://localhost:5280/admin/ and fill the username field with the full account JID, for

example admin@domain (or admin@localhost as above). Then fill the password field with that account's password . The next step is to

get to know how to configure ejabberd.

If something goes wrong during the installation and you would like to start from scratch, you will find the steps to uninstall in the

file /opt/ejabberd-22.05/uninstall.txt .

Linux DEB and RPM Installers

ProcessOne provides DEB and RPM all-in-one binary installers with the same content that the *.run binary installer mentioned

in the previous section.

Those are self-sufficient packages that contain a minimal Erlang distribution, this ensures that it does not interfere with your

existing Erlang version and is also a good way to make sure ejabberd will run with the latest Erlang version.

Those packages install ejabberd in /opt/ejabberd-XX.YY/ . Your configuration, Mnesia database and logs are available in /opt/

ejabberd/ .

1.

2.

3.

chmod +x ejabberd-YY.MM-1-linux-x64.run

4.

sudo ./ejabberd-YY.MM-1-linux-x64.run

5.

6.

systemctl status ejabberd

7.

8.

sudo systemctl restart ejabberd
sudo /opt/ejabberd-22.05/bin/ejabberdctl restart
sudo /opt/ejabberd-22.05/bin/ejabberdctl reload_config

9.

10.

11.

Binary Installers

- 40/175 - Copyright © 2008 - 2024 ProcessOne

https://github.com/processone/ejabberd/releases

You can download directly the DEB and RPM packages from ejabberd GitHub Releases.

If you prefer, you can also get those packages from our official ejabberd packages repository.

Linux DEB and RPM Installers

- 41/175 - Copyright © 2008 - 2024 ProcessOne

https://github.com/processone/ejabberd/releases
https://repo.process-one.net

Operating System Packages

Many operating systems provide specific ejabberd packages adapted to the system architecture and libraries. They usually also

check dependencies and perform basic configuration tasks like creating the initial administrator account.

List of known ejabberd packages:

Alpine Linux

Arch Linux

Debian

Fedora

FreeBSD

Gentoo

OpenSUSE

NetBSD

Ubuntu

Consult the resources provided by your Operating System for more information.

There's also an ejabberd snap to install ejabberd on several operating systems using Snap package manager.

•

•

•

•

•

•

•

•

•

Operating System Packages

- 42/175 - Copyright © 2008 - 2024 ProcessOne

https://pkgs.alpinelinux.org/packages?name=ejabberd&branch=edge
https://archlinux.org/packages/extra/x86_64/ejabberd/
https://tracker.debian.org/pkg/ejabberd
https://packages.fedoraproject.org/pkgs/ejabberd/ejabberd/
https://www.freshports.org/net-im/ejabberd/
https://packages.gentoo.org/packages/net-im/ejabberd
https://software.opensuse.org/package/ejabberd
https://pkgsrc.se/chat/ejabberd/
https://packages.ubuntu.com/search?keywords=ejabberd
https://snapcraft.io/ejabberd

Install ejabberd from Source Code

The canonical distribution form of ejabberd stable releases is the source code package. Compiling ejabberd from source code is

quite easy in *nix systems, as long as your system have all the dependencies.

Requirements

To compile ejabberd you need:

GNU Make

GCC

Libexpat ≥ 1.95

Libyaml ≥ 0.1.4

Erlang/OTP ≥ 20.0. We recommend using Erlang OTP 26.2, which is the version used in the binary installers and container

images.

OpenSSL ≥ 1.0.0

Other optional libraries are:

Zlib ≥ 1.2.3, For Zlib Stream Compression

PAM library, for PAM Authentication

ImageMagick’s Convert program and Ghostscript fonts, for CAPTCHA challenges.

Elixir ≥ 1.10.3, for Elixir Development. It is recommended Elixir 1.13.4 or higher and Erlang/OTP 23.0 or higher.

If your system splits packages in libraries and development headers, install the development packages too.

For example, in Debian:

Download

There are several ways to obtain the ejabberd source code:

Source code package from ProcessOne Downloads or GitHub Releases

Latest development code from ejabberd Git repository using the commands:

Compile

The generic instructions to compile ejabberd are:

Let's view them in detail.

•

•

•

•

•

•

•

•

•

•

apt-get install libexpat1-dev libgd-dev libpam0g-dev \
libsqlite3-dev libwebp-dev libyaml-dev \
autoconf automake erlang elixir rebar3

•

•

git clone https://github.com/processone/ejabberd.git
cd ejabberd

./autogen.sh

./configure
make

Install ejabberd from Source Code

- 43/175 - Copyright © 2008 - 2024 ProcessOne

https://www.erlang.org/
https://elixir-lang.org/
https://www.process-one.net/en/ejabberd/downloads/
https://github.com/processone/ejabberd/releases
https://github.com/processone/ejabberd

./configure

The build configuration script supports many options. Get the full list:

In this example, ./configure prepares the installed program to run with a user called ejabberd that should exist in the system (it

isn't recommended to run ejabberd with root user):

If you get Error loading module rebar3 , please consult how to use rebar with old Erlang.

./configure --help

./configure --enable-user=ejabberd --enable-mysql

Compile

- 44/175 - Copyright © 2008 - 2024 ProcessOne

Options details:

--bindir=/ : Specify the path to the user executables (where epmd and iex are available).

--prefix=/ : Specify the path prefix where the files will be copied when running the make install command.

--with-rebar=/ : Specify the path to rebar, rebar3 or mix

added in 20.12 and improved in 24.02

--enable-user[=USER] : Allow this normal system user to execute the ejabberdctl script (see section ejabberdctl), read the

configuration files, read and write in the spool directory, read and write in the log directory. The account user and group must

exist in the machine before running make install . This account needs a HOME directory, because the Erlang cookie file will be

created and read there.

--enable-group[=GROUP] : Use this option additionally to --enable-user when that account is in a group that doesn't coincide

with its username.

--enable-all : Enable many of the database and dependencies options described here, this is useful for Dialyzer checks: --

enable-debug --enable-elixir --enable-mysql --enable-odbc --enable-pam --enable-pgsql --enable-redis --enable-sip --enable-sqlite

--enable-stun --enable-tools --enable-zlib

--disable-debug : Compile without +debug_info .

--enable-elixir : Build ejabberd with Elixir extension support. Works only with rebar3, not rebar2. Requires to have Elixir

installed. If interested in Elixir development, you may prefer to use --with-rebar=mix

improved in 24.02

--disable-erlang-version-check : Don't check Erlang/OTP version.

--enable-full-xml : Use XML features in XMPP stream (ex: CDATA). This requires XML compliant clients).

--enable-hipe : Compile natively with HiPE. This is an experimental feature, and not recommended.

--enable-lager : Use lager Erlang logging tool instead of standard error logger.

--enable-latest-deps : Makes rebar use latest versions of dependencies developed alongside ejabberd instead of version

specified in rebar.config. Should be only used when developing ejabberd.

--enable-lua : Enable Lua support, to import from Prosody.

added in 21.04

--enable-mssql : Enable Microsoft SQL Server support, this option requires --enable-odbc (see [Supported storages][18]).

--enable-mysql : Enable MySQL support (see [Supported storages][18]).

--enable-new-sql-schema : Use new SQL schema.

--enable-odbc : Enable pure ODBC support.

--enable-pam : Enable the PAM authentication method (see PAM Authentication section).

--enable-pgsql : Enable PostgreSQL support (see [Supported storages][18]).

--enable-redis : Enable Redis support to use for external session storage.

--enable-roster-gateway-workaround : Turn on workaround for processing gateway subscriptions.

--enable-sip : Enable SIP support.

--enable-sqlite : Enable SQLite support (see [Supported storages][18]).

--disable-stun : Disable STUN/TURN support.

--enable-system-deps : Makes rebar use locally installed dependencies instead of downloading them.

--enable-tools : Enable the use of development tools.

changed in 21.04

--disable-zlib : Disable Stream Compression (XEP-0138) using zlib.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Compile

- 45/175 - Copyright © 2008 - 2024 ProcessOne

make

This gets the erlang depencies and compiles everything, among other tasks:

Get, update, compile dependencies; clean files

System install, uninstall

Build OTP production / development releases

Development: edoc, options, translations, tags

Testing: dialyzer, hooks, test, xref

Get the full task list:

Note: The required erlang dependencies are downloaded from Internet. Or you can copy $HOME/.hex/ package cache from

another machine.

Install

There are several ways to install and run ejabberd after it's compiled from source code:

system install

system install a release

building a production release

building a development release

don't install at all, just start with make relive

System Install

To install ejabberd in the destination directories, run:

Note that you probably need administrative privileges in the system to install ejabberd.

•

•

•

•

•

make help

•

•

•

•

•

make install

Install

- 46/175 - Copyright © 2008 - 2024 ProcessOne

The created files and directories depend on the options provided to ./configure , by default they are:

/etc/ejabberd/ : Configuration directory:

ejabberd.yml : ejabberd configuration file (see File Format)

ejabberdctl.cfg : Configuration file of the administration script (see Erlang Runtime System)

inetrc : Network DNS configuration file for Erlang

/lib/ejabberd/ :

ebin/ : Erlang binary files (*.beam)

include/ : Erlang header files (*.hrl)

priv/ : Additional files required at runtime

bin/ : Executable programs

lib/ : Binary system libraries (*.so)

msgs/ : Translation files (*.msgs) (see Default Language)

/sbin/ejabberdctl : Administration script (see ejabberdctl)

/share/doc/ejabberd/ : Documentation of ejabberd

/var/lib/ejabberd/ : Spool directory:

.erlang.cookie : The Erlang cookie file

acl.DCD, ... : Mnesia database spool files (*.DCD, *.DCL, *.DAT)

/var/log/ejabberd/ : Log directory (see Logging):

ejabberd.log : ejabberd service log

erlang.log : Erlang/OTP system log

System Install Release

added in 24.02

This builds a production release, and then performs a system install of that release, obtaining a result similar to the one

mentioned in the previous section.

Simply run:

The benefits of install-rel over install :

this uses OTP release code from rebar/rebar3/mix, and consequently requires less code in our Makefile.in file

uninstall-rel correctly deletes all the library files

the *.beam files are smaller as debug information is stripped

Production Release

improved in 21.07

You can build an OTP release that includes ejabberd, Erlang/OTP and all the required erlang dependencies in a single tar.gz file.

Then you can copy that file to another machine that has the same machine architecture, and run ejabberd without installing

anything else.

To build that production release, run:

If you provided to ./configure the option --with-rebar to use rebar3 or mix, this will directly produce a tar.gz that you can copy.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

make install-rel

•

•

•

make prod

Install

- 47/175 - Copyright © 2008 - 2024 ProcessOne

This example uses rebar3 to manage the compilation, builds an OTP production release, copies the resulting package to a

temporary path, and starts ejabberd there:

Development Release

new in 21.07

If you provided to ./configure the option --with-rebar to use rebar3 or mix, you can build an OTP development release.

This is designed to run ejabberd in the local machine for development, manual testing... without installing in the system.

This development release has some customizations: uses a dummy certificate file, if you register the account admin@localhost it

has admin rights...

This example uses Elixir's mix to manage the compilation, builds an OTP development release, and starts ejabberd there:

Specific notes

asdf

When Erlang/OTP (and/or Elixir) is installed using asdf (multiple runtime version manager), it is available only for your account,

in $HOME/.asdf/shims/erl . In that case, you cannot install ejabberd globally in the system, and you cannot use the root account to

start it, because that account doesn't have access to erlang.

In that scenario, there are several ways to run/install ejabberd:

Run a development release locally without installing

Copy a production release locally

Use system install, but install it locally:

BSD

The command to compile ejabberd in BSD systems is gmake .

You may want to check pkgsrc.se for ejabberd.

Up to ejabberd 23.04, some old scripts where included in ejabberd source for NetBSD compilation, and you can take a look to

those files for reference in ejabberd 23.04/examples/mtr/ path.

macOS

If compiling from sources on Mac OS X, you must configure ejabberd to use custom OpenSSL, Yaml, iconv. The best approach is

to use Homebrew to install your dependencies, then exports your custom path to let configure and make be aware of them.

./autogen.sh

./configure --with-rebar=rebar3
make
make prod
mkdir $HOME/eja-release
tar -xzvf _build/prod/ejabberd-*.tar.gz -C $HOME/eja-release
$HOME/eja-release/bin/ejabberdctl live

./autogen.sh

./configure --with-rebar=mix
make
make dev
_build/dev/rel/ejabberd/bin/ejabberdctl live

•

•

•

./autogen.sh

./configure --prefix=$HOME/eja-install --enable-user
make
make install
$HOME/eja-install/sbin/ejabberdctl live

Specific notes

- 48/175 - Copyright © 2008 - 2024 ProcessOne

https://asdf-vm.com/
https://pkgsrc.se/chat/ejabberd/
https://github.com/processone/ejabberd/tree/23.04/examples/mtr
https://github.com/processone/ejabberd/tree/23.04/examples/mtr
https://brew.sh/

Check also the guide for Installing ejabberd development environment on OSX

man

ejabberd includes a man page which documents the toplevel and modules options, the same information that is published in the

Top-Level Options and Modules Options sections.

The man file can be read locally with:

rebar with old Erlang

The ejabberd source code package includes rebar and rebar3 binaries that work with Erlang/OTP 24.0 up to 27.

To compile ejabberd using rebar/rebar3 and Erlang 20.0 up to 23.3, you can install it from your operating system, or compile

yourself from the rebar source code, or download the old binary from ejabberd 21.12:

Start

You can use the ejabberdctl command line administration script to start and stop ejabberd. Some examples, depending on your

installation method:

When installed in the system:

When built an OTP production release:

Start interactively without installing or building OTP release:

brew install git erlang elixir openssl expat libyaml libiconv libgd sqlite rebar rebar3 automake autoconf
export LDFLAGS="-L/usr/local/opt/openssl/lib -L/usr/local/lib -L/usr/local/opt/expat/lib"
export CFLAGS="-I/usr/local/opt/openssl/include -I/usr/local/include -I/usr/local/opt/expat/include"
export CPPFLAGS="-I/usr/local/opt/openssl/include/ -I/usr/local/include -I/usr/local/opt/expat/include"
./configure
make

man -l man/ejabberd.yml.5

wget https://github.com/processone/ejabberd/raw/21.12/rebar
wget https://github.com/processone/ejabberd/raw/21.12/rebar3

•

ejabberdctl start
/sbin/ejabberdctl start

•

_build/prod/rel/ejabberd/bin/ejabberdctl start
_build/prod/rel/ejabberd/bin/ejabberdctl live

•

make relive

Start

- 49/175 - Copyright © 2008 - 2024 ProcessOne

Install ejabberd on macOS

Homebrew

Homebrew is a package manager for macOS that aims to port the many Unix & Linux software that is not easily available or

compatible. Homebrew installation is simple and the instruction is available on its website.

Check also the guide for Installing ejabberd development environment on OSX

The ejabberd configuration included in Homebrew's ejabberd has as default domain localhost , and has already granted

administrative privileges to the account admin@localhost .

Once you have Homebrew installed, open Terminal. Run

This should install the latest or at most the one-before-latest version of ejabberd. The installation directory should be reported at

the end of this process, but usually the main executable is stored at /usr/local/sbin/ejabberdctl .

Start ejabberd in interactive mode, which prints useful messages in the Terminal.

Create the account admin@localhost with password set as password :

Now you can go to the web dashboard at http://localhost:5280/admin/ and fill the username field with the full account JID, for

example admin@localhost , then fill the password field with that account's password .

Without configuration there's not much to see here, therefore the next step is to get to know how to configure ejabberd.

1.

brew install ejabberd

2.

/usr/local/sbin/ejabberdctl live

3.

/usr/local/sbin/ejabberdctl register admin localhost password

4.

5.

Install ejabberd on macOS

- 50/175 - Copyright © 2008 - 2024 ProcessOne

https://brew.sh/

Installing ejabberd development environment on OSX

This short guide will show you how to compile ejabberd from source code on Mac OS X, and get users chatting right away.

Before you start

ejabberd is supported on Mac OS X 10.6.8 and later. Before you can compile and run ejabberd, you also need the following to be

installed on your system:

Gnu Make and GCC (the GNU Compiler Collection). To ensure that these are installed, you can install the Command Line Tools

for Xcode, available via Xcode or from the Apple Developer website.

Git

Erlang/OTP 19.1 or higher. We recommend using Erlang 21.2.

Autotools

Homebrew

An easy way to install some of the dependencies is by using a package manager, such as Homebrew – the Homebrew commands

are provided here:

Git: brew install git

Erlang /OTP: brew install erlang

Elixir: brew install elixir

Autoconf: brew install autoconf

Automake: brew install automake

Openssl: brew install openssl

Expat: brew install expat

Libyaml: brew install libyaml

Libiconv: brew install libiconv

Sqlite: brew install sqlite

GD: brew install gd

Rebar: brew install rebar rebar3

You can install everything with a single command:

Installation

To build and install ejabberd from source code, do the following:

Clone the Git repository: git clone git@github.com:processone/ejabberd.git

Go to your ejabberd build directory: cd ejabberd

Run the following commands, assuming you want to install your ejabberd deployment into your home directory:

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

brew install erlang elixir openssl expat libyaml libiconv libgd sqlite rebar rebar3 automake autoconf

1.

2.

3.

chmod +x autogen.sh
./autogen.sh
export LDFLAGS="-L/usr/local/opt/openssl/lib -L/usr/local/lib -L/usr/local/opt/expat/lib"
export CFLAGS="-I/usr/local/opt/openssl/include/ -I/usr/local/include -I/usr/local/opt/expat/include"
export CPPFLAGS="-I/usr/local/opt/openssl/include/ -I/usr/local/include -I/usr/local/opt/expat/include"
./configure --prefix=$HOME/my-ejabberd --enable-sqlite
make && make install

Installing ejabberd development environment on OSX

- 51/175 - Copyright © 2008 - 2024 ProcessOne

https://brew.sh/

Note that the previous command reference the previously installed dependencies from Homebrew.

Running ejabberd

From your ejabberd build directory, go to the installation directory: cd $HOME/my-ejabberd

To start the ejabberd server, run the following command: sbin/ejabberdctl start

To verify that ejabberd is running, enter the following: sbin/ejabberdctl status If the server is running, response should be as

follow:

To connect to the ejabberd console after starting the server: sbin/ejabberdctl debug

Alternatively, you can also run the server in interactive mode: sbin/ejabberdctl live

Registering a user

The default XMPP domain served by ejabberd right after the build is localhost . This is different from the IP address, DNS name

of the server. It means remote users can connect to ejabberd even if it is running on your machine with localhost XMPP domain,

by using your computer IP address or DNS name. This can prove handy in development phase to get more testers.

Adium

Adium is a popular XMPP client on OSX. You can use it

Launch Adium. If the Adium Setup Assistant opens, close it.

In the Adium menu, select Preferences, and then select the Accounts tab.

Click the + button and select XMPP (Jabber).

Enter a Jabber ID (for example, “user1@localhost”) and password, and then click Register New Account.

In the Server field, enter the following:

Users registering on the computer on which ejabberd is running: localhost

Users registering from a different computer: the ejabberd server’s IP address

Click Request New Account.

After registration, the user will connect automatically.

Registered users wishing to add an existing account to Adium should enter the ejabberd server’s IP address in the Connect

Server field on the Options tab.

Command line

You can register a user with the ejabberdctl utility: ejabberdctl register user domain password

For example: ejabberdctl register user1 localhost myp4ssw0rd

Domains

To use your system’s domain name instead of localhost, edit the following ejabberd configuration file: $HOME/my-ejabberd/etc/

ejabberd.yml (point to the place of your real installation).

Note: You may find example ejabberd.cfg files. This is the old obsolete format for configuration file. You can ignore the and focus

on the new and more user friendly Yaml format.

Find the line listing the hosts:

•

•

•

$ sbin/ejabberdctl status
The node ejabberd@localhost is started with status: started
ejabberd 14.12.40 is running in that node

•

•

1.

2.

3.

4.

5.

6.

7.

8.

Running ejabberd

- 52/175 - Copyright © 2008 - 2024 ProcessOne

https://brew.sh/

Replace localhost with your XMPP domain name, for example:

Save the configuration file and restart the ejabberd server. A user’s Jabber ID will then use the domain instead of localhost, for

example: user1@example.org

You can also configure multiple (virtual) domains for one server:

Get chatting

Users that are registered on your server can now add their accounts in a chat application like Adium (specifying either the

server’s IP address or domain name), add each other as contacts, and start chatting.

hosts:
- "localhost"

hosts:
- "example.org"

hosts:
- "example1.org"
- "example2.org"

Get chatting

- 53/175 - Copyright © 2008 - 2024 ProcessOne

Next Steps

Starting ejabberd

Depending on how you installed ejabberd, it may be started automatically by the operating system at system boot time.

You can use the ejabberdctl command line administration script to start and stop ejabberd, check its status and many other

administrative tasks.

If you provided the configure option --enable-user=USER (see compilation options , you can execute ejabberdctl with either that

system account or root.

Usage example:

If ejabberd doesn't start correctly and a crash dump file is generated, there was a severe problem. You can try to start ejabberd

in interactive mode with the command bin/ejabberdctl live to see the error messages provided by Erlang and identify the exact

the problem.

The ejabberdctl administration script is included in the bin directory in the Linux Installers and Docker image.

Please refer to the section ejabberdctl for details about ejabberdctl , and configurable options to fine tune the Erlang runtime

system.

Autostart on Linux

If you compiled ejabberd from source code or some other method that doesn't setup autostarting ejabberd, you can try this

method.

On a *nix system, create a system user called 'ejabberd', give it write access to the directories database/ and logs/ , and set that

as home.

If you want ejabberd to be started as daemon at boot time with that user, copy ejabberd.init from the bin directory to

something like /etc/init.d/ejabberd . Then you can call /etc/inid.d/ejabberd start to start the server.

Or if you have a systemd distribution:

copy ejabberd.service to /etc/systemd/system/

run systemctl daemon-reload

run systemctl enable ejabberd.service

To start the server, you can run systemctl start ejabberd

When ejabberd is started, the processes that are started in the system are beam or beam.smp , and also epmd . For more

information regarding epmd consult the section relating to epmd.

Administration Account

Some ejabberd installation methods ask you details for the first account, and take care to register that account and grant it

administrative rights; in that case you can skip this section.

prompt> ejabberdctl start

prompt> ejabberdctl status
The node ejabberd@localhost is started with status: started
ejabberd is running in that node

prompt> ejabberdctl stop

1.

2.

3.

4.

Next Steps

- 54/175 - Copyright © 2008 - 2024 ProcessOne

After installing ejabberd from source code or other methods, you may want to register the first XMPP account and grant it

administrative rights:

Register an XMPP account on your ejabberd server. For example, if example.org is configured in the hosts section in your ejabberd

configuration file, then you may want to register an account with JID admin1@example.org .

There are two ways to register an XMPP account in ejabberd:

Using an XMPP client and In-Band Registration.

Using ejabberdctl:

Edit the ejabberd configuration file to give administration rights to the XMPP account you registered:

You can grant administrative privileges to many XMPP accounts, and also to accounts in other XMPP servers.

Restart ejabberd to load the new configuration, or run the reload_config command.

Open the Web Admin page in your favourite browser. The exact address depends on your ejabberd configuration, and may be:

http://localhost:5280/admin/ on binary installers

https://localhost:5443/admin/ on binary installers

https://localhost:5280/admin/ on Debian package

Your web browser shows a login window. Introduce the full JID, in this example admin1@example.org , and the account password. If

the web address hostname is the same that the account JID, you can provide simply the username instead of the full JID: admin1 .

See Web Admin for details.

Configuring ejabberd

Now that you got ejabberd installed and running, it's time to configure it to your needs. You can follow on the Configuration

section and take also a look at the Tutorials.

1.

•

•

ejabberdctl register admin1 example.org password

2.

acl:
admin:

user: admin1@example.org

access_rules:
configure:

allow: admin

3.

4.

•

•

•

5.

Configuring ejabberd

- 55/175 - Copyright © 2008 - 2024 ProcessOne

http://localhost:5280/admin/
https://localhost:5443/admin/
https://localhost:5280/admin/

Configure

Configuring ejabberd

Here are the main entry points to learn more about ejabberd configuration. ejabberd is extremely powerful and can be

configured in many ways with many options.

Do not let this complexity scare you. Most of you will be fine with default config file (or light changes).

Tutorials for first-time users:

How to move to ejabberd XMPP server

How to set up ejabberd video & voice calling (STUN/TURN)

How to configure ejabberd to get 100% in XMPP compliance test

Detailed documentation in sections:

File Format

Basic Configuration: hosts, acl, logging...

Authentication: auth_method

Databases

LDAP

Listen Modules: c2s, s2s, http, sip, stun...

Listen Options

Top-Level Options

Modules Options

There's also a copy of the old configuration document which was used up to ejabberd 20.03.

•

•

•

•

•

•

•

•

•

•

•

•

Configure

- 56/175 - Copyright © 2008 - 2024 ProcessOne

https://www.process-one.net/blog/how-to-move-the-office-to-real-time-im-on-ejabberd/
https://www.process-one.net/blog/how-to-set-up-ejabberd-video-voice-calling/
https://www.process-one.net/blog/how-to-configure-ejabberd-to-get-100-in-xmpp-compliance-test/

File format

Yaml File Format

ejabberd loads its configuration file during startup. This configuration file is written in YAML format, and its file name MUST have

“.yml” or “.yaml” extension. This helps ejabberd to differentiate between this new format and the legacy configuration file

format.

Please, consult ejabberd.log for configuration errors. ejabberd will report syntax related errors, as well as complains about

unknown options and invalid values. Make sure you respect indentation (YAML is sensitive to this) or you will get pretty cryptic

errors.

Note that ejabberd never edits the configuration file. If you are changing parameters at runtime from web admin interface, you

will need to apply them to configuration file manually. This is to prevent messing up with your config file comments, syntax, etc.

Reload at Runtime

You can modify the ejabberd configuration file and reload it at runtime: the changes you made are applied immediately, no need

to restart ejabberd. This applies to adding, changing or removing vhosts, listened ports, modules, ACLs or any other options.

How to do this?

Let's assume your ejabberd server is already running

Modify the configuration file

Run the reload_config command

ejabberd will read that file, check its YAML syntax is valid, check the options are valid and known...

If there's any problem in the configuration file, the reload is aborted and an error message is logged with details, so you can fix the

problem.

If the file is right, it detects the changed options, and applies them immediately (add/remove hosts, add/remove modules, ...)

Legacy Configuration File

In previous ejabberd version the configuration file should be written in Erlang terms. The format is still supported, but it is

highly recommended to convert it to the new YAML format with the convert_to_yaml API command using ejabberdctl.

If you want to specify some options using the old Erlang format, you can set them in an additional cfg file, and include it using

the include_config_file option, see Include Additional Files.

Include Additional Files

The option include_config_file in a configuration file instructs ejabberd to include other configuration files immediately.

This is a basic example:

In this example, the included file is not allowed to contain a listen option. If such an option is present, the option will not be

accepted. The file is in a subdirectory from where the main configuration file is.

Please notice that options already defined in the main configuration file cannot be redefined in the included configuration files.

But you can use host_config and append_host_config as usual (see Virtual Hosting).

1.

2.

3.

4.

5.

6.

include_config_file: /etc/ejabberd/additional.yml

include_config_file:
./example.org/additional_not_listen.yml:

disallow: [listen]

File format

- 57/175 - Copyright © 2008 - 2024 ProcessOne

https://en.wikipedia.org/wiki/YAML
https://en.wikipedia.org/wiki/YAML

In this example, ejabberd.yml defines some ACL for the whole ejabberd server, and later includes another file:

The file acl.yml can add additional administrators to one of the virtual hosts:

Macros in Configuration File

In the ejabberd configuration file, it is possible to define a macro for a value and later use this macro when defining an option.

A macro is defined using the define_macro option.

This example shows the basic usage of a macro:

The resulting option interpreted by ejabberd is: loglevel: 5 .

This example shows that values can be any arbitrary YAML value:

The resulting option interpreted by ejabberd is:

This complex example:

produces this result after being interpreted:

acl:
admin:

user:
- admin@localhost

include_config_file:
/etc/ejabberd/acl.yml

append_host_config:
localhost:

acl:
admin:

user:
- bob@localhost
- jan@localhost

define_macro:
LOG_LEVEL_NUMBER: 5

loglevel: LOG_LEVEL_NUMBER

define_macro:
USERBOB:

user:
- bob@localhost

acl:
admin: USERBOB

acl:
admin:

user:
- bob@localhost

define_macro:
NUMBER_PORT_C2S: 5222
NUMBER_PORT_HTTP: 5280

listen:
-

port: NUMBER_PORT_C2S
module: ejabberd_c2s

-
port: NUMBER_PORT_HTTP
module: ejabberd_http

listen:
-

port: 5222
module: ejabberd_c2s

-
port: 5280
module: ejabberd_http

Macros in Configuration File

- 58/175 - Copyright © 2008 - 2024 ProcessOne

Basic Configuration

XMPP Domains

Host Names

ejabberd supports managing several independent XMPP domains on a single ejabberd instance, using a feature called virtual

hosting.

The option hosts defines a list containing one or more domains that ejabberd will serve.

Of course, the hosts list can contain just one domain if you do not want to host multiple XMPP domains on the same instance.

Examples:

Serving one domain:

Serving three domains:

Virtual Hosting

When managing several XMPP domains in a single instance, those domains are truly independent. It means they can even have

different configuration parameters.

Options can be defined separately for every virtual host using the host_config option.

Examples:

Domain example.net is using the internal authentication method while domain example.com is using the LDAP server running

on the domain localhost to perform authentication:

Domain example.net is using SQL to perform authentication while domain example.com is using the LDAP servers running on

the domains localhost and otherhost :

•

hosts: [example.org]

•

hosts:
- example.net
- example.com
- jabber.somesite.org

•

host_config:
example.net:

auth_method: internal
example.com:

auth_method: ldap
ldap_servers:

- localhost
ldap_uids:

- uid
ldap_rootdn: "dc=localdomain"
ldap_password: ""

•

host_config:
example.net:

auth_method: sql
sql_type: odbc
sql_server: "DSN=ejabberd;UID=ejabberd;PWD=ejabberd"

example.com:
auth_method: ldap
ldap_servers:

- localhost
- otherhost

ldap_uids:
- uid

ldap_rootdn: "dc=example,dc=com"
ldap_password: ""

Basic Configuration

- 59/175 - Copyright © 2008 - 2024 ProcessOne

To define specific ejabberd modules in a virtual host, you can define the global modules option with the common modules, and

later add specific modules to certain virtual hosts. To accomplish that, instead of defining each option in host_config use

append_host_config with the same syntax.

In this example three virtual hosts have some similar modules, but there are also other different modules for some specific virtual

hosts:

Logging

ejabberd configuration can help a lot by having the right amount of logging set up.

There are several toplevel options to configure logging:

loglevel : Verbosity of log files generated by ejabberd.

hide_sensitive_log_data : Privacy option to disable logging of IP address or sensitive data.

log_modules_fully : Modules that will log everything independently from the general loglevel option.

log_rotate_size

log_rotate_count : Setting count to N keeps N rotated logs. Setting count to 0 does not disable rotation, it instead rotates the

file and keeps no previous versions around. Setting size to X rotate log when it reaches X bytes.

log_burst_limit_count

log_burst_limit_window_time

The values in default configuration file are:

For example, log warning and higher messages, but all c2s messages, and hide sensitive data:

Default Language

The language option defines the default language of server strings that can be seen by XMPP clients. If a XMPP client does not

support xml:lang , ejabberd uses the language specified in this option.

The option syntax is:

This ejabberd server has three vhosts:
hosts:

- one.example.org
- two.example.org
- three.example.org

Configuration of modules that are common to all vhosts
modules:

mod_roster: {}
mod_configure: {}
mod_disco: {}
mod_private: {}
mod_time: {}
mod_last: {}
mod_version: {}

append_host_config:
Add some modules to vhost one:
one.example.org:

modules:
mod_muc:

host: conference.one.example.org
mod_ping: {}

Add a module just to vhost two:
two.example.org:

modules:
mod_muc:

host: conference.two.example.org

•

•

•

•

•

•

•

log_rotate_size: 10485760
log_rotate_count: 1

loglevel: warning
hide_sensitive_log_data: true
log_modules_fully: [ejabberd_c2s]

Logging

- 60/175 - Copyright © 2008 - 2024 ProcessOne

language: Language : The default value is en . In order to take effect there must be a translation file Language.msg in ejabberd ’s

msgs directory.

For example, to set Russian as default language:

The page Internationalization and Localization provides more details.

CAPTCHA

Some ejabberd modules can be configured to require a CAPTCHA challenge on certain actions, for instance

mod_block_strangers, mod_muc, mod_register, and mod_register_web. If the client does not support CAPTCHA Forms

(XEP-0158), a web link is provided so the user can fill the challenge in a web browser.

Example scripts are provided that generate the image using ImageMagick’s Convert program and Ghostscript fonts. Remember

to install those dependencies: in Debian install the imagemagick and gsfonts packages; in container images check their

documentation for details.

The relevant top-level options are:

captcha_cmd : Path | Module : Full path to a script that generates the image, or name of a module that supports generating

CAPTCHA images (mod_ecaptcha, mod_captcha_rust). The default value disables the feature: undefined

captcha_url : URL | auto : An URL where CAPTCHA requests should be sent, or auto to determine the URL automatically. The

default value is auto .

And finally, configure request_handlers for the ejabberd_http listener with a path handled by ejabberd_captcha , where the

CAPTCHA images will be served.

Example configuration:

ACME

ACME is used to automatically obtain SSL certificates for the domains served by ejabberd, which means that certificate requests

and renewals are performed to some CA server (aka "ACME server") in a fully automated mode.

Setting up ACME

In ejabberd, ACME is configured using the acme top-level option, check there the available options and example configuration.

The automated mode is enabled by default. However, some configuration of ejabberd is still required, because ACME requires

HTTP challenges: an ACME remote server will connect to your ejabberd server on HTTP port 80 during certificate issuance.

For that reason you must have an ejabberd_http listener with TLS disabled handling an "ACME well known" path. For example:

language: ru

•

•

hosts: [example.org]

captcha_cmd: /lib/ejabberd/priv/bin/captcha.sh
captcha_cmd: /opt/ejabberd-23.01/lib/captcha.sh
captcha_cmd: mod_ecaptcha

captcha_url: auto
captcha_url: http://example.org:5280/captcha
captcha_url: https://example.org:443/captcha
captcha_url: http://example.com/captcha

listen:
-

port: 5280
module: ejabberd_http
request_handlers:

/captcha: ejabberd_captcha

listen:
-

module: ejabberd_http

CAPTCHA

- 61/175 - Copyright © 2008 - 2024 ProcessOne

https://xmpp.org/extensions/xep-0158.html
https://xmpp.org/extensions/xep-0158.html
https://imagemagick.org/
https://www.ghostscript.com/
https://github.com/processone/ejabberd-contrib/tree/master/mod_ecaptcha
https://github.com/processone/ejabberd-contrib/tree/master/mod_captcha_rust
https://tools.ietf.org/html/rfc8555

Note that the ACME protocol requires challenges to be sent on port 80. Since this is a privileged port, ejabberd cannot listen on

it directly without root privileges. Thus you need some mechanism to forward port 80 to the port defined by the listener (port

5280 in the example above). There are several ways to do this: using NAT, setcap (Linux only), or HTTP front-ends (e.g. sslh ,

nginx , haproxy and so on). Pick one that fits your installation the best, but DON'T run ejabberd as root.

If you see errors in the logs with ACME server problem reports, it's highly recommended to change ca_url option in the acme

top-level option to the URL pointing to some staging ACME environment, fix the problems until you obtain a certificate, and then

change the URL back and retry using request-certificate ejabberdctl command (see below). This is needed because ACME

servers typically have rate limits, preventing you from requesting certificates too rapidly and you can get stuck for several hours

or even days. By default, ejabberd uses Let's Encrypt authority. Thus, the default value of ca_url option is https://acme-

v02.api.letsencrypt.org/directory and the staging URL will be https://acme-staging-v02.api.letsencrypt.org/directory :

The automated mode can be disabled by setting auto option to false in the acme top-level option:

In this case automated renewals are still enabled, however, in order to request a new certificate, you need to run

request_certificate API command:

If you only want to request certificates for a subset of the domains, run:

You can view the certificates obtained using ACME and list_certificates:

The output is mostly self-explained: every line contains the domain, the corresponding certificate file, and whether this certificate

file is used or not. A certificate might not be used for several reasons: mostly because ejabberd detects a better certificate (i.e.

not expired, or having a longer lifetime). It's recommended to revoke unused certificates if they are not yet expired (see below).

At any point you can revoke a certificate using revoke_certificate: pick the certificate file from the listing above and run:

If the commands return errors, consult the log files for details.

ACME implementation details

In nutshell, certification requests are performed in two phases. Firstly, ejabberd creates an account at the ACME server. That is

an EC private key. Secondly, a certificate is requested. In the case of a revocation, no account is used - only a certificate in

question is needed. All information is stored under acme directory inside spool directory of ejabberd (typically /var/lib/

ejabberd). An example content of the directory is the following:

port: 5280
tls: false
request_handlers:

/.well-known/acme-challenge: ejabberd_acme

acme:
Staging environment
ca_url: https://acme-staging-v02.api.letsencrypt.org/directory
Production environment (the default):
ca_url: https://acme-v02.api.letsencrypt.org/directory

acme:
auto: false

ejabberdctl request-certificate all

ejabberdctl request-certificate domain.tld,pubsub.domain.tld,server.com,conference.server.com,...

$ ejabberdctl list-certificates
domain.tld /path/to/cert/file1 true
server.com /path/to/cert/file2 false

ejabberdctl revoke-certificate /path/to/cert/file

$ tree /var/lib/ejabberd
/var/lib/ejabberd
├── acme
│ ├── account.key
│ └── live
│ ├── 251ce180d964e98a2f18b65504df2ab7c55943e2

ACME

- 62/175 - Copyright © 2008 - 2024 ProcessOne

https://letsencrypt.org

Here, account.key is the EC private key used to identify the ACME account. You can inspect its content using openssl command:

Obtained certificates are stored under acme/live directory. You can inspect any of the certificates using openssl command as

well:

In the case of errors, you can delete the whole acme directory - ejabberd will recreate its content on next certification request.

However, don't delete it too frequently - usually there is a rate limit on the number of accounts and certificates an ACME server

creates. In particular, for Let's Encrypt the limits are described here.

Access Rights

This section describes new ACL syntax introduced in ejabberd 16.06. For old access rule and ACL syntax documentation, please

refer to configuration document archive

ACL

Access control in ejabberd is performed via Access Control Lists (ACLs), using the acl option. The declarations of ACLs in the

configuration file have the following syntax:

│ └── 93816a8429ebbaa75574eb3f59d4a806b67d6917
...

openssl ec -text -noout -in /var/lib/ejabberd/acme/account.key

openssl x509 -text -noout -in /var/lib/ejabberd/acme/live/251ce180d964e98a2f18b65504df2ab7c55943e2

acl:
ACLName:

ACLType: ACLValue

Access Rights

- 63/175 - Copyright © 2008 - 2024 ProcessOne

https://letsencrypt.org
https://letsencrypt.org/docs/rate-limits
https://github.com/processone/docs.ejabberd.im/blob/7391ac375fd8253f74214cbffa2bafb140501981/content/admin/guide/configuration.md

ACLType: ACLValue can be one of the following:

Access Rights

- 64/175 - Copyright © 2008 - 2024 ProcessOne

all : Matches all JIDs. Example:

user: Username : Matches the user with the name Username on any of the local virtual host. Example:

user: {Username: Server} | Jid : Matches the user with the JID Username@Server and any resource. Example:

server: Server : Matches any JID from server Server . Example:

resource: Resource : Matches any JID with a resource Resource . Example:

shared_group: Groupname : Matches any member of a Shared Roster Group with name Groupname in the virtual host. Example:

shared_group: {Groupname: Server} : Matches any member of a Shared Roster Group with name Groupname in the virtual host

Server . Example:

ip: Network : Matches any IP address from the Network . Example:

user_regexp: Regexp : Matches any local user with a name that matches Regexp on local virtual hosts. Example:

user_regexp: {Regexp: Server} | JidRegexp : Matches any user with a name that matches Regexp at server Server . Example:

server_regexp: Regexp : Matches any JID from the server that matches Regexp . Example:

resource_regexp: Regexp : Matches any JID with a resource that matches Regexp . Example:

•

acl:
world: all

•

acl:
admin:

user: yozhik

•

acl:
admin:

- user:
yozhik@example.org

- user: peter@example.org

•

acl:
exampleorg:

server: example.org

•

acl:
mucklres:

resource: muckl

•

acl:
techgroupmembers:

shared_group: techteam

•

acl:
techgroupmembers:

shared_group:
techteam: example.org

•

acl:
loopback:

ip:
- 127.0.0.0/8
- "::1"

•

acl:
tests:

user_regexp: "^test[0-9]*$"

•

acl:
tests:

user_regexp:
- "^test1": example.org
- "^test2@example.org"

•

acl:
icq:

server_regexp: "^icq\\."

•

Access Rights

- 65/175 - Copyright © 2008 - 2024 ProcessOne

node_regexp: {UserRegexp: ServerRegexp} : Matches any user with a name that matches UserRegexp at any server that matches

ServerRegexp . Example:

user_glob: Glob :

user_glob: {Glob: Server} :

server_glob: Glob :

resource_glob: Glob :

node_glob: {UserGlob: ServerGlob} : This is the same as above. However, it uses shell glob patterns instead of regexp. These

patterns can have the following special characters:

* : matches any string including the null string.

? : matches any single character.

[...] : matches any of the enclosed characters. Character ranges are specified by a pair of characters separated by a - . If the

first character after [is a ! , any character not enclosed is matched.

The following ACLName are pre-defined:

all : Matches any JID.

none : Matches no JID.

Access Rules

The access_rules option is used to allow or deny access to different services. The syntax is:

Each definition may contain arbitrary number of - allow or - deny sections, and each section can contain any number of acl

rules (as defined in previous section, it recognizes one additional rule acl: RuleName that matches when acl rule named RuleName

matches). If no rule or definition is defined, the rule all is applied.

Definition's - allow and - deny sections are processed in top to bottom order, and first one for which all listed acl rules matches

is returned as result of access rule. If no rule matches deny is returned.

To simplify configuration two shortcut version are available: - allow: acl and - allow , example below shows equivalent

definitions where short or long version are used:

If you define specific Access rights in a virtual host, remember that the globally defined Access rights have precedence over

those. This means that, in case of conflict, the Access granted or denied in the global server is used and the Access of a virtual

host doesn't have effect.

acl:
icq:

resource_regexp: "^laptop\\."

•

acl:
yozhik:

node_regexp:
"^yozhik$": "^example.(com|org)$"

•

•

•

•

•

•

•

•

•

•

access_rules:
AccessName:

- allow|deny: ACLRule|ACLDefinition

access_rules:
a_short: admin
a_long:

- acl: admin
b_short:

- deny: banned
- allow

b_long:
- deny:

- acl: banned
- allow:

- all

Access Rights

- 66/175 - Copyright © 2008 - 2024 ProcessOne

Example:

The following AccessName are pre-defined:

all : Always returns the value ‘ allow ’.

none : Always returns the value ‘ deny ’.

Shaper Rules

The shaper_rules top-level option declares shapers to use for matching user/hosts. The syntax is:

Semantic is similar to that described in Access Rights section, only difference is that instead using - allow or - deny , name of

shaper or number should be used.

Examples:

Limiting Opened Sessions

The special access max_user_sessions specifies the maximum number of sessions (authenticated connections) per user. If a user

tries to open more sessions by using different resources, the first opened session will be disconnected. The error

session replaced will be sent to the disconnected session. The value for this option can be either a number, or infinity . The

default value is infinity .

The syntax is:

This example limits the number of sessions per user to 5 for all users, and to 10 for admins:

access_rules:
configure:

- allow: admin
something:

- deny: someone
- allow

s2s_banned:
- deny: problematic_hosts
- deny:

- acl: banned_forever
- deny:

- ip: 222.111.222.111/32
- deny:

- ip: 111.222.111.222/32
- allow

xmlrpc_access:
- allow:

- user: peter@example.com
- allow:

- user: ivone@example.com
- allow:

- user: bot@example.com
- ip: 10.0.0.0/24

•

•

shaper_rules:
ShaperRuleName:

- Number|ShaperName: ACLRule|ACLDefinition

shaper_rules:
connections_limit:

- 10:
- user: peter@example.com

- 100: admin
- 5

download_speed:
- fast: admin
- slow: anonymous_users
- normal

log_days: 30

shaper_rules:
max_user_sessions:

- Number: ACLRule|ACLDefinition

shaper_rules:
max_user_sessions:

Access Rights

- 67/175 - Copyright © 2008 - 2024 ProcessOne

Connections to Remote Server

The special access max_s2s_connections specifies how many simultaneous S2S connections can be established to a specific remote

XMPP server. The default value is 1 . There’s also available the access max_s2s_connections_per_node .

The syntax is:

For example, let's allow up to 3 connections with each remote server:

Shapers

The shaper top-level option defines limitations in the connection traffic. The basic syntax is:

where Rate stands for the maximum allowed incoming rate in bytes per second. When a connection exceeds this limit, ejabberd

stops reading from the socket until the average rate is again below the allowed maximum.

This example defines a shaper with name normal that limits traffic speed to 1,000bytes/second, and another shaper with name

fast that limits traffic speed to 50,000bytes/second:

You can use the full syntax to set the BurstSize too:

With BurstSize you can allow client to send more data, but its amount can be clamped reasonably. Each connection is allowed to

send BurstSize of data before processing is delayed, and that amount is replenished by Rate each second, but never more than

what BurstSize allows. This allows the client to send quite a bit of data at once, but still have limited amount of data to send on

constant basis.

In this example, the normal shaper has Rate set to 1000 and the BurstSize takes that same value. The not_normal shaper has the

same Rate that before, and sets a higher BurstSize :

- 10: admin
- 5

shaper_rules:
max_s2s_connections: MaxNumber

shaper_rules:
max_s2s_connections: 3

shaper:
ShaperName: Rate

shaper:
normal: 1000
fast: 50000

shaper:
ShaperName:

rate: Rate
burst_size: BurstSize

shaper:
normal: 1000
not_normal:

rate: 1000
burst_size: 20000

Shapers

- 68/175 - Copyright © 2008 - 2024 ProcessOne

Authentication

Supported Methods

The authentication methods supported by ejabberd are:

internal — See section Internal.

external — See section External Script.

ldap — See section LDAP.

sql — See section Relational Databases.

anonymous — See section Anonymous Login and SASL Anonymous.

pam — See section PAM Authentication.

jwt — See section JWT Authentication.

The top-level option auth_method defines the authentication methods that are used for user authentication. The option syntax is:

When the auth_method option is omitted, ejabberd relies on the default database which is configured in default_db option. If this

option is not set neither, then the default authentication method will be internal .

Account creation is only supported by internal , external and sql auth methods.

General Options

The top-level option auth_password_format allows to store the passwords in SCRAM format, see the SCRAM section.

Other top-level options that are relevant to the authentication configuration: disable_sasl_mechanisms, fqdn.

Authentication caching is enabled by default, and can be disabled in a specific vhost with the option auth_use_cache. The global

authentication cache can be configured for all the authentication methods with the global top-level options: auth_cache_missed,

auth_cache_size, auth_cache_life_time. For example:

Internal

ejabberd uses its internal Mnesia database as the default authentication method. The value internal will enable the internal

authentication method.

To store the passwords in SCRAM format instead of plaintext, see the SCRAM section.

•

•

•

•

•

•

•

auth_method: [Method1, Method2, ...]

auth_cache_size: 1500
auth_cache_life_time: 10 minutes

host_config:
example.org:

auth_method: [internal]
example.net:

auth_method: [ldap]
auth_use_cache: false

Authentication

- 69/175 - Copyright © 2008 - 2024 ProcessOne

Examples:

To use internal authentication on example.org and LDAP authentication on example.net :

To use internal authentication with hashed passwords on all virtual hosts:

External Script

In the external authentication method, ejabberd uses a custom script to perform authentication tasks. The server administrator

can write that external authentication script in any programming language.

Please check some example scripts, and the details on the interface between ejabberd and the script in the Developers >

Internals > External Authentication section.

Options:

extauth_pool_name

extauth_pool_size

extauth_program

Please note that caching interferes with the ability to maintain multiple passwords per account. So if your authentication

mechanism supports application-specific passwords, caching must be disabled in the host that uses this authentication method

with the option auth_use_cache.

This example sets external authentication, specifies the extauth script, disables caching, and starts three instances of the script

for each virtual host defined in ejabberd:

Anonymous Login and SASL Anonymous

The anonymous authentication method enables two modes for anonymous authentication:

Anonymous login : This is a standard login, that use the classical login and password mechanisms, but where password is accepted

or preconfigured for all anonymous users. This login is compliant with SASL authentication, password and digest non-SASL

authentication, so this option will work with almost all XMPP clients

SASL Anonymous : This is a special SASL authentication mechanism that allows to login without providing username or password

(see XEP-0175). The main advantage of SASL Anonymous is that the protocol was designed to give the user a login. This is useful

to avoid in some case, where the server has many users already logged or registered and when it is hard to find a free username.

The main disadvantage is that you need a client that specifically supports the SASL Anonymous protocol.

The anonymous authentication method can be configured with the following options. Remember that you can use the host_config

option to set virtual host specific options (see section Virtual Hosting):

allow_multiple_connections

anonymous_protocol

•

host_config:
example.org:

auth_method: [internal]
example.net:

auth_method: [ldap]

•

auth_method: internal
auth_password_format: scram

•

•

•

auth_method: [external]
extauth_program: /etc/ejabberd/JabberAuth.class.php
extauth_pool_size: 3
auth_use_cache: false

•

•

External Script

- 70/175 - Copyright © 2008 - 2024 ProcessOne

https://xmpp.org/extensions/xep-0175.html
https://xmpp.org/extensions/xep-0175.html

Examples:

To enable anonymous login on all virtual hosts:

Similar as previous example, but limited to public.example.org :

To enable anonymous login and internal authentication on a virtual host:

To enable SASL Anonymous on a virtual host:

To enable SASL Anonymous and anonymous login on a virtual host:

To enable SASL Anonymous, anonymous login, and internal authentication on a virtual host:

There are more configuration examples and XMPP client example stanzas in Anonymous users support .

PAM Authentication

ejabberd supports authentication via Pluggable Authentication Modules (PAM). PAM is currently supported in AIX, FreeBSD, HP-

UX, Linux, Mac OS X, NetBSD and Solaris.

If compiling ejabberd from source code, PAM support is disabled by default, so you have to enable PAM support when configuring

the ejabberd compilation: ./configure --enable-pam

Options:

pam_service

pam_userinfotype

Example:

•

auth_method: [anonymous]
anonymous_protocol: login_anon

•

host_config:
public.example.org:

auth_method: [anonymous]
anonymous_protoco: login_anon

•

host_config:
public.example.org:

auth_method:
- internal
- anonymous

anonymous_protocol: login_anon

•

host_config:
public.example.org:

auth_method: [anonymous]
anonymous_protocol: sasl_anon

•

host_config:
public.example.org:

auth_method: [anonymous]
anonymous_protocol: both

•

host_config:
public.example.org:

auth_method:
- internal
- anonymous

anonymous_protocol: both

•

•

auth_method: [pam]
pam_service: ejabberd

PAM Authentication

- 71/175 - Copyright © 2008 - 2024 ProcessOne

https://ejabberd.im/Anonymous-users-support
https://ejabberd.im/Anonymous-users-support

Though it is quite easy to set up PAM support in ejabberd , there are several problems that you may need to solve:

To perform PAM authentication ejabberd uses external C-program called epam . By default, it is located in /var/lib/ejabberd/

priv/bin/ directory. You have to set it root on execution in the case when your PAM module requires root privileges

(pam_unix.so for example). Also you have to grant access for ejabberd to this file and remove all other permissions from it.

Execute with root privileges:

Make sure you have the latest version of PAM installed on your system. Some old versions of PAM modules cause memory

leaks. If you are not able to use the latest version, you can kill(1) epam process periodically to reduce its memory

consumption: ejabberd will restart this process immediately.

ejabberd binary installers include epam pointing to module paths that may not work in your system. If authentication doesn't

work correctly, check if syslog (example: journalctl -t epam -f) reports errors like PAM unable to dlopen(/home/runner/... No

such file or directory . In that case, create a PAM configuration file (example: /etc/pam.d/ejabberd) and provide the real path

to that file in your machine:

epam program tries to turn off delays on authentication failures. However, some PAM modules ignore this behavior and rely on

their own configuration options. You can create a configuration file (in Debian it would be /etc/pam.d/ejabberd). This example

shows how to turn off delays in pam_unix.so module:

That is not a ready to use configuration file: you must use it as a hint when building your own PAM configuration instead. Note

that if you want to disable delays on authentication failures in the PAM configuration file, you have to restrict access to this

file, so a malicious user can’t use your configuration to perform brute-force attacks.

You may want to allow login access only for certain users. pam_listfile.so module provides such functionality.

If you use pam_winbind to authorize against a Windows Active Directory, then /etc/nsswitch.conf must be configured to use

winbind as well.

JWT Authentication

ejabberd supports authentication using JSON Web Token (JWT). When enabled, clients send signed tokens instead of passwords,

which are checked using a private key specified in the jwt_key option. JWT payload must look like this:

Options:

jwt_key

jwt_auth_only_rule

jwt_jid_field

Example:

In this example, admins can use both JWT and plain passwords, while the rest of users can use only JWT.

•

chown root:ejabberd /var/lib/ejabberd/priv/bin/epam
chmod 4750 /var/lib/ejabberd/priv/bin/epam

•

•

#%PAM-1.0
auth sufficient /usr/lib/x86_64-linux-gnu/security/pam_unix.so audit
account sufficient /usr/lib/x86_64-linux-gnu/security/pam_unix.so audit

•

#%PAM-1.0
auth sufficient pam_unix.so likeauth nullok nodelay
account sufficient pam_unix.so

•

•

{
"jid": "test@example.org",
"exp": 1564436511

}

•

•

•

auth_method: jwt
jwt_key: /path/to/jwt/key

the order is important here, don't use [sql, jwt]
auth_method: [jwt, sql]

JWT Authentication

- 72/175 - Copyright © 2008 - 2024 ProcessOne

Please notice that, when using JWT authentication, mod_offline will not work. With JWT authentication the accounts do not exist

in the database, and there is no way to know if a given account exists or not.

For more information about JWT authentication, you can check a brief tutorial in the ejabberd 19.08 release notes.

SCRAM

The top-level option auth_password_format defines in what format the users passwords are stored: SCRAM format or plaintext

format.

The top-level option auth_scram_hash defines the hash algorithm that will be used to scram the password.

ejabberd supports channel binding to the external channel, allowing the clients to use -PLUS authentication mechanisms.

In summary, depending on the configured options, ejabberd supports:

SCRAM_SHA-1(-PLUS)

SCRAM_SHA-256(-PLUS)

SCRAM_SHA-512(-PLUS)

For details about the client-server communication when using SCRAM, refer to SASL Authentication and SCRAM.

Internal storage

When ejabberd starts with internal auth method and SCRAM password format configured:

and detects that there are plaintext passwords stored, they are automatically converted to SCRAM format:

SQL Database

Please note that if you use SQL auth method and SCRAM password format, the plaintext passwords already stored in the

database are not automatically converted to SCRAM format.

To convert plaintext passwords to SCRAM format in your database, use the convert_to_scram command:

Foreign authentication

Note on SCRAM using and foreign authentication limitations: when using the SCRAM password format, it is not possible to use

foreign authentication method in ejabberd, as the real password is not known.

Foreign authentication are use to authenticate through various bridges ejabberd provide. Foreign authentication includes at the

moment SIP and TURN auth support and they will not be working with SCRAM.

access_rules:
jwt_only:

deny: admin
allow: all

jwt_auth_only_rule: jwt_only

•

•

•

auth_method: internal
auth_password_format: scram

[info] Passwords in Mnesia table 'passwd' will be SCRAM'ed
[info] Transforming table 'passwd', this may take a while

ejabberdctl convert_to_scram example.org

SCRAM

- 73/175 - Copyright © 2008 - 2024 ProcessOne

https://www.process-one.net/blog/ejabberd-19-08/
https://wiki.xmpp.org/web/SASL_Authentication_and_SCRAM

Database Configuration

ejabberd uses its internal Mnesia database by default. However, it is possible to use a relational database, key-value storage or

an LDAP server to store persistent, long-living data.

ejabberd is very flexible: you can configure different authentication methods for different virtual hosts, you can configure

different authentication mechanisms for the same virtual host (fallback), you can set different storage systems for modules, and

so forth.

Supported storages

The following databases are supported by ejabberd :

Mnesia . Used by default, nothing to setup to start using it

MySQL . Check the tutorial Using ejabberd with MySQL

PostgreSQL

MS SQL Server/SQL Azure . Check the Microsoft SQL Server section

SQLite

Any ODBC compatible database

Redis (only for transient data). Check the Redis section

LDAP is documented in the LDAP section

Virtual Hosting

If you define several host names in the ejabberd.yml configuration file, probably you want that each virtual host uses a different

configuration of database, authentication and storage, so that usernames do not conflict and mix between different virtual hosts.

For that purpose, the options described in the next sections must be set inside the host_config top-level option for each virtual

host).

For example:

Default database

You can simplify your configuration by setting the default database with the default_db top-level option:

it sets the default authentication method when the auth_method top-level option is not configured

it defines the database to use in ejabberd modules that support the db_type option, when that option is not configured.

Database Schema

updated in 24.06

•

•

•

•

•

•

•

•

host_config:
public.example.org:

sql_type: pgsql
sql_server: localhost
sql_database: database-public-example-org
sql_username: ejabberd
sql_password: password
auth_method: [sql]

•

•

Database Configuration

- 74/175 - Copyright © 2008 - 2024 ProcessOne

https://erlang.org/doc/apps/mnesia/
https://erlang.org/doc/apps/mnesia/
https://www.mysql.com/
https://www.mysql.com/
https://www.postgresql.org/
https://www.postgresql.org/
https://www.microsoft.com/sql-server
https://www.microsoft.com/sql-server
https://sqlite.org/
https://sqlite.org/
https://en.wikipedia.org/wiki/Open_Database_Connectivity
https://en.wikipedia.org/wiki/Open_Database_Connectivity
https://redis.io/
https://redis.io/

The update_sql_schema top-level option allows ejabberd to create and update the tables automatically in the SQL database when

using MySQL, PostgreSQL or SQLite. That option was added in ejabberd 23.10, and enabled by default in 24.06. If you can use

that feature:

Create the database in your SQL server

Create an account in the SQL server and grant it rights in the database

Configure in ejabberd the SQL Options that allow it to connect

Start ejabberd ...

and it will take care to create the tables (or update them if they exist from a previous ejabberd version)

If that option is disabled, or you are using a different SQL database, or an older ejabberd release, then you must create the tables

in the database manually before starting ejabberd. The SQL database schema files are available:

If installing ejabberd from sources, sql files are in the installation directory. By default: /usr/local/lib/ejabberd/priv/sql

If installing ejabberd from Process-One installer, sql files are in the ejabberd's installation path under <base>/lib/ejabberd*/

priv/sql

See ejabberd SQL Database Schema for details on database schemas.

Default and New Schemas

If using MySQL, PostgreSQL, Microsoft SQL or SQLite, you can choose between two database schemas:

the default schema is preferable when serving one massive domain,

the new schema is preferable when serving many small domains.

The default schema stores only one XMPP domain in the database. The XMPP domain is not stored as this is the same for all the

accounts, and this saves space in massive deployments. However, to handle several domains, you have to setup one database per

domain and configure each one independently using host_config, so in that case you may prefer the new schema.

The new schema stores the XMPP domain in a new column server_host in the database entries, so it allows to handle several

XMPP domains in a single ejabberd database. Using this schema is preferable when serving several XMPP domains and changing

domains from time to time. However, if you have only one massive domain, you may prefer to use the default schema.

To use the new schema, edit the ejabberd configuration file and enable new_sql_schema top-level option:

When creating the tables, if ejabberd can use the update_sql_schema top-level option as explained in the Database Schema

section, it will take care to create the tables with the correct schema.

On the other hand, if you are creating the tables manually, remember to use the proper SQL schema! For example, if you are

using MySQL and choose the default schema, use mysql.sql . If you are using PostgreSQL and need the new schema, use

pg.new.sql .

If you already have a MySQL or PostgreSQL database with the default schema and contents, you can upgrade it to the new

schema:

MySQL: Edit the file sql/mysql.old-to.new.sql which is included with ejabberd, fill DEFAULT_HOST in the first line, and import

that SQL file in your database. Then enable the new_sql_schema option in the ejabberd configuration, and restart ejabberd.

PostgreSQL: First enable new_sql_schema and mod_admin_update_sql in your ejabberd configuration:

then restart ejabberd, and finally execute the update_sql command:

1.

2.

3.

4.

5.

•

•

•

•

new_sql_schema: true

•

•

new_sql_schema: true
modules:

mod_admin_update_sql: {}

ejabberdctl update_sql

Default and New Schemas

- 75/175 - Copyright © 2008 - 2024 ProcessOne

SQL Options

The actual database access is defined in the options with sql_ prefix. The values are used to define if we want to use ODBC, or

one of the two native interface available, PostgreSQL or MySQL.

To configure SQL there are several top-level options:

sql_type

sql_server

sql_port

sql_database

sql_username

sql_password

sql_ssl, see section SQL with SSL connection

sql_ssl_verify

sql_ssl_cafile

sql_ssl_certfile

sql_pool_size

sql_keepalive_interval

sql_odbc_driver

sql_start_interval

sql_prepared_statements

update_sql_schema, see section Database Schema

new_sql_schema, see section Default and New Schemas

Example of plain ODBC connection:

Example of MySQL connection:

SQL with SSL Connection

The sql_ssl top-level option allows SSL encrypted connections to MySQL, PostgreSQL, and Microsoft SQL servers.

Please notice that ejabberd verifies the certificate presented by the SQL server against the CA certificate list. For that reason, if

your SQL server uses a self-signed certificate, you need to setup sql_ssl_verify and sql_ssl_cafile, for example:

This tells ejabberd to ignore problems from not matching any CA certificate from default list, and instead try to verify using the

specified CA certificate.

SQL Authentication

You can authenticate users against an SQL database, see the option auth_method in the Authentication section.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

sql_server: "DSN=database;UID=ejabberd;PWD=password"

sql_type: mysql
sql_server: server.company.com
sql_port: 3306 # the default
sql_database: mydb
sql_username: user1
sql_password: "**********"
sql_pool_size: 5

sql_ssl: true
sql_ssl_verify: false
sql_ssl_cafile: "/path/to/sql_server_cacert.pem"

SQL Options

- 76/175 - Copyright © 2008 - 2024 ProcessOne

To store the passwords in SCRAM format instead of plaintext, see the SCRAM section.

SQL Storage

Several ejabberd modules have options called db_type , and can store their tables in an SQL database instead of internal.

In this sense, if you defined your database access using the SQL Options, you can configure a module to use your database by

adding the option db_type: sql to that module.

Alternatively, if you want all modules to use your SQL database when possible, you may prefer to set SQL as your default

database.

Microsoft SQL Server

For now, MS SQL is only supported in Unix-like OS'es. You need to have unixODBC installed on your machine, and your Erlang/

OTP must be compiled with ODBC support. Also, in some cases you need to add machine name to sql_username , especially when

you have sql_server defined as an IP address, e.g.:

By default, ejabberd will use the FreeTDS driver. You need to have the driver file libtdsodbc.so installed in your library PATH on

your system.

If the FreeTDS driver is not installed in a standard location, or if you want to use another ODBC driver, you can specify the path

to the driver using the sql_odbc_driver option, available in ejabberd 20.12 or later. For example, if you want to use Microsoft

ODBC Driver 17 for SQL Server:

Note that if you use a Microsoft driver, you may have to use an IP address instead of a host name for the sql_server option.

If hostname (or IP address) is specified in sql_server option, ejabberd will connect using a an ODBC DSN connection string

constructed with:

SERVER=sql_server

DATABASE=sql_database

UID=sql_username

PWD=sql_password

PORT=sql_port

ENCRYPTION=required (only if sql_ssl is true)

CLIENT_CHARSET=UTF-8

Since ejabberd 23.04, t is possible to use different connection options by putting a full ODBC connection string in sql_server

(e.g. DSN=database;UID=ejabberd;PWD=password). The DSN must be configured in existing system or user odbc.ini file, where it can

be configured as desired, using a driver from system odbcinst.ini. The sql_odbc_driver option will have no effect in this case.

If specifying an ODBC connection string, an ODBC connection string must also be specified for any other hosts using MS SQL

DB, otherwise the auto-generated ODBC configuration will interfere.

Redis

Redis is an advanced key-value cache and store. You can use it to store transient data, such as records for C2S (client) sessions.

sql_type: mssql
sql_server: 1.2.3.4
sql_username: user1@host

sql_odbc_driver: "/opt/microsoft/msodbcsql17/lib64/libmsodbcsql-17.3.so.1.1"

•

•

•

•

•

•

•

SQL Storage

- 77/175 - Copyright © 2008 - 2024 ProcessOne

http://www.unixodbc.org/
http://www.unixodbc.org/
https://www.freetds.org/
https://www.freetds.org/
https://redis.io/
https://redis.io/

The available top-level options are:

redis_server

redis_port

redis_password

redis_db

redis_connect_timeout

Example configuration:

•

•

•

•

•

redis_server: redis.server.com
redis_db: 1

Redis

- 78/175 - Copyright © 2008 - 2024 ProcessOne

LDAP Configuration

Supported storages

The following LDAP servers are tested with ejabberd :

Active Directory (see section Active Directory)

OpenLDAP

CommuniGate Pro

Normally any LDAP compatible server should work; inform us about your success with a not-listed server so that we can list it

here.

LDAP

ejabberd has built-in LDAP support. You can authenticate users against LDAP server and use LDAP directory as vCard storage.

Usually ejabberd treats LDAP as a read-only storage: it is possible to consult data, but not possible to create accounts or edit

vCard that is stored in LDAP. However, it is possible to change passwords if mod_register module is enabled and LDAP server

supports RFC 3062 .

LDAP Connection

Two connections are established to the LDAP server per vhost, one for authentication and other for regular calls.

To configure the LDAP connection there are these top-level options:

ldap_servers

ldap_backups

ldap_encrypt

ldap_tls_verify

ldap_tls_certfile

ldap_tls_cacertfile

ldap_tls_depth

ldap_port

ldap_rootdn

ldap_password

ldap_deref_aliases

Example:

When there are several LDAP servers available as backup, set one in ldap_servers and the others in ldap_backups . At server

start, ejabberd connects to all the servers listed in ldap_servers . If a connection is lost, ejabberd connects to the next server in

ldap_backups . If the connection is lost, the next server in the list is connected, and this repeats infinitely with all the servers in

ldap_servers and ldap_backups until one is successfully connected:

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

auth_method: [ldap]
ldap_servers:

- ldap1.example.org
ldap_port: 389
ldap_rootdn: "cn=Manager,dc=domain,dc=org"
ldap_password: "**********"

ldap_servers:
- ldap1.example.org

LDAP Configuration

- 79/175 - Copyright © 2008 - 2024 ProcessOne

https://openldap.org/
https://openldap.org/
https://communigate.com/
https://communigate.com/
https://tools.ietf.org/html/rfc3062
https://tools.ietf.org/html/rfc3062

LDAP Authentication

You can authenticate users against an LDAP directory. Note that current LDAP implementation does not support SASL

authentication.

To configure LDAP authentication there are these top-level options:

ldap_base

ldap_uids

ldap_filter

ldap_dn_filter

LDAP Examples

Common example

Let’s say ldap.example.org is the name of our LDAP server. We have users with their passwords in ou=Users,dc=example,dc=org

directory. Also we have addressbook, which contains users emails and their additional infos in ou=AddressBook,dc=example,dc=org

directory. The connection to the LDAP server is encrypted using TLS, and using the custom port 6123. Corresponding

authentication section should looks like this:

Now we want to use users LDAP-info as their vCards. We have four attributes defined in our LDAP schema: mail — email

address, givenName — first name, sn — second name, birthDay — birthday. Also we want users to search each other. Let’s see

how we can set it up:

ldap_backups:
- ldap2.example.org
- ldap3.example.org

•

•

•

•

Authentication method
auth_method: [ldap]
DNS name of our LDAP server
ldap_servers: [ldap.example.org]
Bind to LDAP server as "cn=Manager,dc=example,dc=org" with password "secret"
ldap_rootdn: "cn=Manager,dc=example,dc=org"
ldap_password: secret
ldap_encrypt: tls
ldap_port: 6123
Define the user's base
ldap_base: "ou=Users,dc=example,dc=org"
We want to authorize users from 'shadowAccount' object class only
ldap_filter: "(objectClass=shadowAccount)"

modules:
mod_vcard:

db_type: ldap
We use the same server and port, but want to bind anonymously because
our LDAP server accepts anonymous requests to
"ou=AddressBook,dc=example,dc=org" subtree.
ldap_rootdn: ""
ldap_password: ""
define the addressbook's base
ldap_base: "ou=AddressBook,dc=example,dc=org"
uidattr: user's part of JID is located in the "mail" attribute
uidattr_format: common format for our emails
ldap_uids:

mail: "%u@mail.example.org"
We have to define empty filter here, because entries in addressbook does not
belong to shadowAccount object class
ldap_filter: ""
Now we want to define vCard pattern
ldap_vcard_map:
NICKNAME: {"%u": []} # just use user's part of JID as their nickname
GIVEN: {"%s": [givenName]}
FAMILY: {"%s": [sn]}
FN: {"%s, %s": [sn, givenName]} # example: "Smith, John"
EMAIL: {"%s": [mail]}
BDAY: {"%s": [birthDay]}

Search form
ldap_search_fields:

User: "%u"
Name: givenName
"Family Name": sn
Email: mail
Birthday: birthDay

LDAP Authentication

- 80/175 - Copyright © 2008 - 2024 ProcessOne

Note that mod_vcard with LDAP backend checks for the existence of the user before searching their information in LDAP.

Active Directory

Active Directory is just an LDAP-server with predefined attributes. A sample configuration is shown below:

Shared Roster in LDAP

Since mod_shared_roster_ldap has a few complex options, some of them are documented with more detail here:

Filters

ldap_ufilter : “User Filter” – used for retrieving the human-readable name of roster entries (usually full names of people in the

roster). See also the parameters ldap_userdesc and ldap_useruid . If unspecified, defaults to the top-level parameter of the same

name. If that one also is unspecified, then the filter is assembled from values of other parameters as follows ([ldap_SOMETHING] is

used to mean “the value of the configuration parameter ldap_SOMETHING ”):

Subsequently %u and %g are replaced with a *. This means that given the defaults, the filter sent to the LDAP server would be

(&(memberUid=*)(cn=*)) . If however the ldap_memberattr_format is something like uid=%u,ou=People,o=org , then the filter will be

(&(memberUid=uid=*,ou=People,o=org)(cn=*)) .

ldap_filter : Additional filter which is AND-ed together with User Filter and Group Filter. If unspecified, defaults to the top-level

parameter of the same name. If that one is also unspecified, then no additional filter is merged with the other filters.

vCard fields to be reported
Note that JID is always returned with search results
ldap_search_reported:

"Full Name": FN
Nickname: NICKNAME
Birthday: BDAY

auth_method: [ldap]
ldap_servers: [office.org] # List of LDAP servers
ldap_base: "DC=office,DC=org" # Search base of LDAP directory
ldap_rootdn: "CN=Administrator,CN=Users,DC=office,DC=org" # LDAP manager
ldap_password: "*******" # Password to LDAP manager
ldap_uids: [sAMAccountName]
ldap_filter: "(memberOf=*)"

modules:
mod_vcard:

db_type: ldap
ldap_vcard_map:

NICKNAME: {"%u": []}
GIVEN: {"%s": [givenName]}
MIDDLE: {"%s": [initials]}
FAMILY: {"%s": [sn]}
FN: {"%s": [displayName]}
EMAIL: {"%s": [mail]}
ORGNAME: {"%s": [company]}
ORGUNIT: {"%s": [department]}
CTRY: {"%s": [c]}
LOCALITY: {"%s": [l]}
STREET: {"%s": [streetAddress]}
REGION: {"%s": [st]}
PCODE: {"%s": [postalCode]}
TITLE: {"%s": [title]}
URL: {"%s": [wWWHomePage]}
DESC: {"%s": [description]}
TEL: {"%s": [telephoneNumber]}

ldap_search_fields:
User: "%u"
Name: givenName
"Family Name": sn
Email: mail
Company: company
Department: department
Role: title
Description: description
Phone: telephoneNumber

ldap_search_reported:
"Full Name": FN
Nickname: NICKNAME
Email: EMAIL

(&(&([ldap_memberattr]=[ldap_memberattr_format])([ldap_groupattr]=%g))[ldap_filter])

Shared Roster in LDAP

- 81/175 - Copyright © 2008 - 2024 ProcessOne

Note that you will probably need to manually define the User and Group Filter (since the auto-assembled ones will not work) if:

your ldap_memberattr_format is anything other than a simple %u ,

and the attribute specified with ldap_memberattr does not support substring matches.

An example where it is the case is OpenLDAP and (unique)MemberName attribute from the groupOf(Unique)Names objectClass.

A symptom of this problem is that you will see messages such as the following in your slapd.log :

Control parameters

These parameters control the behaviour of the module.

ldap_memberattr_format_re : A regex for extracting user ID from the value of the attribute named by ldap_memberattr .

An example value “CN=(\\w*),(OU=.*,)*DC=company,DC=com” works for user IDs such as the following:

CN=Romeo,OU=Montague,DC=company,DC=com

CN=Abram,OU=Servants,OU=Montague,DC=company,DC=com

CN=Juliet,OU=Capulet,DC=company,DC=com

CN=Peter,OU=Servants,OU=Capulet,DC=company,DC=com

In case:

the option is unset,

or the re module in unavailable in the current Erlang environment,

or the regular expression does not compile,

then instead of a regular expression, a simple format specified by ldap_memberattr_format is used. Also, in the last two cases an

error message is logged during the module initialization.

Also, note that in all cases ldap_memberattr_format (and *not* the regex version) is used for constructing the default “User/Group

Filter” — see section Filters.

•

•

get_filter: unknown filter type=130
filter="(&(?=undefined)(?=undefined)(something=else))"

•

•

•

•

•

•

•

Shared Roster in LDAP

- 82/175 - Copyright © 2008 - 2024 ProcessOne

Retrieving the roster

When the module is called to retrieve the shared roster for a user, the following algorithm is used:

[step:rfilter] A list of names of groups to display is created: the Roster Filter is run against the base DN, retrieving the values of the

attribute named by ldap_groupattr .

Unless the group cache is fresh (see the ldap_group_cache_validity option), it is refreshed:

Information for all groups is retrieved using a single query: the Group Filter is run against the Base DN, retrieving the values of

attributes named by ldap_groupattr (group ID), ldap_groupdesc (group “Display Name”) and ldap_memberattr (IDs of group

members).

group “Display Name”, read from the attribute named by ldap_groupdesc , is stored in the cache for the given group

the following processing takes place for each retrieved value of attribute named by ldap_memberattr :

the user ID part of it is extracted using ldap_memberattr_format(_re) ,

then (unless ldap_auth_check is set to off) for each found user ID, the module checks (using the ejabberd authentication

subsystem) whether such user exists in the given virtual host. It is skipped if the check is enabled and fails. This step is here for

historical reasons. If you have a tidy DIT and properly defined “Roster Filter” and “Group Filter”, it is safe to disable it by setting

ldap_auth_check to off — it will speed up the roster retrieval.

the user ID is stored in the list of members in the cache for the given group.

For each item (group name) in the list of groups retrieved in step [step:rfilter]:

the display name of a shared roster group is retrieved from the group cache

for each IDs of users which belong to the group, retrieved from the group cache:

the ID is skipped if it’s the same as the one for which we are retrieving the roster. This is so that the user does not have himself in

the roster.

the display name of a shared roster user is retrieved:

first, unless the user name cache is fresh (see the ldap_user_cache_validity option), it is refreshed by running the User Filter,

against the Base DN, retrieving the values of attributes named by ldap_useruid and ldap_userdesc .

then, the display name for the given user ID is retrieved from the user name cache.

Multi-Domain

By default, the module option ldap_userjidattr is set to the empty string, in that case the JID of the user's contact is formed by

compounding UID of the contact @ Host of the user owning the roster.

When the option ldap_userjidattr is set to something like "mail" , then it uses that field to determine the JID of the contact. This

is useful if the ldap mail attribute contains the JID of the accounts.

Basically, it allows us to define a groupOfNames (e.g. xmppRosterGroup) and list any users, anywhere in the ldap directory by

specifying the attribute defining the JID of the members.

This allows hosts/domains other than that of the roster owner. It is also more flexible, since the LDAP manager can specify the

JID of the users without any assumptions being made. The only down side is that there must be an LDAP attribute (field) filled in

for all Jabber/XMPP users.

Below is a sample, a relevant LDAP entry, and ejabberd's module configuration:

1.

2.

a.

b.

c.

i.

ii.

iii.

3.

a.

b.

i.

ii.

A.

B.

cn=Example Org Roster,ou=groups,o=Example Organisation,dc=acme,dc=com
objectClass: groupOfNames
objectClass: xmppRosterGroup
objectClass: top
xmppRosterStatus: active
member:
description: Roster group for Example Org
cn: Example Org Roster
uniqueMember: uid=john,ou=people,o=Example Organisation,dc=acme,dc=com

Shared Roster in LDAP

- 83/175 - Copyright © 2008 - 2024 ProcessOne

Below is the sample ejabberd.yml module configuration to match:

Configuration examples

Since there are many possible DIT layouts, it will probably be easiest to understand how to configure the module by looking at

an example for a given DIT (or one resembling it).

FLAT DIT

This seems to be the kind of DIT for which this module was initially designed. Basically there are just user objects, and group

membership is stored in an attribute individually for each user. For example in a layout like this, it's stored in the ou attribute:

uniqueMember: uid=pierre,ou=people,o=Example Organisation,dc=acme,dc=com
uniqueMember: uid=jane,ou=people,o=Example Organisation,dc=acme,dc=com

uid=john,ou=people,o=Example Organisation,dc=acme,dc=com
objectClass: top
objectClass: person
objectClass: organizationalPerson
objectClass: inetOrgPerson
objectClass: mailUser
objectClass: sipRoutingObject
uid: john
givenName: John
sn: Doe
cn: John Doe
displayName: John Doe
accountStatus: active
userPassword: secretpass
IMAPURL: imap://imap.example.net:143
mailHost: smtp.example.net
mail: john@example.net
sipLocalAddress: john@example.net

mod_shared_roster_ldap:
ldap_servers:

- "ldap.acme.com"
ldap_encrypt: tls
ldap_port: 636
ldap_rootdn: "cn=Manager,dc=acme,dc=com"
ldap_password: "supersecretpass"
ldap_base: "dc=acme,dc=com"
ldap_filter: "(objectClass=*)"
ldap_rfilter: "(&(objectClass=xmppRosterGroup)(xmppRosterStatus=active))"
ldap_gfilter: "(&(objectClass=xmppRosterGroup)(xmppRosterStatus=active)(cn=%g))"
ldap_groupattr: "cn"
ldap_groupdesc: "cn"
ldap_memberattr: "uniqueMember"
ldap_memberattr_format_re: "uid=([a-z.]*),(ou=.*,)*(o=.*,)*dc=acme,dc=com"
ldap_useruid: "uid"
ldap_userdesc: "cn"
ldap_userjidattr: "mail"
ldap_auth_check: false
ldap_user_cache_validity: 86400
ldap_group_cache_validity: 86400

Shared Roster in LDAP

- 84/175 - Copyright © 2008 - 2024 ProcessOne

https://en.wikipedia.org/wiki/Directory_Information_Tree
https://en.wikipedia.org/wiki/Directory_Information_Tree

Such layout has a few downsides, including:

information duplication – the group name is repeated in every member object

difficult group management – information about group members is not centralized, but distributed between member objects

inefficiency – the list of unique group names has to be computed by iterating over all users

This however seems to be a common DIT layout, so the module keeps supporting it. You can use the following configuration…

…to be provided with a roster upon connecting as user czesio , as shown in this figure:

•

•

•

modules:
mod_shared_roster_ldap:

ldap_base: "ou=flat,dc=nodomain"
ldap_rfilter: "(objectClass=inetOrgPerson)"
ldap_groupattr: ou
ldap_memberattr: cn
ldap_filter: "(objectClass=inetOrgPerson)"
ldap_userdesc: displayName

Shared Roster in LDAP

- 85/175 - Copyright © 2008 - 2024 ProcessOne

DEEP DIT

This type of DIT contains distinctly typed objects for users and groups – see the next figure. They are shown separated into

different subtrees, but it’s not a requirement.

Shared Roster in LDAP

- 86/175 - Copyright © 2008 - 2024 ProcessOne

If you use the following example module configuration with it:

…and connect as user czesio , then ejabberd will provide you with the roster shown in this figure:

vCard in LDAP

Since LDAP may be complex to configure in mod_vcard, this section provides more details.

ejabberd can map LDAP attributes to vCard fields. This feature is enabled when the mod_vcard module is configured with

db_type:

ldap . Notice that it does not depend on the authentication method (see LDAP Authentication).

Usually ejabberd treats LDAP as a read-only storage: it is possible to consult data, but not possible to create accounts or edit

vCard that is stored in LDAP. However, it is possible to change passwords if mod_register module is enabled and LDAP server

supports RFC 3062 .

This feature has its own optional parameters. The first group of parameters has the same meaning as the top-level LDAP

parameters to set the authentication method: ldap_servers , ldap_port , ldap_rootdn , ldap_password , ldap_base , ldap_uids ,

ldap_deref_aliases and ldap_filter . See section LDAP Authentication for detailed information about these options. If one of

these options is not set, ejabberd will look for the top-level option with the same name.

modules:
mod_shared_roster_ldap:

ldap_base: "ou=deep,dc=nodomain"
ldap_rfilter: "(objectClass=groupOfUniqueNames)"
ldap_filter: ""
ldap_gfilter: "(&(objectClass=groupOfUniqueNames)(cn=%g))"
ldap_groupdesc: description
ldap_memberattr: uniqueMember
ldap_memberattr_format: "cn=%u,ou=people,ou=deep,dc=nodomain"
ldap_ufilter: "(&(objectClass=inetOrgPerson)(cn=%u))"
ldap_userdesc: displayName

vCard in LDAP

- 87/175 - Copyright © 2008 - 2024 ProcessOne

https://tools.ietf.org/html/rfc3062
https://tools.ietf.org/html/rfc3062

Examples:

Let’s say ldap.example.org is the name of our LDAP server. We have users with their passwords in ou=Users,dc=example,dc=org

directory. Also we have addressbook, which contains users emails and their additional infos in

ou=AddressBook,dc=example,dc=org directory. Corresponding authentication section should looks like this:

Now we want to use users LDAP-info as their vCards. We have four attributes defined in our LDAP schema: mail — email

address, givenName — first name, sn — second name, birthDay — birthday. Also we want users to search each other. Let’s see

how we can set it up:

Note that mod_vcard with LDAP backend checks an existence of the user before searching their info in LDAP.

ldap_vcard_map example:

ldap_search_fields example:

ldap_search_reported example:

•

authentication method
auth_method: ldap
DNS name of our LDAP server
ldap_servers:

- ldap.example.org
We want to authorize users from 'shadowAccount' object class only
ldap_filter: "(objectClass=shadowAccount)"

•

modules:
mod_vcard:

db_type: ldap
We use the same server and port, but want to bind anonymously because
our LDAP server accepts anonymous requests to
"ou=AddressBook,dc=example,dc=org" subtree.
ldap_rootdn: ""
ldap_password: ""
define the addressbook's base
ldap_base: "ou=AddressBook,dc=example,dc=org"
uidattr: user's part of JID is located in the "mail" attribute
uidattr_format: common format for our emails
ldap_uids: {"mail": "%u@mail.example.org"}
Now we want to define vCard pattern
ldap_vcard_map:

NICKNAME: {"%u": []} # just use user's part of JID as their nickname
FIRST: {"%s": [givenName]}
LAST: {"%s": [sn]}
FN: {"%s, %s": [sn, givenName]} # example: "Smith, John"
EMAIL: {"%s": [mail]}
BDAY: {"%s": [birthDay]}

Search form
ldap_search_fields:

User: "%u"
Name: givenName
"Family Name": sn
Email: mail
Birthday: birthDay

vCard fields to be reported
Note that JID is always returned with search results
ldap_search_reported:

"Full Name": FN
Nickname: NICKNAME
Birthday: BDAY

•

ldap_vcard_map:
NICKNAME: {"%u": []} # just use user's part of JID as their nickname
FN: {"%s": [displayName]}
CTRY: {Russia: []}
EMAIL: {"%u@%d": []}
DESC: {"%s\n%s": [title, description]}

•

ldap_search_fields:
User: uid
"Full Name": displayName
Email: mail

•

ldap_search_reported:
"Full Name": FN
Email: EMAIL
Birthday: BDAY
Nickname: NICKNAME

vCard in LDAP

- 88/175 - Copyright © 2008 - 2024 ProcessOne

Listen Modules

This section describes the most recent ejabberd version. If you are using an old ejabberd release, please refer to the corresponding

archived version of this page in the Archive.

Listen Options

The listen option defines for which ports, addresses and network protocols ejabberd will listen and what services will be run on

them.

Each element of the list is an associative array with the following elements:

port: Number

Defines which port number to listen for incoming connections: it can be a Jabber/XMPP standard port or any other valid port

number.

Alternatively, set the option to a string in form "unix:/path/to/socket" to create and listen on a unix domain socket /path/to/

socket .

ip: IpAddress

The socket will listen only in that network interface. Depending on the type of the IP address, IPv4 or IPv6 will be used.

It is possible to specify a generic address ("0.0.0.0" for IPv4 or "::" for IPv6), so ejabberd will listen in all addresses. Note

that on some operating systems and/or OS configurations, listening on "::" will mean listening for IPv4 traffic as well as IPv6

traffic.

Some example values for IP address:

"0.0.0.0" to listen in all IPv4 network interfaces. This is the default value when the option is not specified.

"::" to listen in all IPv6 network interfaces

"10.11.12.13" is the IPv4 address 10.11.12.13

"::FFFF:127.0.0.1" is the IPv6 address ::FFFF:127.0.0.1/128

transport: tcp|udp

Defines the transport protocol. Default is tcp .

module: ModuleName

Listening module that serves this port

Any other options for the socket and for the listening module, described later.

For example:

ejabberd_c2s

Handles c2s connections.

Please note

•

•

•

•

•

•

•

•

•

listen:
-

port: 5222
ip: 127.0.0.1
module: ejabberd_c2s
starttls: true

-
port: 5269
transport: tcp
module: ejabberd_s2s_in

Listen Modules

- 89/175 - Copyright © 2008 - 2024 ProcessOne

General listen options supported: access, allow_unencrypted_sasl2, cafile, ciphers, dhfile, max_fsm_queue, max_stanza_size,

protocol_options, send_timeout, shaper, starttls, starttls_required, tls, tls_compression, tls_verify, zlib.

ejabberd_s2s_in

Handles incoming s2s connections.

General listen options supported: cafile, ciphers, dhfile, max_fsm_queue, max_stanza_size, protocol_options, send_timeout,

shaper, tls, tls_compression.

ejabberd_service

Interacts with an external component as defined in XEP-0114: Jabber Component Protocol.

General listen options supported: access, cafile, certfile, check_from, ciphers, dhfile, global_routes, hosts, max_fsm_queue,

max_stanza_size, password, protocol_options, send_timeout, shaper, shaper_rule, tls, tls_compression.

mod_mqtt

Support for MQTT requires configuring mod_mqtt both in the listen and the modules sections. Check the mod_mqtt module

options, and the MQTT Support section.

General listen options supported: backlog, max_fsm_queue, max_payload_size, send_timeout, tls, tls_verify.

ejabberd_stun

ejabberd can act as a stand-alone STUN/TURN server, and this module handles STUN/TURN requests as defined in (RFC 5389 /

RFC 5766 . In that role ejabberd helps clients with ICE (RFC 5245 or Jingle ICE (XEP-0176 support to discover their external

addresses and ports and to relay media traffic when it is impossible to establish direct peer-to-peer connection.

General listen options supported: certfile, send_timeout, shaper, tls,

ejabberd_s2s_in

- 90/175 - Copyright © 2008 - 2024 ProcessOne

https://ejabberd.im/tutorials-transports
https://ejabberd.im/tutorials-transports
https://xmpp.org/extensions/xep-0114.html
https://tools.ietf.org/html/rfc5389
https://tools.ietf.org/html/rfc5389
https://tools.ietf.org/html/rfc5766
https://tools.ietf.org/html/rfc5766
https://tools.ietf.org/html/rfc5245
https://tools.ietf.org/html/rfc5245
https://xmpp.org/extensions/xep-0176.html
https://xmpp.org/extensions/xep-0176.html

The specific ejabberd_stun configurable options are:

auth_realm: String

When auth_type is set to user and you have several virtual hosts configured you should set this option explicitly to the virtual

host you want to serve on this particular listening port. Implies use_turn .

auth_type: user|anonymous

Which authentication type to use for TURN allocation requests. When type user is set, ejabberd authentication backend is

used. For anonymous type no authentication is performed (not recommended for public services). The default is user . Implies

use_turn .

shaper: Atom

For tcp transports defines shaper to use. The default is none .

server_name: String

Defines software version to return with every response. The default is the STUN library version.

turn_blacklist: String | [String,...]

Specify one or more IP addresses and/or subnet addresses/masks. The TURN server will refuse to relay traffic from/to

blacklisted IP addresses. By default, loopback addresses (127.0.0.0/8 and ::1/128) are blacklisted.

turn_ipv4_address: String

The IPv4 address advertised by your TURN server. The address should not be NAT’ed or firewalled. There is not default, so you

should set this option explicitly. Implies use_turn .

turn_ipv6_address: String

The IPv6 address advertised by your TURN server. The address should not be NAT’ed or firewalled. There is not default, so you

should set this option explicitly. Implies use_turn .

turn_max_allocations: Integer|infinity

Maximum number of TURN allocations available from the particular IP address. The default value is 10. Implies use_turn .

turn_max_permissions: Integer|infinity

Maximum number of TURN permissions available from the particular IP address. The default value is 10. Implies use_turn .

turn_max_port: Integer

Together with turn_min_port forms port range to allocate from. The default is 65535. Implies use_turn .

turn_min_port: Integer

Together with turn_max_port forms port range to allocate from. The default is 49152. Implies use_turn .

use_turn: true|false

Enables/disables TURN (media relay) functionality. The default is false .

Example configuration with disabled TURN functionality (STUN only):

Example configuration with TURN functionality. Note that STUN is always enabled if TURN is enabled. Here, only UDP section is

shown:

•

•

•

•

•

•

•

•

•

•

•

•

listen:
-

port: 5478
transport: udp
module: ejabberd_stun

-
port: 5478
module: ejabberd_stun

-
port: 5349
module: ejabberd_stun
tls: true
certfile: /etc/ejabberd/server.pem

listen:
-

port: 5478
transport: udp

ejabberd_stun

- 91/175 - Copyright © 2008 - 2024 ProcessOne

ejabberd_sip

ejabberd has built-in support to handle SIP requests as defined in RFC 3261 .

To activate this feature, add the ejabberd_sip listen module, enable mod_sip module for the desired virtual host, and configure

DNS properly.

To add a listener you should configure ejabberd_sip listening module as described in Listen section. If option tls is specified,

option certfile must be specified as well, otherwise incoming TLS connections would fail.

General listen options supported: certfile, send_timeout, tls.

Example configuration with standard ports (as per RFC 3261):

Note that there is no StartTLS support in SIP and SNI support is somewhat tricky, so for TLS you have to configure different

virtual hosts on different ports if you have different certificate files for them.

Next you need to configure DNS SIP records for your virtual domains. Refer to RFC 3263 for the detailed explanation. Simply put,

you should add NAPTR and SRV records for your domains. Skip NAPTR configuration if your DNS provider doesn't support this

type of records. It’s not fatal, however, highly recommended.

Example configuration of NAPTR records:

Example configuration of SRV records with standard ports (as per RFC 3261 :

SIP authentication does not support SCRAM. As such, it is not possible to use mod_sip to authenticate when ejabberd has been set to

encrypt password with SCRAM.

ejabberd_http

Handles incoming HTTP connections.

With the proper request handlers configured, this serves HTTP services like ACME, API, BOSH, CAPTCHA, Fileserver, OAuth,

RegisterWeb, Upload, WebAdmin, WebSocket, XML-RPC.

Options: cafile, ciphers, custom_headers, default_host, dhfile, protocol_options, request_handlers, send_timeout, tag, tls,

tls_compression, and the trusted_proxies top-level option.

use_turn: true
turn_ipv4_address: 10.20.30.1
module: ejabberd_stun

listen:
-

port: 5060
transport: udp
module: ejabberd_sip

-
port: 5060
module: ejabberd_sip

-
port: 5061
module: ejabberd_sip
tls: true
certfile: /etc/ejabberd/server.pem

example.com IN NAPTR 10 0 "s" "SIPS+D2T" "" _sips._tcp.example.com.
example.com IN NAPTR 20 0 "s" "SIP+D2T" "" _sip._tcp.example.com.
example.com IN NAPTR 30 0 "s" "SIP+D2U" "" _sip._udp.example.com.

_sip._udp IN SRV 0 0 5060 sip.example.com.
_sip._tcp IN SRV 0 0 5060 sip.example.com.
_sips._tcp IN SRV 0 0 5061 sip.example.com.

Warning

ejabberd_sip

- 92/175 - Copyright © 2008 - 2024 ProcessOne

https://tools.ietf.org/html/rfc3261
https://tools.ietf.org/html/rfc3261
https://tools.ietf.org/html/rfc3261
https://tools.ietf.org/html/rfc3261
https://en.wikipedia.org/wiki/Server_Name_Indication
https://en.wikipedia.org/wiki/Server_Name_Indication
https://tools.ietf.org/html/rfc3263
https://tools.ietf.org/html/rfc3263
https://tools.ietf.org/html/rfc3261
https://tools.ietf.org/html/rfc3261

ejabberd_http_ws

This module enables XMPP communication over WebSocket connection as described in RFC 7395 .

WEBSOCKET CONFIG

To enable WebSocket, simply add a handler to the request_handlers section of an ejabberd_http listener:

This module can be configured using those top-level options:

websocket_origin

websocket_ping_interval

websocket_timeout

WEBSOCKET DISCOVERY

With the example configuration previously mentioned, the WebSocket URL would be: ws://localhost:5280/xmpp

You may want to provide a host-meta file so clients can easily discover WebSocket service for your XMPP domain (see XEP-0156).

One easy way to provide that file is using mod_host_meta .

TESTING WEBSOCKET

A test client can be found on Github: WebSocket test client

There is an example configuration for WebSocket and Converse.js in the ejabberd 21.12 release notes.

ejabberd_xmlrpc

Handles XML-RPC requests to execute ejabberd commands. It is configured as a request handler in ejabberd_http.

This is the minimum configuration required to enable the feature:

Example Python3 script:

By default there is no restriction to who can execute what commands, so it is strongly recommended that you configure

restrictions using API Permissions.

This example configuration adds some restrictions (only requests from localhost are accepted, the XML-RPC query must include

authentication credentials of a specific account registered in ejabberd, and only two commands are accepted):

listen:
-

port: 5280
module: ejabberd_http
request_handlers:

/xmpp: ejabberd_http_ws

•

•

•

listen:
-

port: 5280
module: ejabberd_http
request_handlers:

/xmlrpc: ejabberd_xmlrpc

api_permissions:
"public commands":

who:
ip: 127.0.0.1/8

what:
- connected_users_number

import xmlrpc.client
server = xmlrpc.client.ServerProxy("http://127.0.0.1:5280/xmlrpc/");
print(server.connected_users_number())

listen:
-

port: 5280
ip: "::"
module: ejabberd_http
request_handlers:

ejabberd_http

- 93/175 - Copyright © 2008 - 2024 ProcessOne

https://tools.ietf.org/html/rfc7395
https://tools.ietf.org/html/rfc7395
https://xmpp.org/extensions/xep-0156.html#http
https://github.com/processone/xmpp-websocket-client

Example Python3 script for that restricted configuration:

Please notice, when using the old Python2, replace the two first lines with:

It's possible to use OAuth for authentication instead of plain password, see OAuth Support.

In ejabberd 20.03 and older, it was possible to configure ejabberd_xmlrpc as a listener.

Just for reference, there's also the old ejabberd_xmlrpc documentation with example clients in other languages.

Examples

For example, the following simple configuration defines:

There are three domains. The default certificate file is server.pem . However, the c2s and s2s connections to the domain

example.com use the file example_com.pem .

Port 5222 listens for c2s connections with STARTTLS, and also allows plain connections for old clients.

Port 5223 listens for c2s connections with the old SSL.

Port 5269 listens for s2s connections with STARTTLS. The socket is set for IPv6 instead of IPv4.

Port 5478 listens for STUN requests over UDP.

Port 5280 listens for HTTP requests, and serves the HTTP-Bind (BOSH) service.

Port 5281 listens for HTTP requests, using HTTPS to serve HTTP-Bind (BOSH) and the Web Admin as explained in Managing:

Web Admin. The socket only listens connections to the IP address 127.0.0.1.

/xmlrpc: ejabberd_xmlrpc

api_permissions:
"some XMLRPC commands":

from: ejabberd_xmlrpc
who:

- ip: 127.0.0.1
- user: user1@localhost

what:
- registered_users
- connected_users_number

import xmlrpc.client
server = xmlrpc.client.ServerProxy("http://127.0.0.1:5280/xmlrpc/");

params = {}
params['host'] = 'localhost'

auth = {'user': 'user1',
'server': 'localhost',
'password': 'mypass11',
'admin': True}

def calling(command, data):
fn = getattr(server, command)
return fn(auth, data)

print(calling('registered_users', params))

import xmlrpclib
server = xmlrpclib.Server("http://127.0.0.1:5280/xmlrpc/");

•

•

•

•

•

•

•

hosts:
- example.com
- example.org
- example.net

certfiles:
- /etc/ejabberd/server.pem
- /etc/ejabberd/example_com.pem

listen:
-

port: 5222
module: ejabberd_c2s
access: c2s
shaper: c2s_shaper
starttls: true
max_stanza_size: 65536

-

Examples

- 94/175 - Copyright © 2008 - 2024 ProcessOne

https://ejabberd.im/ejabberd_xmlrpc
https://ejabberd.im/ejabberd_xmlrpc

In this example, the following configuration defines that:

c2s connections are listened for on port 5222 (all IPv4 addresses) and on port 5223 (SSL, IP 192.168.0.1 and fdca:

8ab6:a243:75ef::1) and denied for the user called ‘ bad ’.

s2s connections are listened for on port 5269 (all IPv4 addresses) with STARTTLS for secured traffic strictly required, and the

certificates are verified. Incoming and outgoing connections of remote XMPP servers are denied, only two servers can connect:

“jabber.example.org” and “example.com”.

Port 5280 is serving the Web Admin and the HTTP-Bind (BOSH) service in all the IPv4 addresses. Note that it is also possible

to serve them on different ports. The second example in section Managing: Web Admin shows how exactly this can be done. A

request handler to serve MQTT over WebSocket is also defined.

All users except for the administrators have a traffic of limit 1,000Bytes/second

The AIM transport aim.example.org is connected to port 5233 on localhost IP addresses (127.0.0.1 and ::1) with password

‘ aimsecret ’.

The ICQ transport JIT (icq.example.org and sms.example.org) is connected to port 5234 with password ‘ jitsecret ’.

The MSN transport msn.example.org is connected to port 5235 with password ‘ msnsecret ’.

The Yahoo! transport yahoo.example.org is connected to port 5236 with password ‘ yahoosecret ’.

The Gadu-Gadu transport gg.example.org is connected to port 5237 with password ‘ ggsecret ’.

The Jabber Mail Component jmc.example.org is connected to port 5238 with password ‘ jmcsecret ’.

The service custom has enabled the special option to avoiding checking the from attribute in the packets send by this

component. The component can send packets in behalf of any users from the server, or even on behalf of any server.

port: 5223
module: ejabberd_c2s
access: c2s
shaper: c2s_shaper
tls: true
max_stanza_size: 65536

-
port: 5269
ip: "::"
module: ejabberd_s2s_in
shaper: s2s_shaper
max_stanza_size: 131072

-
port: 5478
transport: udp
module: ejabberd_stun

-
port: 5280
module: ejabberd_http
request_handlers:

/bosh: mod_bosh
-

port: 5281
ip: 127.0.0.1
module: ejabberd_http
tls: true
request_handlers:

/admin: ejabberd_web_admin
/bosh: mod_bosh

s2s_use_starttls: optional
outgoing_s2s_families:

- ipv4
- ipv6

outgoing_s2s_timeout: 10000
trusted_proxies: [127.0.0.1, 192.168.1.11]

•

•

•

•

•

•

•

•

•

•

•

acl:
blocked:

user: bad
trusted_servers:

server:
- example.com
- jabber.example.org

xmlrpc_bot:
user:

- xmlrpc-robot@example.org
shaper:

normal: 1000
shaper_rules:

c2s_shaper:
- none: admin
- normal

Examples

- 95/175 - Copyright © 2008 - 2024 ProcessOne

https://ejabberd.im/pyaimt
https://ejabberd.im/pyaimt
https://ejabberd.im/pymsnt
https://ejabberd.im/pymsnt
https://ejabberd.im/yahoo-transport-2
https://ejabberd.im/yahoo-transport-2
https://ejabberd.im/jabber-gg-transport
https://ejabberd.im/jabber-gg-transport
https://ejabberd.im/jmc
https://ejabberd.im/jmc

access_rules:
c2s:

- deny: blocked
- allow

xmlrpc_access:
- allow: xmlrpc_bot

s2s:
- allow: trusted_servers

certfiles:
- /path/to/ssl.pem

s2s_access: s2s
s2s_use_starttls: required_trusted
listen:

-
port: 5222
module: ejabberd_c2s
shaper: c2s_shaper
access: c2s

-
ip: 192.168.0.1
port: 5223
module: ejabberd_c2s
tls: true
access: c2s

-
ip: "FDCA:8AB6:A243:75EF::1"
port: 5223
module: ejabberd_c2s
tls: true
access: c2s

-
port: 5269
module: ejabberd_s2s_in

-
port: 5280
module: ejabberd_http
request_handlers:

/admin: ejabberd_web_admin
/bosh: mod_bosh
/mqtt: mod_mqtt

-
port: 4560
module: ejabberd_xmlrpc
access_commands: {}

-
ip: 127.0.0.1
port: 5233
module: ejabberd_service
hosts:

aim.example.org:
password: aimsecret

-
ip: "::1"
port: 5233
module: ejabberd_service
hosts:

aim.example.org:
password: aimsecret

-
port: 5234
module: ejabberd_service
hosts:

icq.example.org:
password: jitsecret

sms.example.org:
password: jitsecret

-
port: 5235
module: ejabberd_service
hosts:

msn.example.org:
password: msnsecret

-
port: 5236
module: ejabberd_service
password: yahoosecret

-
port: 5237
module: ejabberd_service
hosts:

gg.example.org:
password: ggsecret

-
port: 5238
module: ejabberd_service
hosts:

jmc.example.org:
password: jmcsecret

-
port: 5239
module: ejabberd_service
check_from: false
hosts:

Examples

- 96/175 - Copyright © 2008 - 2024 ProcessOne

Note, that for services based in jabberd14 or WPJabber you have to make the transports log and do XDB by themselves:

custom.example.org:
password: customsecret

<!--
 You have to add elogger and rlogger entries here when using ejabberd.
 In this case the transport will do the logging.
-->

<log id='logger'>
<host/>
<logtype/>
<format>%d: [%t] (%h): %s</format>
<file>/var/log/jabber/service.log</file>

</log>

<!--
 Some XMPP server implementations do not provide
 XDB services (for example, jabberd2 and ejabberd).
 xdb_file.so is loaded in to handle all XDB requests.
-->

<xdb id="xdb">
<host/>
<load>

<!-- this is a lib of wpjabber or jabberd14 -->
<xdb_file>/usr/lib/jabber/xdb_file.so</xdb_file>
</load>

<xdb_file xmlns="jabber:config:xdb_file">
<spool><jabberd:cmdline flag='s'>/var/spool/jabber</jabberd:cmdline></spool>

</xdb_file>
</xdb>

Examples

- 97/175 - Copyright © 2008 - 2024 ProcessOne

Listen Options

This section describes the most recent ejabberd version. If you are using an old ejabberd release, please refer to the corresponding

archived version of this page in the Archive.

This is a detailed description of each option allowed by the listening modules:

access

AccessName

This option defines access to the port. The default value is all .

allow_unencrypted_sasl2

true | false

As per XEP-0388 , ejabberd rejects SASL2 negotiations over non-TLS connections by default. Setting this option to true allows

SASL2 over plaintext connections, which may be useful in case TLS is terminated by some proxy in front of ejabberd.

backlog

Value

The backlog value defines the maximum length that the queue of pending connections may grow to. This should be increased if

the server is going to handle lots of new incoming connections as they may be dropped if there is no space in the queue (and

ejabberd was not able to accept them immediately). Default value is 5.

cafile

Path

Path to a file of CA root certificates. The default is to use system defined file if possible.

This option is useful to define the file for a specific port listener. To set a file for all client listeners or for specific vhosts, you can

use the c2s_cafile top-level option. To set a file for all server connections, you can use the s2s_cafile top-level option or the

ca_file top-level option.

Please note: if this option is set in ejabberd_c2s or ejabberd_s2s_in and the corresponding top-level option is also set (c2s_cafile ,

s2s_cafile), then the top-level option is used, not this one.

certfile

Path

Path to the certificate file. Only makes sense when the tls options is set. If this option is not set, you should set the certfiles

top-level option or configure ACME.

check_from

true | false

Please note

Listen Options

- 98/175 - Copyright © 2008 - 2024 ProcessOne

https://xmpp.org/extensions/xep-0388.html#security
https://xmpp.org/extensions/xep-0388.html#security

This option can be used with ejabberd_service only. XEP-0114 requires that the domain must match the hostname of the

component. If this option is set to false , ejabberd will allow the component to send stanzas with any arbitrary domain in the

’from’ attribute. Only use this option if you are completely sure about it. The default value is true , to be compliant with

XEP-0114 .

ciphers

Ciphers

OpenSSL ciphers list in the same format accepted by ‘ openssl ciphers ’ command.

Please note: if this option is set in ejabberd_c2s or ejabberd_s2s_in and the corresponding top-level option is also set

(c2s_ciphers , s2s_ciphers), then the top-level option is used, not this one.

custom_headers

{Name: Value}

Specify additional HTTP headers to be included in all HTTP responses. Default value is: []

default_host

undefined | HostName

If the HTTP request received by ejabberd contains the HTTP header Host with an ambiguous virtual host that doesn’t match any

one defined in ejabberd (see Host Names), then this configured HostName is set as the request Host. The default value of this

option is: undefined .

dhfile

Path

Full path to a file containing custom parameters for Diffie-Hellman key exchange. Such a file could be created with the command

openssl dhparam -out dh.pem 2048 . If this option is not specified, default parameters will be used, which might not provide the

same level of security as using custom parameters.

Please note: if this option is set in ejabberd_c2s or ejabberd_s2s_in and the corresponding top-level option is also set (c2s_dhfile ,

s2s_dhfile), then the top-level option is used, not this one.

global_routes

true | false

This option emulates legacy behaviour which registers all routes defined in hosts on a component connected. This behaviour is

considered harmful in the case when it's desired to multiplex different components on the same port, so, to disable it, set

global_routes to false .

The default value is true , e.g. legacy behaviour is emulated: the only reason for this is to maintain backward compatibility with

existing deployments.

hosts

{Hostname: [HostOption, ...]}

The external Jabber component that connects to this ejabberd_service can serve one or more hostnames. As HostOption you can

define options for the component; currently the only allowed option is the password required to the component when attempt to

ciphers

- 99/175 - Copyright © 2008 - 2024 ProcessOne

https://xmpp.org/extensions/xep-0114.html
https://xmpp.org/extensions/xep-0114.html
https://xmpp.org/extensions/xep-0114.html
https://xmpp.org/extensions/xep-0114.html

connect to ejabberd: password: Secret . Note that you cannot define in a single ejabberd_service components of different services:

add an ejabberd_service for each service, as seen in an example below. This option may not be necessary if the component

already provides the host in its packets; in that case, you can simply provide the password option that will be used for all the

hosts (see port 5236 definition in the example below).

max_fsm_queue

Size

This option specifies the maximum number of elements in the queue of the FSM (Finite State Machine). Roughly speaking, each

message in such queues represents one XML stanza queued to be sent into its relevant outgoing stream. If queue size reaches

the limit (because, for example, the receiver of stanzas is too slow), the FSM and the corresponding connection (if any) will be

terminated and error message will be logged. The reasonable value for this option depends on your hardware configuration. This

option can be specified for ejabberd_service and ejabberd_c2s listeners, or also globally for ejabberd_s2s_out . If the option is not

specified for ejabberd_service or ejabberd_c2s listeners, the globally configured value is used. The allowed values are integers

and ’undefined’. Default value: ’10000’.

max_payload_size

Size

Specify the maximum payload size in bytes. It can be either an integer or the word infinity . The default value is infinity .

max_stanza_size

Size

This option specifies an approximate maximum size in bytes of XML stanzas. Approximate, because it is calculated with the

precision of one block of read data. For example {max_stanza_size, 65536} . The default value is infinity . Recommended values

are 65536 for c2s connections and 131072 for s2s connections. s2s max stanza size must always much higher than c2s limit.

Change this value with extreme care as it can cause unwanted disconnect if set too low.

password

Secret

Specify the password to verify an external component that connects to the port.

port

Port number, or unix domain socket path

improved in 20.07

Declares at which port/unix domain socket should be listening.

Can be set to number between 1 and 65535 to listen on TCP or UDP socket, or can be set to string in form "unix:/path/to/

socket" to create and listen on unix domain socket /path/to/socket .

protocol_options

ProtocolOpts

List of general options relating to SSL/TLS. These map to OpenSSL’s set_options() . The default entry is: "no_sslv3|

cipher_server_preference|no_compression"

max_fsm_queue

- 100/175 - Copyright © 2008 - 2024 ProcessOne

https://www.openssl.org/docs/manmaster/man3/SSL_CTX_set_options.html
https://www.openssl.org/docs/manmaster/man3/SSL_CTX_set_options.html

Please note: if this option is set in ejabberd_c2s or ejabberd_s2s_in and the corresponding top-level option is also set

(c2s_protocol_options , s2s_protocol_options), then the top-level option is used, not this one.

request_handlers

{Path: Module}

To define one or several handlers that will serve HTTP requests in ejabberd_http . The Path is a string; so the URIs that start with

that Path will be served by Module. For example, if you want mod_foo to serve the URIs that start with /a/b/ , and you also want

mod_bosh to serve the URIs /bosh/ , use this option:

send_timeout

Integer | infinity

new in 21.07

Sets the longest time that data can wait to be accepted to sent by OS socket. Triggering this timeout will cause the server to

close it. By default it's set to 15 seconds, expressed in milliseconds: 15000

shaper

none | ShaperName

This option defines a shaper for the port (see section Shapers). The default value is none .

shaper_rule

none | ShaperRule

This option defines a shaper rule for ejabberd_service (see section Shapers). The recommended value is fast .

starttls

true | false

This option specifies that STARTTLS encryption is available on connections to the port. You should also set the certfiles top-

level option or configure ACME.

This option gets implicitly enabled when enabling starttls_required or tls_verify .

starttls_required

true | false

This option specifies that STARTTLS encryption is required on connections to the port. No unencrypted connections will be

allowed. You should also set the certfiles top-level option or configure ACME.

Enabling this option implicitly enables also the starttls option.

request_handlers:
/a/b: mod_foo
/bosh: mod_bosh
/mqtt: mod_mqtt

request_handlers

- 101/175 - Copyright © 2008 - 2024 ProcessOne

tag

String

Allow specifying a tag in a listen section and later use it to have a special api_permissions just for it.

For example:

The default value is the empty string: "" .

timeout

Integer

Timeout of the connections, expressed in milliseconds. Default: 5000

tls

true | false

This option specifies that traffic on the port will be encrypted using SSL immediately after connecting. This was the traditional

encryption method in the early Jabber software, commonly on port 5223 for client-to-server communications. But this method is

nowadays deprecated and not recommended. The preferable encryption method is STARTTLS on port 5222, as defined

RFC 6120: XMPP Core , which can be enabled in ejabberd with the option starttls .

If this option is set, you should also set the certfiles top-level option or configure ACME.

The option tls can also be used in ejabberd_http to support HTTPS.

Enabling this option implicitly disables the starttls option.

tls_compression

true | false

Whether to enable or disable TLS compression. The default value is false .

Please note: if this option is set in ejabberd_c2s or ejabberd_s2s_in and the corresponding top-level option is also set

(c2s_tls_compression , s2s_tls_compression), then the top-level option is used, not this one.

tls_verify

false | true

This option specifies whether to verify the certificate or not when TLS is enabled.

The default value is false , which means no checks are performed.

The certificate will be checked against trusted CA roots, either defined at the operation system level or defined in the listener

cafile . If trusted, it will accept the jid that is embedded in the certificate in the subjectAltName field of that certificate.

listen:
-

port: 4000
module: ejabberd_http
tag: "magic_listener"

api_permissions:
"magic_access":

from:
- tag: "magic_listener"

who: all
what: "*"

tag

- 102/175 - Copyright © 2008 - 2024 ProcessOne

https://xmpp.org/rfcs/rfc6120.html#tls
https://xmpp.org/rfcs/rfc6120.html#tls

Enabling this option implicitly enables also the starttls option.

use_proxy_protocol

true | false

Is this listener accessed by proxy service that is using proxy protocol for supplying real IP addresses to ejabberd server. You can

read about this protocol in Proxy protocol specification. The default value of this option is false .

zlib

true | false

This option specifies that Zlib stream compression (as defined in XEP-0138) is available on connections to the port.

use_proxy_protocol

- 103/175 - Copyright © 2008 - 2024 ProcessOne

https://www.haproxy.org/download/1.8/doc/proxy-protocol.txt
https://xmpp.org/extensions/xep-0138.html
https://xmpp.org/extensions/xep-0138.html

Top-Level Options

This section describes top level options of ejabberd 24.12. If you are using an old ejabberd release, please refer to the corresponding

archived version of this page in the Archive.

The options that changed in this version are marked with 🟤.

access_rules

{AccessName: {allow|deny: ACLRules|ACLName}}

This option defines Access Rules. Each access rule is assigned a name that can be referenced from other parts of the

configuration file (mostly from access options of ejabberd modules). Each rule definition may contain arbitrary number of allow

or deny sections, and each section may contain any number of ACL rules (see acl option). There are no access rules defined by

default.

Example:

acl

{ACLName: {ACLType: ACLValue}}

This option defines access control lists: named sets of rules which are used to match against different targets (such as a JID or an

IP address). Every set of rules has name ACLName : it can be any string except all or none (those are predefined names for the

rules that match all or nothing respectively). The name ACLName can be referenced from other parts of the configuration file, for

Please note

access_rules:
configure:

allow: admin
something:

deny: someone
allow: all

s2s_banned:
deny: problematic_hosts
deny: banned_forever
deny:

ip: 222.111.222.111/32
deny:

ip: 111.222.111.222/32
allow: all

xmlrpc_access:
allow:

user: peter@example.com
allow:

user: ivone@example.com
allow:

user: bot@example.com
ip: 10.0.0.0/24

Top-Level Options

- 104/175 - Copyright © 2008 - 2024 ProcessOne

example in access_rules option. The rules of ACLName are represented by mapping {ACLType: ACLValue} . These can be one of the

following:

ip: Network

The rule matches any IP address from the Network .

node_glob: Pattern

Same as node_regexp , but matching is performed on a specified Pattern according to the rules used by the Unix shell.

node_regexp: user_regexp@server_regexp

The rule matches any JID with node part matching regular expression user_regexp and server part matching regular

expression server_regexp .

resource: Resource

The rule matches any JID with a resource Resource .

resource_glob: Pattern

Same as resource_regexp , but matching is performed on a specified Pattern according to the rules used by the Unix shell.

resource_regexp: Regexp

The rule matches any JID with a resource that matches regular expression Regexp .

server: Server

The rule matches any JID from server Server . The value of Server must be a valid hostname or an IP address.

server_glob: Pattern

Same as server_regexp , but matching is performed on a specified Pattern according to the rules used by the Unix shell.

server_regexp: Regexp

The rule matches any JID from the server that matches regular expression Regexp .

user: Username

If Username is in the form of "user@server", the rule matches a JID against this value. Otherwise, if Username is in the form of

"user", the rule matches any JID that has Username in the node part as long as the server part of this JID is any virtual host

served by ejabberd.

user_glob: Pattern

Same as user_regexp , but matching is performed on a specified Pattern according to the rules used by the Unix shell.

user_regexp: Regexp

If Regexp is in the form of "regexp@server", the rule matches any JID with node part matching regular expression "regexp" as

long as the server part of this JID is equal to "server". If Regexp is in the form of "regexp", the rule matches any JID with node

part matching regular expression "regexp" as long as the server part of this JID is any virtual host served by ejabberd.

acme

Options

•

•

•

•

•

•

•

•

•

•

•

•

acme

- 105/175 - Copyright © 2008 - 2024 ProcessOne

ACME configuration, to automatically obtain SSL certificates for the domains served by ejabberd, which means that certificate

requests and renewals are performed to some CA server (aka "ACME server") in a fully automated mode. The Options are:

auto: true | false

Whether to automatically request certificates for all configured domains (that yet have no a certificate) on server start or

configuration reload. The default is true .

ca_url: URL

The ACME directory URL used as an entry point for the ACME server. The default value is https://acme-

v02.api.letsencrypt.org/directory - the directory URL of Let’s Encrypt authority.

cert_type: rsa | ec

A type of a certificate key. Available values are ec and rsa for EC and RSA certificates respectively. It’s better to have RSA

certificates for the purpose of backward compatibility with legacy clients and servers, thus the default is rsa .

contact: [Contact, ...]

A list of contact addresses (typically emails) where an ACME server will send notifications when problems occur. The value of

Contact must be in the form of "scheme:address" (e.g. "mailto:user@domain.tld"). The default is an empty list which means an

ACME server will send no notices.

Example:

allow_contrib_modules

true | false

Whether to allow installation of third-party modules or not. See ejabberd-contrib documentation section. The default value is

true .

allow_multiple_connections

true | false

This option is only used when the anonymous mode is enabled. Setting it to true means that the same username can be taken

multiple times in anonymous login mode if different resource are used to connect. This option is only useful in very special

occasions. The default value is false .

anonymous_protocol

login_anon | sasl_anon | both

Define what anonymous protocol will be used:

login_anon means that the anonymous login method will be used.

sasl_anon means that the SASL Anonymous method will be used.

both means that SASL Anonymous and login anonymous are both enabled.

The default value is sasl_anon .

•

•

•

•

acme:
ca_url: https://acme-v02.api.letsencrypt.org/directory
contact:

- mailto:admin@domain.tld
- mailto:bot@domain.tld

auto: true
cert_type: rsa

•

•

•

allow_contrib_modules

- 106/175 - Copyright © 2008 - 2024 ProcessOne

https://acme-v02.api.letsencrypt.org/directory
https://acme-v02.api.letsencrypt.org/directory

api_permissions

[Permission, ...]

Define the permissions for API access. Please consult the ejabberd Docs web → For Developers → ejabberd ReST API → API

Permissions.

append_host_config

{Host: Options}

Add a few specific options to a certain virtual host.

auth_cache_life_time

timeout()

Same as cache_life_time, but applied to authentication cache only. If not set, the value from cache_life_time will be used.

auth_cache_missed

true | false

Same as cache_missed, but applied to authentication cache only. If not set, the value from cache_missed will be used.

auth_cache_size

pos_integer() | infinity

Same as cache_size, but applied to authentication cache only. If not set, the value from cache_size will be used.

auth_external_user_exists_check

true | false

added in 23.10

Supplement check for user existence based on mod_last data, for authentication methods that don’t have a way to reliably tell if a

user exists (like is the case for jwt and certificate based authentication). This helps with processing offline message for those

users. The default value is true .

auth_method

[mnesia | sql | anonymous | external | jwt | ldap | pam, ...]

A list of authentication methods to use. If several methods are defined, authentication is considered successful as long as

authentication of at least one of the methods succeeds. The default value is [mnesia] .

auth_opts

[Option, ...]

api_permissions

- 107/175 - Copyright © 2008 - 2024 ProcessOne

This is used by the contributed module ejabberd_auth_http that can be installed from the ejabberd-contrib Git repository. Please

refer to that module’s README file for details.

auth_password_format

plain | scram

improved in 20.01

The option defines in what format the users passwords are stored, plain text or in SCRAM format:

plain : The password is stored as plain text in the database. This is risky because the passwords can be read if your database

gets compromised. This is the default value. This format allows clients to authenticate using: the old Jabber Non-SASL

(XEP-0078), SASL PLAIN, SASL DIGEST-MD5, and SASL SCRAM-SHA-1/256/512(-PLUS).

scram : The password is not stored, only some information required to verify the hash provided by the client. It is impossible to

obtain the original plain password from the stored information; for this reason, when this value is configured it cannot be

changed to plain anymore. This format allows clients to authenticate using: SASL PLAIN and SASL SCRAM-SHA-1/256/512(-

PLUS). The SCRAM variant depends on the auth_scram_hash option.

The default value is plain .

auth_scram_hash

sha | sha256 | sha512

Hash algorithm that should be used to store password in SCRAM format. You shouldn’t change this if you already have

passwords generated with a different algorithm - users that have such passwords will not be able to authenticate. The default

value is sha .

auth_use_cache

true | false

Same as use_cache, but applied to authentication cache only. If not set, the value from use_cache will be used.

c2s_cafile

Path

Full path to a file containing one or more CA certificates in PEM format. All client certificates should be signed by one of these

root CA certificates and should contain the corresponding JID(s) in subjectAltName field. There is no default value.

You can use host_config to specify this option per-vhost.

To set a specific file per listener, use the listener’s cafile option. Please notice that c2s_cafile overrides the listener’s cafile

option.

c2s_ciphers

[Cipher, ...]

A list of OpenSSL ciphers to use for c2s connections. The default value is shown in the example below:

Example:

•

•

auth_password_format

- 108/175 - Copyright © 2008 - 2024 ProcessOne

https://github.com/processone/ejabberd-contrib

c2s_dhfile

Path

Full path to a file containing custom DH parameters to use for c2s connections. Such a file could be created with the command

"openssl dhparam -out dh.pem 2048". If this option is not specified, 2048-bit MODP Group with 256-bit Prime Order Subgroup

will be used as defined in RFC5114 Section 2.3.

c2s_protocol_options

[Option, ...]

List of general SSL options to use for c2s connections. These map to OpenSSL’s set_options() . The default value is shown in the

example below:

Example:

c2s_tls_compression

true | false

Whether to enable or disable TLS compression for c2s connections. The default value is false .

ca_file

Path

Path to a file of CA root certificates. The default is to use system defined file if possible.

For server connections, this ca_file option is overridden by the s2s_cafile option.

cache_life_time

timeout()

The time of a cached item to keep in cache. Once it’s expired, the corresponding item is erased from cache. The default value is

1 hour . Several modules have a similar option; and some core ejabberd parts support similar options too, see

auth_cache_life_time, oauth_cache_life_time, router_cache_life_time, and sm_cache_life_time.

cache_missed

true | false

Whether or not to cache missed lookups. When there is an attempt to lookup for a value in a database and this value is not found

and the option is set to true , this attempt will be cached and no attempts will be performed until the cache expires (see

c2s_ciphers:
- HIGH
- "!aNULL"
- "!eNULL"
- "!3DES"
- "@STRENGTH"

c2s_protocol_options:
- no_sslv3
- cipher_server_preference
- no_compression

c2s_dhfile

- 109/175 - Copyright © 2008 - 2024 ProcessOne

cache_life_time). Usually you don’t want to change it. Default is true . Several modules have a similar option; and some core

ejabberd parts support similar options too, see auth_cache_missed, oauth_cache_missed, router_cache_missed, and

sm_cache_missed.

cache_size

pos_integer() | infinity

A maximum number of items (not memory!) in cache. The rule of thumb, for all tables except rosters, you should set it to the

number of maximum online users you expect. For roster multiply this number by 20 or so. If the cache size reaches this

threshold, it’s fully cleared, i.e. all items are deleted, and the corresponding warning is logged. You should avoid frequent cache

clearance, because this degrades performance. The default value is 1000 . Several modules have a similar option; and some core

ejabberd parts support similar options too, see auth_cache_size, oauth_cache_size, router_cache_size, and sm_cache_size.

captcha_cmd

Path | ModuleName

improved in 23.01

Full path to a script that generates CAPTCHA images. @VERSION@ is replaced with ejabberd version number in XX.YY format.

@SEMVER@ is replaced with ejabberd version number in semver format when compiled with Elixir’s mix, or XX.YY format

otherwise. Alternatively, it can be the name of a module that implements ejabberd CAPTCHA support. There is no default value:

when this option is not set, CAPTCHA functionality is completely disabled.

Examples:

When using the ejabberd installers or container image, the example captcha scripts can be used like this:

captcha_host

String

Deprecated. Use captcha_url instead.

captcha_limit

pos_integer() | infinity

Maximum number of CAPTCHA generated images per minute for any given JID. The option is intended to protect the server from

CAPTCHA DoS. The default value is infinity .

captcha_url

URL | auto | undefined

improved in 23.04

An URL where CAPTCHA requests should be sent. NOTE: you need to configure request_handlers for ejabberd_http listener as

well. If set to auto , it builds the URL using a request_handler already enabled, with encryption if available. If set to undefined , it

builds the URL using the deprecated captcha_host + /captcha . The default value is auto .

captcha_cmd: /opt/ejabberd-@VERSION@/lib/ejabberd-@SEMVER@/priv/bin/captcha.sh

cache_size

- 110/175 - Copyright © 2008 - 2024 ProcessOne

certfiles

[Path, ...]

The option accepts a list of file paths (optionally with wildcards) containing either PEM certificates or PEM private keys. At

startup or configuration reload, ejabberd reads all certificates from these files, sorts them, removes duplicates, finds matching

private keys and then rebuilds full certificate chains for the use in TLS connections. Use this option when TLS is enabled in

either of ejabberd listeners: ejabberd_c2s , ejabberd_http and so on. NOTE: if you modify the certificate files or change the value

of the option, run ejabberdctl reload-config in order to rebuild and reload the certificate chains.

Examples:

If you use Let’s Encrypt certificates for your domain "domain.tld", the configuration will look like this:

cluster_backend

Backend

A database backend to use for storing information about cluster. The only available value so far is mnesia .

cluster_nodes

[Node, ...]

A list of Erlang nodes to connect on ejabberd startup. This option is mostly intended for ejabberd customization and sophisticated

setups. The default value is an empty list.

default_db

mnesia | sql

Default database to store persistent data in ejabberd. Modules and other components (e.g. authentication) may have its own

value. The default value is mnesia .

default_ram_db

mnesia | redis | sql

Default volatile (in-memory) storage for ejabberd. Modules and other components (e.g. session management) may have its own

value. The default value is mnesia .

define_macro

{MacroName: MacroValue}

Defines a macro. The value can be any valid arbitrary YAML value. For convenience, it’s recommended to define a MacroName in

capital letters. Duplicated macros are not allowed. Macros are processed after additional configuration files have been included,

so it is possible to use macros that are defined in configuration files included before the usage. It is possible to use a MacroValue

in the definition of another macro.

Example:

certfiles:
- /etc/letsencrypt/live/domain.tld/fullchain.pem
- /etc/letsencrypt/live/domain.tld/privkey.pem

certfiles

- 111/175 - Copyright © 2008 - 2024 ProcessOne

https://letsencrypt.org

disable_sasl_mechanisms

[Mechanism, ...]

Specify a list of SASL mechanisms (such as DIGEST-MD5 or SCRAM-SHA1) that should not be offered to the client. For convenience,

the value of Mechanism is case-insensitive. The default value is an empty list, i.e. no mechanisms are disabled by default.

disable_sasl_scram_downgrade_protection

true | false

Allows to disable sending data required by XEP-0474: SASL SCRAM Downgrade Protection. There are known buggy clients (like

those that use strophejs 1.6.2) which will not be able to authenticatate when servers sends data from that specification. This

options allows server to disable it to allow even buggy clients connects, but in exchange decrease MITM protection. The default

value of this option is false which enables this extension.

domain_balancing

{Domain: Options}

An algorithm to load-balance the components that are plugged on an ejabberd cluster. It means that you can plug one or several

instances of the same component on each ejabberd node and that the traffic will be automatically distributed. The algorithm to

deliver messages to the component(s) can be specified by this option. For any component connected as Domain , available Options

are:

component_number: 2..1000

The number of components to balance.

type: Value

How to deliver stanzas to connected components. The default value is random . Possible values:

- bare_destination

by the bare JID (without resource) of the packet’s to attribute

- bare_source

by the bare JID (without resource) of the packet’s from attribute is used

- destination

an instance is chosen by the full JID of the packet’s to attribute

- random

an instance is chosen at random

- source

by the full JID of the packet’s from attribute

Example:

define_macro:
DEBUG: debug
LOG_LEVEL: DEBUG
USERBOB:

user: bob@localhost

loglevel: LOG_LEVEL

acl:
admin: USERBOB

•

•

domain_balancing:
component.domain.tld:

type: destination
component_number: 5

transport.example.org:
type: bare_source

disable_sasl_mechanisms

- 112/175 - Copyright © 2008 - 2024 ProcessOne

ext_api_headers

Headers

String of headers (separated with commas ,) that will be provided by ejabberd when sending ReST requests. The default value

is an empty string of headers: "" .

ext_api_http_pool_size

pos_integer()

Define the size of the HTTP pool, that is, the maximum number of sessions that the ejabberd ReST service will handle

simultaneously. The default value is: 100 .

ext_api_path_oauth

Path

Define the base URI path when performing OAUTH ReST requests. The default value is: "/oauth" .

ext_api_url

URL

Define the base URI when performing ReST requests. The default value is: "http://localhost/api" .

extauth_pool_name

Name

Define the pool name appendix in external auth, so the full pool name will be extauth_pool_Name . The default value is the

hostname.

extauth_pool_size

Size

The option defines the number of instances of the same external auth program to start for better load balancing. The default is

the number of available CPU cores.

extauth_program

Path

Indicate in this option the full path to the external authentication script. The script must be executable by ejabberd.

fqdn

Domain

A fully qualified domain name that will be used in SASL DIGEST-MD5 authentication. The default is detected automatically.

ext_api_headers

- 113/175 - Copyright © 2008 - 2024 ProcessOne

hide_sensitive_log_data

true | false

A privacy option to not log sensitive data (mostly IP addresses). The default value is false for backward compatibility.

host_config

{Host: Options}

The option is used to redefine Options for virtual host Host . In the example below LDAP authentication method will be used on

virtual host domain.tld and SQL method will be used on virtual host example.org .

Example:

hosts

[Domain1, Domain2, ...]

List of one or more host names (or domains) that ejabberd will serve. This is a mandatory option.

include_config_file

[Filename, ...] | {Filename: Options}

Read and include additional file from Filename . If the value is provided in {Filename: Options} format, the Options must be one

of the following:

allow_only: [OptionName, ...]

Allows only the usage of those options in the included file Filename . The options that do not match this criteria are not

accepted. The default value is to include all options.

disallow: [OptionName, ...]

Disallows the usage of those options in the included file Filename . The options that match this criteria are not accepted. The

default value is an empty list.

install_contrib_modules

[Module, ...]

added in 23.10

Modules to install from ejabberd-contrib at start time. The default value is an empty list of modules: [] .

jwt_auth_only_rule

AccessName

hosts:
- domain.tld
- example.org

auth_method:
- sql

host_config:
domain.tld:

auth_method:
- ldap

•

•

hide_sensitive_log_data

- 114/175 - Copyright © 2008 - 2024 ProcessOne

This ACL rule defines accounts that can use only the JWT auth method, even if others are also defined in the ejabberd

configuration file. In other words: if there are several auth methods enabled for this host (JWT, SQL, …), users that match this

rule can only use JWT. The default value is none .

jwt_jid_field

FieldName

By default, the JID is defined in the "jid" JWT field. In this option you can specify other JWT field name where the JID is defined.

jwt_key

FilePath

Path to the file that contains the JWT key. The default value is undefined .

language

Language

Define the default language of server strings that can be seen by XMPP clients. If an XMPP client does not possess xml:lang

attribute, the specified language is used. The default value is "en" .

ldap_backups

[Host, ...]

A list of IP addresses or DNS names of LDAP backup servers (see LDAP connection). When no servers listed in ldap_servers

option are reachable, ejabberd connects to these backup servers. The default is an empty list, i.e. no backup servers specified.

Please notice that ejabberd only connects to the next server when the existing connection is lost; it doesn’t detect when a

previously-attempted server becomes available again.

ldap_base

Base

LDAP base directory which stores users accounts. There is no default value: you must set the option in order for LDAP

connections to work properly.

ldap_deref_aliases

never | always | finding | searching

Whether to dereference aliases or not. The default value is never .

ldap_dn_filter

{Filter: FilterAttrs}

This filter is applied on the results returned by the main filter. The filter performs an additional LDAP lookup to make the

complete result. This is useful when you are unable to define all filter rules in ldap_filter . You can define "%u", "%d", "%s" and

"%D" pattern variables in Filter : "%u" is replaced by a user’s part of the JID, "%d" is replaced by the corresponding domain

(virtual host), all "%s" variables are consecutively replaced by values from the attributes in FilterAttrs and "%D" is replaced by

jwt_jid_field

- 115/175 - Copyright © 2008 - 2024 ProcessOne

Distinguished Name from the result set. There is no default value, which means the result is not filtered. WARNING: Since this

filter makes additional LDAP lookups, use it only as the last resort: try to define all filter rules in ldap_filter option if possible.

Example:

ldap_encrypt

tls | none

Whether to encrypt LDAP connection using TLS or not. The default value is none . NOTE: STARTTLS encryption is not supported.

ldap_filter

Filter

An LDAP filter as defined in RFC4515. There is no default value. Example: "(&(objectClass=shadowAccount)(memberOf=XMPP

Users))". NOTE: don’t forget to close brackets and don’t use superfluous whitespaces. Also you must not use "uid" attribute in

the filter because this attribute will be appended to the filter automatically.

ldap_password

Password

Bind password. The default value is an empty string.

ldap_port

1..65535

Port to connect to your LDAP server. The default port is 389 if encryption is disabled and 636 if encryption is enabled.

ldap_rootdn

RootDN

Bind Distinguished Name. The default value is an empty string, which means "anonymous connection".

ldap_servers

[Host, ...]

A list of IP addresses or DNS names of your LDAP servers (see LDAP connection). ejabberd connects immediately to all of them,

and reconnects infinitely if connection is lost. The default value is [localhost] .

ldap_tls_cacertfile

Path

A path to a file containing PEM encoded CA certificates. This option is required when TLS verification is enabled.

ldap_dn_filter:
"(&(name=%s)(owner=%D)(user=%u@%d))": [sn]

ldap_encrypt

- 116/175 - Copyright © 2008 - 2024 ProcessOne

https://tools.ietf.org/html/rfc4515

ldap_tls_certfile

Path

A path to a file containing PEM encoded certificate along with PEM encoded private key. This certificate will be provided by

ejabberd when TLS enabled for LDAP connections. There is no default value, which means no client certificate will be sent.

ldap_tls_depth

Number

Specifies the maximum verification depth when TLS verification is enabled, i.e. how far in a chain of certificates the verification

process can proceed before the verification is considered to be failed. Peer certificate = 0, CA certificate = 1, higher level CA

certificate = 2, etc. The value 2 thus means that a chain can at most contain peer cert, CA cert, next CA cert, and an additional

CA cert. The default value is 1 .

ldap_tls_verify

false | soft | hard

This option specifies whether to verify LDAP server certificate or not when TLS is enabled. When hard is set, ejabberd doesn’t

proceed if the certificate is invalid. When soft is set, ejabberd proceeds even if the check has failed. The default is false , which

means no checks are performed.

ldap_uids

[Attr] | {Attr: AttrFormat}

LDAP attributes which hold a list of attributes to use as alternatives for getting the JID, where Attr is an LDAP attribute which

holds the user’s part of the JID and AttrFormat must contain one and only one pattern variable "%u" which will be replaced by

the user’s part of the JID. For example, "%u@example.org". If the value is in the form of [Attr] then AttrFormat is assumed to be

"%u".

listen

[Options, ...]

The option for listeners configuration. See the Listen Modules section for details.

log_burst_limit_count

Number

added in 22.10

The number of messages to accept in log_burst_limit_window_time period before starting to drop them. Default 500

log_burst_limit_window_time

Number

added in 22.10

The time period to rate-limit log messages by. Defaults to 1 second.

ldap_tls_certfile

- 117/175 - Copyright © 2008 - 2024 ProcessOne

mailto:u@example

log_modules_fully

[Module, ...]

added in 23.01

List of modules that will log everything independently from the general loglevel option.

log_rotate_count

Number

The number of rotated log files to keep. The default value is 1 , which means that only keeps ejabberd.log.0 , error.log.0 and

crash.log.0 .

log_rotate_size

pos_integer() | infinity

The size (in bytes) of a log file to trigger rotation. If set to infinity , log rotation is disabled. The default value is 10 Mb

expressed in bytes: 10485760 .

loglevel

none | emergency | alert | critical | error | warning | notice | info | debug

Verbosity of ejabberd logging. The default value is info . NOTE: previous versions of ejabberd had log levels defined in numeric

format (0..5). The numeric values are still accepted for backward compatibility, but are not recommended.

max_fsm_queue

Size

This option specifies the maximum number of elements in the queue of the FSM (Finite State Machine). Roughly speaking, each

message in such queues represents one XML stanza queued to be sent into its relevant outgoing stream. If queue size reaches

the limit (because, for example, the receiver of stanzas is too slow), the FSM and the corresponding connection (if any) will be

terminated and error message will be logged. The reasonable value for this option depends on your hardware configuration. The

allowed values are positive integers. The default value is 10000 .

modules

{Module: Options}

Set all the modules configuration options.

negotiation_timeout

timeout()

Time to wait for an XMPP stream negotiation to complete. When timeout occurs, the corresponding XMPP stream is closed. The

default value is 120 seconds.

log_modules_fully

- 118/175 - Copyright © 2008 - 2024 ProcessOne

net_ticktime

timeout()

This option can be used to tune tick time parameter of net_kernel . It tells Erlang VM how often nodes should check if intra-node

communication was not interrupted. This option must have identical value on all nodes, or it will lead to subtle bugs. Usually

leaving default value of this is option is best, tweak it only if you know what you are doing. The default value is 1 minute .

new_sql_schema

true | false

Whether to use the new SQL schema. All schemas are located at https://github.com/processone/ejabberd/tree/24.12/sql. There

are two schemas available. The default legacy schema stores one XMPP domain into one ejabberd database. The new schema can

handle several XMPP domains in a single ejabberd database. Using this new schema is best when serving several XMPP domains

and/or changing domains from time to time. This avoid need to manage several databases and handle complex configuration

changes. The default depends on configuration flag --enable-new-sql-schema which is set at compile time.

oauth_access

AccessName

By default creating OAuth tokens is not allowed. To define which users can create OAuth tokens, you can refer to an ejabberd

access rule in the oauth_access option. Use all to allow everyone to create tokens.

oauth_cache_life_time

timeout()

Same as cache_life_time, but applied to OAuth cache only. If not set, the value from cache_life_time will be used.

oauth_cache_missed

true | false

Same as cache_missed, but applied to OAuth cache only. If not set, the value from cache_missed will be used.

oauth_cache_rest_failure_life_time

timeout()

added in 21.01

The time that a failure in OAuth ReST is cached. The default value is infinity .

oauth_cache_size

pos_integer() | infinity

Same as cache_size, but applied to OAuth cache only. If not set, the value from cache_size will be used.

net_ticktime

- 119/175 - Copyright © 2008 - 2024 ProcessOne

https://github.com/processone/ejabberd/tree/24.12/sql

oauth_client_id_check

allow | db | deny

Define whether the client authentication is always allowed, denied, or it will depend if the client ID is present in the database.

The default value is allow .

oauth_db_type

mnesia | sql

Database backend to use for OAuth authentication. The default value is picked from default_db option, or if it’s not set, mnesia

will be used.

oauth_expire

timeout()

Time during which the OAuth token is valid, in seconds. After that amount of time, the token expires and the delegated credential

cannot be used and is removed from the database. The default is 4294967 seconds.

oauth_use_cache

true | false

Same as use_cache, but applied to OAuth cache only. If not set, the value from use_cache will be used.

oom_killer

true | false

Enable or disable OOM (out-of-memory) killer. When system memory raises above the limit defined in oom_watermark option,

ejabberd triggers OOM killer to terminate most memory consuming Erlang processes. Note that in order to maintain

functionality, ejabberd only attempts to kill transient processes, such as those managing client sessions, s2s or database

connections. The default value is true .

oom_queue

Size

Trigger OOM killer when some of the running Erlang processes have messages queue above this Size . Note that such processes

won’t be killed if oom_killer option is set to false or if oom_watermark is not reached yet.

oom_watermark

Percent

A percent of total system memory consumed at which OOM killer should be activated with some of the processes possibly be

killed (see oom_killer option). Later, when memory drops below this Percent , OOM killer is deactivated. The default value is 80

percents.

oauth_client_id_check

- 120/175 - Copyright © 2008 - 2024 ProcessOne

outgoing_s2s_families

[ipv6 | ipv4, ...]

changed in 23.01

Specify which address families to try, in what order. The default is [ipv6, ipv4] which means it first tries connecting with IPv6, if

that fails it tries using IPv4. This option is obsolete and irrelevant when using ejabberd 23.01 and Erlang/OTP 22, or newer

versions of them.

outgoing_s2s_ipv4_address

Address

added in 20.12

Specify the IPv4 address that will be used when establishing an outgoing S2S IPv4 connection, for example "127.0.0.1" . The

default value is undefined .

outgoing_s2s_ipv6_address

Address

added in 20.12

Specify the IPv6 address that will be used when establishing an outgoing S2S IPv6 connection, for example "::FFFF:127.0.0.1" .

The default value is undefined .

outgoing_s2s_port

1..65535

A port number to use for outgoing s2s connections when the target server doesn’t have an SRV record. The default value is 5269 .

outgoing_s2s_timeout

timeout()

The timeout in seconds for outgoing S2S connection attempts. The default value is 10 seconds.

pam_service

Name

This option defines the PAM service name. Refer to the PAM documentation of your operation system for more information. The

default value is ejabberd .

pam_userinfotype

username | jid

This option defines what type of information about the user ejabberd provides to the PAM service: only the username, or the

user’s JID. Default is username .

outgoing_s2s_families

- 121/175 - Copyright © 2008 - 2024 ProcessOne

pgsql_users_number_estimate

true | false

Whether to use PostgreSQL estimation when counting registered users. The default value is false .

queue_dir

Directory

If queue_type option is set to file , use this Directory to store file queues. The default is to keep queues inside Mnesia directory.

queue_type

ram | file

Default type of queues in ejabberd. Modules may have its own value of the option. The value of ram means that queues will be

kept in memory. If value file is set, you may also specify directory in queue_dir option where file queues will be placed. The

default value is ram .

redis_connect_timeout

timeout()

A timeout to wait for the connection to be re-established to the Redis server. The default is 1 second .

redis_db

Number

Redis database number. The default is 0 .

redis_password

Password

The password to the Redis server. The default is an empty string, i.e. no password.

redis_pool_size

Number

The number of simultaneous connections to the Redis server. The default value is 10 .

redis_port

1..65535

The port where the Redis server is accepting connections. The default is 6379 .

pgsql_users_number_estimate

- 122/175 - Copyright © 2008 - 2024 ProcessOne

redis_queue_type

ram | file

The type of request queue for the Redis server. See description of queue_type option for the explanation. The default value is the

value defined in queue_type or ram if the latter is not set.

redis_server 🟤

Host | IP Address | Unix Socket Path

improved in 24.12

A hostname, IP address or unix domain socket file of the Redis server. Setup the path to unix domain socket like: "unix:/path/to/

socket" . The default value is localhost .

registration_timeout

timeout()

This is a global option for module mod_register. It limits the frequency of registrations from a given IP or username. So, a user

that tries to register a new account from the same IP address or JID during this time after their previous registration will receive

an error with the corresponding explanation. To disable this limitation, set the value to infinity . The default value is

600 seconds .

resource_conflict

setresource | closeold | closenew

NOTE: this option is deprecated and may be removed anytime in the future versions. The possible values match exactly the three

possibilities described in XMPP Core: section 7.7.2.2. The default value is closeold . If the client uses old Jabber Non-SASL

authentication (XEP-0078), then this option is not respected, and the action performed is closeold .

router_cache_life_time

timeout()

Same as cache_life_time, but applied to routing table cache only. If not set, the value from cache_life_time will be used.

router_cache_missed

true | false

Same as cache_missed, but applied to routing table cache only. If not set, the value from cache_missed will be used.

router_cache_size

pos_integer() | infinity

Same as cache_size, but applied to routing table cache only. If not set, the value from cache_size will be used.

redis_queue_type

- 123/175 - Copyright © 2008 - 2024 ProcessOne

https://tools.ietf.org/html/rfc6120#section-7.7.2.2

router_db_type

mnesia | redis | sql

Database backend to use for routing information. The default value is picked from default_ram_db option, or if it’s not set, mnesia

will be used.

router_use_cache

true | false

Same as use_cache, but applied to routing table cache only. If not set, the value from use_cache will be used.

rpc_timeout

timeout()

A timeout for remote function calls between nodes in an ejabberd cluster. You should probably never change this value since

those calls are used for internal needs only. The default value is 5 seconds.

s2s_access

Access

This Access Rule defines to what remote servers can s2s connections be established. The default value is all ; no restrictions are

applied, it is allowed to connect s2s to/from all remote servers.

s2s_cafile

Path

A path to a file with CA root certificates that will be used to authenticate s2s connections. If not set, the value of ca_file will be

used.

You can use host_config to specify this option per-vhost.

s2s_ciphers

[Cipher, ...]

A list of OpenSSL ciphers to use for s2s connections. The default value is shown in the example below:

Example:

s2s_dhfile

Path

s2s_ciphers:
- HIGH
- "!aNULL"
- "!eNULL"
- "!3DES"
- "@STRENGTH"

router_db_type

- 124/175 - Copyright © 2008 - 2024 ProcessOne

Full path to a file containing custom DH parameters to use for s2s connections. Such a file could be created with the command

"openssl dhparam -out dh.pem 2048". If this option is not specified, 2048-bit MODP Group with 256-bit Prime Order Subgroup

will be used as defined in RFC5114 Section 2.3.

s2s_dns_retries

Number

DNS resolving retries. The default value is 2 .

s2s_dns_timeout

timeout()

The timeout for DNS resolving. The default value is 10 seconds.

s2s_max_retry_delay

timeout()

The maximum allowed delay for s2s connection retry to connect after a failed connection attempt. The default value is 300

seconds (5 minutes).

s2s_protocol_options

[Option, ...]

List of general SSL options to use for s2s connections. These map to OpenSSL’s set_options() . The default value is shown in the

example below:

Example:

s2s_queue_type

ram | file

The type of a queue for s2s packets. See description of queue_type option for the explanation. The default value is the value

defined in queue_type or ram if the latter is not set.

s2s_timeout

timeout()

A time to wait before closing an idle s2s connection. The default value is 1 hour.

s2s_tls_compression

true | false

s2s_protocol_options:
- no_sslv3
- cipher_server_preference
- no_compression

s2s_dns_retries

- 125/175 - Copyright © 2008 - 2024 ProcessOne

Whether to enable or disable TLS compression for s2s connections. The default value is false .

s2s_use_starttls

true | false | optional | required

Whether to use STARTTLS for s2s connections. The value of false means STARTTLS is prohibited. The value of true or optional

means STARTTLS is enabled but plain connections are still allowed. And the value of required means that only STARTTLS

connections are allowed. The default value is false (for historical reasons).

s2s_zlib

true | false

Whether to use zlib compression (as defined in XEP-0138) or not. The default value is false . WARNING: this type of

compression is nowadays considered insecure.

shaper

{ShaperName: Rate}

The option defines a set of shapers. Every shaper is assigned a name ShaperName that can be used in other parts of the

configuration file, such as shaper_rules option. The shaper itself is defined by its Rate , where Rate stands for the maximum

allowed incoming rate in bytes per second. When a connection exceeds this limit, ejabberd stops reading from the socket until

the average rate is again below the allowed maximum. In the example below shaper normal limits the traffic speed to 1,000

bytes/sec and shaper fast limits the traffic speed to 50,000 bytes/sec:

Example:

shaper_rules

{ShaperRuleName: {Number|ShaperName: ACLRule|ACLName}}

This option defines shaper rules to use for matching user/hosts. Semantics is similar to access_rules option, the only difference is

that instead using allow or deny , a name of a shaper (defined in shaper option) or a positive number should be used.

Example:

sm_cache_life_time

timeout()

Same as cache_life_time, but applied to client sessions table cache only. If not set, the value from cache_life_time will be used.

shaper:
normal: 1000
fast: 50000

shaper_rules:
connections_limit:

10:
user: peter@example.com

100: admin
5: all

download_speed:
fast: admin
slow: anonymous_users
normal: all

log_days: 30

s2s_use_starttls

- 126/175 - Copyright © 2008 - 2024 ProcessOne

https://xmpp.org/extensions/xep-0138.html

sm_cache_missed

true | false

Same as cache_missed, but applied to client sessions table cache only. If not set, the value from cache_missed will be used.

sm_cache_size

pos_integer() | infinity

Same as cache_size, but applied to client sessions table cache only. If not set, the value from cache_size will be used.

sm_db_type

mnesia | redis | sql

Database backend to use for client sessions information. The default value is picked from default_ram_db option, or if it’s not set,

mnesia will be used.

sm_use_cache

true | false

Same as use_cache, but applied to client sessions table cache only. If not set, the value from use_cache will be used.

sql_connect_timeout

timeout()

A time to wait for connection to an SQL server to be established. The default value is 5 seconds.

sql_database

Database

An SQL database name. For SQLite this must be a full path to a database file. The default value is ejabberd .

sql_flags

[mysql_alternative_upsert]

added in 24.02

This option accepts a list of SQL flags, and is empty by default. mysql_alternative_upsert forces the alternative upsert

implementation in MySQL.

sql_keepalive_interval

timeout()

An interval to make a dummy SQL request to keep alive the connections to the database. There is no default value, so no

keepalive requests are made.

sm_cache_missed

- 127/175 - Copyright © 2008 - 2024 ProcessOne

sql_odbc_driver

Path

added in 20.12

Path to the ODBC driver to use to connect to a Microsoft SQL Server database. This option only applies if the sql_type option is

set to mssql and sql_server is not an ODBC connection string. The default value is: libtdsodbc.so

sql_password

Password

The password for SQL authentication. The default is empty string.

sql_pool_size

Size

Number of connections to the SQL server that ejabberd will open for each virtual host. The default value is 10 . WARNING: for

SQLite this value is 1 by default and it’s not recommended to change it due to potential race conditions.

sql_port

1..65535

The port where the SQL server is accepting connections. The default is 3306 for MySQL, 5432 for PostgreSQL and 1433 for MS

SQL. The option has no effect for SQLite.

sql_prepared_statements

true | false

added in 20.01

This option is true by default, and is useful to disable prepared statements. The option is valid for PostgreSQL and MySQL.

sql_query_timeout

timeout()

A time to wait for an SQL query response. The default value is 60 seconds.

sql_queue_type

ram | file

The type of a request queue for the SQL server. See description of queue_type option for the explanation. The default value is the

value defined in queue_type or ram if the latter is not set.

sql_server

Host | IP Address | ODBC Connection String | Unix Socket Path

sql_odbc_driver

- 128/175 - Copyright © 2008 - 2024 ProcessOne

improved in 24.06

The hostname or IP address of the SQL server. For sql_type mssql or odbc this can also be an ODBC connection string. When

sql_type is mysql or pgsql , this can be the path to a unix domain socket expressed like: "unix:/path/to/socket" .The default value

is localhost .

sql_ssl

true | false

improved in 20.03

Whether to use SSL encrypted connections to the SQL server. The option is only available for MySQL, MS SQL and PostgreSQL.

The default value is false .

sql_ssl_cafile

Path

A path to a file with CA root certificates that will be used to verify SQL connections. Implies sql_ssl and sql_ssl_verify options are

set to true . There is no default which means certificate verification is disabled. This option has no effect for MS SQL.

sql_ssl_certfile

Path

A path to a certificate file that will be used for SSL connections to the SQL server. Implies sql_ssl option is set to true . There is

no default which means ejabberd won’t provide a client certificate to the SQL server. This option has no effect for MS SQL.

sql_ssl_verify

true | false

Whether to verify SSL connection to the SQL server against CA root certificates defined in sql_ssl_cafile option. Implies sql_ssl

option is set to true . This option has no effect for MS SQL. The default value is false .

sql_start_interval

timeout()

A time to wait before retrying to restore failed SQL connection. The default value is 30 seconds.

sql_type

mssql | mysql | odbc | pgsql | sqlite

The type of an SQL connection. The default is odbc .

sql_username

Username

A user name for SQL authentication. The default value is ejabberd .

sql_ssl

- 129/175 - Copyright © 2008 - 2024 ProcessOne

trusted_proxies

all | [Network1, Network2, ...]

Specify what proxies are trusted when an HTTP request contains the header X-Forwarded-For . You can specify all to allow all

proxies, or specify a list of IPs, possibly with masks. The default value is an empty list. Using this option you can know the real IP

of the request, for admin purpose, or security configuration (for example using mod_fail2ban). IMPORTANT: The proxy MUST be

configured to set the X-Forwarded-For header if you enable this option as, otherwise, the client can set it itself and as a result the

IP value cannot be trusted for security rules in ejabberd.

update_sql_schema

true | false

updated in 24.06

Allow ejabberd to update SQL schema in MySQL, PostgreSQL and SQLite databases. This option was added in ejabberd 23.10,

and enabled by default since 24.06. The default value is true .

update_sql_schema_timeout

timeout()

added in 24.07

Time allocated to SQL schema update queries. The default value is set to 5 minutes.

use_cache

true | false

Enable or disable cache. The default is true . Several modules have a similar option; and some core ejabberd parts support

similar options too, see auth_use_cache, oauth_use_cache, router_use_cache, and sm_use_cache.

validate_stream

true | false

Whether to validate any incoming XML packet according to the schemas of supported XMPP extensions. WARNING: the

validation is only intended for the use by client developers - don’t enable it in production environment. The default value is

false .

version

string()

The option can be used to set custom ejabberd version, that will be used by different parts of ejabberd, for example by

mod_version module. The default value is obtained at compile time from the underlying version control system.

websocket_origin

ignore | URL

This option enables validation for Origin header to protect against connections from other domains than given in the

configuration file. In this way, the lower layer load balancer can be chosen for a specific ejabberd implementation while still

trusted_proxies

- 130/175 - Copyright © 2008 - 2024 ProcessOne

https://github.com/processone/xmpp#supported-xmpp-elements

providing a secure WebSocket connection. The default value is ignore . An example value of the URL is

"https://test.example.org:8081" .

websocket_ping_interval

timeout()

Defines time between pings sent by the server to a client (WebSocket level protocol pings are used for this) to keep a connection

active. If the client doesn’t respond to two consecutive pings, the connection will be assumed as closed. The value of 0 can be

used to disable the feature. This option makes the server sending pings only for connections using the RFC compliant protocol.

For older style connections the server expects that whitespace pings would be used for this purpose. The default value is 60

seconds.

websocket_timeout

timeout()

Amount of time without any communication after which the connection would be closed. The default value is 300 seconds.

websocket_ping_interval

- 131/175 - Copyright © 2008 - 2024 ProcessOne

Modules Options

This section describes modules options of ejabberd 24.12. If you are using an old ejabberd release, please refer to the corresponding

archived version of this page in the Archive.

The modules that changed in this version are marked with 🟤.

mod_adhoc

This module implements XEP-0050: Ad-Hoc Commands. It’s an auxiliary module and is only needed by some of the other

modules.

Available options:

report_commands_node: true | false

Provide the Commands item in the Service Discovery. Default value: false .

mod_admin_extra

This module provides additional administrative commands.

Details for some commands:

ban_account API: This command kicks all the connected sessions of the account from the server. It also changes their password

to a randomly generated one, so they can’t login anymore unless a server administrator changes their password again. It is

possible to define the reason of the ban. The new password also includes the reason and the date and time of the ban. See an

example below.

push_roster API (and push_roster_all API): The roster file must be placed, if using Windows, on the directory where you installed

ejabberd: C:/Program Files/ejabberd or similar. If you use other Operating System, place the file on the same directory where

the .beam files are installed. See below an example roster file.

srg_create API: If you want to put a group Name with blank spaces, use the characters " ' and '" to define when the Name

starts and ends. See an example below.

The module has no options.

Examples:

With this configuration, vCards can only be modified with mod_admin_extra commands:

Content of roster file for push_roster API:

Please note

•

acl:
adminextraresource:

- resource: "modadminextraf8x,31ad"
access_rules:

vcard_set:
- allow: adminextraresource

modules:
mod_admin_extra: {}
mod_vcard:

access_set: vcard_set

[{<<"bob">>, <<"example.org">>, <<"workers">>, <<"Bob">>},
{<<"mart">>, <<"example.org">>, <<"workers">>, <<"Mart">>},
{<<"Rich">>, <<"example.org">>, <<"bosses">>, <<"Rich">>}].

Modules Options

- 132/175 - Copyright © 2008 - 2024 ProcessOne

https://xmpp.org/extensions/xep-0050.html

With this call, the sessions of the local account which JID is boby@example.org will be kicked, and its password will be set to

something like BANNED_ACCOUNT—20080425T21:45:07—2176635—Spammed_rooms

Call to srg_create API using double-quotes and single-quotes:

mod_admin_update_sql

This module can be used to update existing SQL database from the default to the new schema. Check the section Default and

New Schemas for details. Please note that only MS SQL, MySQL, and PostgreSQL are supported. When the module is loaded use

update_sql API.

The module has no options.

mod_announce

This module enables configured users to broadcast announcements and to set the message of the day (MOTD). Configured users

can perform these actions with an XMPP client either using Ad-hoc Commands or sending messages to specific JIDs.

Note that this module can be resource intensive on large deployments as it may broadcast a lot of messages. This module should

be disabled for instances of ejabberd with hundreds of thousands users.

The Ad-hoc Commands are listed in the Server Discovery. For this feature to work, mod_adhoc must be enabled.

The specific JIDs where messages can be sent are listed below. The first JID in each entry will apply only to the specified virtual

host example.org, while the JID between brackets will apply to all virtual hosts in ejabberd:

example.org/announce/all (example.org/announce/all-hosts/all):: The message is sent to all registered users. If the user is

online and connected to several resources, only the resource with the highest priority will receive the message. If the

registered user is not connected, the message will be stored offline in assumption that offline storage (see mod_offline) is

enabled.

example.org/announce/online (example.org/announce/all-hosts/online):: The message is sent to all connected users. If the user

is online and connected to several resources, all resources will receive the message.

example.org/announce/motd (example.org/announce/all-hosts/motd):: The message is set as the message of the day (MOTD)

and is sent to users when they login. In addition the message is sent to all connected users (similar to announce/online).

example.org/announce/motd/update (example.org/announce/all-hosts/motd/update):: The message is set as message of the day

(MOTD) and is sent to users when they login. The message is not sent to any currently connected user.

example.org/announce/motd/delete (example.org/announce/all-hosts/motd/delete):: Any message sent to this JID removes the

existing message of the day (MOTD).

ejabberdctl vhost example.org ban_account boby "Spammed rooms"

ejabberdctl srg_create g1 example.org "'Group number 1'" this_is_g1 g1

•

•

•

•

•

mod_admin_update_sql

- 133/175 - Copyright © 2008 - 2024 ProcessOne

Available options:

access: AccessName

This option specifies who is allowed to send announcements and to set the message of the day. The default value is none (i.e.

nobody is able to send such messages).

cache_life_time: timeout()

Same as top-level cache_life_time option, but applied to this module only.

cache_missed: true | false

Same as top-level cache_missed option, but applied to this module only.

cache_size: pos_integer() | infinity

Same as top-level cache_size option, but applied to this module only.

db_type: mnesia | sql

Same as top-level default_db option, but applied to this module only.

use_cache: true | false

Same as top-level use_cache option, but applied to this module only.

mod_auth_fast 🟤

added in 24.12

The module adds support for XEP-0480: Fast Authentication Streamlining Tokens that allows users to authenticate using self

managed tokens.

Available options:

db_type: mnesia

Same as top-level default_db option, but applied to this module only.

token_lifetime: timeout()

Time that tokens will be keept, measured from it’s creation time. Default value set to 30 days

token_refresh_age: timeout()

This time determines age of token, that qualifies for automatic refresh. Default value set to 1 day

Example:

mod_avatar

The purpose of the module is to cope with legacy and modern XMPP clients posting avatars. The process is described in

XEP-0398: User Avatar to vCard-Based Avatars Conversion.

Also, the module supports conversion between avatar image formats on the fly.

The module depends on mod_vcard, mod_vcard_xupdate and mod_pubsub.

•

•

•

•

•

•

•

•

•

modules:
mod_auth_fast:

token_lifetime: 14days

mod_auth_fast 🟤

- 134/175 - Copyright © 2008 - 2024 ProcessOne

https://xmpp.org/extensions/xep-0484.html
https://xmpp.org/extensions/xep-0398.html

Available options:

convert: {From: To}

Defines image conversion rules: the format in From will be converted to format in To . The value of From can also be default ,

which is match-all rule. NOTE: the list of supported formats is detected at compile time depending on the image libraries

installed in the system.

Example:

rate_limit: Number

Limit any given JID by the number of avatars it is able to convert per minute. This is to protect the server from image

conversion DoS. The default value is 10 .

mod_block_strangers

This module blocks and logs any messages coming from an unknown entity. If a writing entity is not in your roster, you can let

this module drop and/or log the message. By default you’ll just not receive message from that entity. Enable this module if you

want to drop SPAM messages.

Available options:

access: AccessName

The option is supposed to be used when allow_local_users and allow_transports are not enough. It’s an ACL where deny

means the message will be rejected (or a CAPTCHA would be generated for a presence, if configured), and allow means the

sender is whitelisted and the stanza will pass through. The default value is none , which means nothing is whitelisted.

allow_local_users: true | false

This option specifies if strangers from the same local host should be accepted or not. The default value is true .

allow_transports: true | false

If set to true and some server’s JID is in user’s roster, then messages from any user of this server are accepted even if no

subscription present. The default value is true .

captcha: true | false

Whether to generate CAPTCHA or not in response to messages from strangers. See also section CAPTCHA of the Configuration

Guide. The default value is false .

drop: true | false

This option specifies if strangers messages should be dropped or not. The default value is true .

log: true | false

This option specifies if strangers' messages should be logged (as info message) in ejabberd.log. The default value is false .

mod_blocking

The module implements XEP-0191: Blocking Command.

This module depends on mod_privacy where all the configuration is performed.

The module has no options.

mod_bosh

This module implements XMPP over BOSH as defined in XEP-0124 and XEP-0206. BOSH stands for Bidirectional-streams Over

Synchronous HTTP. It makes it possible to simulate long lived connections required by XMPP over the HTTP protocol. In practice,

•

convert:
webp: jpg
default: png

•

•

•

•

•

•

•

mod_block_strangers

- 135/175 - Copyright © 2008 - 2024 ProcessOne

https://xmpp.org/extensions/xep-0191.html
https://xmpp.org/extensions/xep-0124.html
https://xmpp.org/extensions/xep-0206.html

this module makes it possible to use XMPP in a browser without WebSocket support and more generally to have a way to use

XMPP while having to get through an HTTP proxy.

Available options:

cache_life_time: timeout()

Same as top-level cache_life_time option, but applied to this module only.

cache_missed: true | false

Same as top-level cache_missed option, but applied to this module only.

cache_size: pos_integer() | infinity

Same as top-level cache_size option, but applied to this module only.

json: true | false

This option has no effect.

max_concat: pos_integer() | infinity

This option limits the number of stanzas that the server will send in a single bosh request. The default value is unlimited .

max_inactivity: timeout()

The option defines the maximum inactivity period. The default value is 30 seconds.

max_pause: pos_integer()

Indicate the maximum length of a temporary session pause (in seconds) that a client can request. The default value is 120 .

prebind: true | false

If enabled, the client can create the session without going through authentication. Basically, it creates a new session with

anonymous authentication. The default value is false .

queue_type: ram | file

Same as top-level queue_type option, but applied to this module only.

ram_db_type: mnesia | sql | redis

Same as top-level default_ram_db option, but applied to this module only.

use_cache: true | false

Same as top-level use_cache option, but applied to this module only.

Example:

mod_caps

This module implements XEP-0115: Entity Capabilities. The main purpose of the module is to provide PEP functionality (see

mod_pubsub).

•

•

•

•

•

•

•

•

•

•

•

listen:
-

port: 5222
module: ejabberd_c2s

-
port: 5443
module: ejabberd_http
request_handlers:

/bosh: mod_bosh

modules:
mod_bosh: {}

mod_caps

- 136/175 - Copyright © 2008 - 2024 ProcessOne

https://xmpp.org/extensions/xep-0115.html

Available options:

cache_life_time: timeout()

Same as top-level cache_life_time option, but applied to this module only.

cache_missed: true | false

Same as top-level cache_missed option, but applied to this module only.

cache_size: pos_integer() | infinity

Same as top-level cache_size option, but applied to this module only.

db_type: mnesia | sql

Same as top-level default_db option, but applied to this module only.

use_cache: true | false

Same as top-level use_cache option, but applied to this module only.

mod_carboncopy

The module implements XEP-0280: Message Carbons. The module broadcasts messages on all connected user resources

(devices).

The module has no options.

mod_client_state

This module allows for queueing certain types of stanzas when a client indicates that the user is not actively using the client

right now (see XEP-0352: Client State Indication). This can save bandwidth and resources.

A stanza is dropped from the queue if it’s effectively obsoleted by a new one (e.g., a new presence stanza would replace an old

one from the same client). The queue is flushed if a stanza arrives that won’t be queued, or if the queue size reaches a certain

limit (currently 100 stanzas), or if the client becomes active again.

Available options:

queue_chat_states: true | false

Queue "standalone" chat state notifications (as defined in XEP-0085: Chat State Notifications) while a client indicates

inactivity. The default value is true .

queue_pep: true | false

Queue PEP notifications while a client is inactive. When the queue is flushed, only the most recent notification of a given PEP

node is delivered. The default value is true .

queue_presence: true | false

While a client is inactive, queue presence stanzas that indicate (un)availability. The default value is true .

mod_configure

The module provides server configuration functionality via XEP-0050: Ad-Hoc Commands. Implements many commands as

defined in XEP-0133: Service Administration. This module requires mod_adhoc to be loaded.

The module has no options.

mod_conversejs

added in 21.12 and improved in 22.05

This module serves a simple page for the Converse XMPP web browser client.

•

•

•

•

•

•

•

•

mod_carboncopy

- 137/175 - Copyright © 2008 - 2024 ProcessOne

https://xmpp.org/extensions/xep-0280.html
https://xmpp.org/extensions/xep-0352.html
https://xmpp.org/extensions/xep-0085.html
https://xmpp.org/extensions/xep-0050.html
https://xmpp.org/extensions/xep-0133.html
https://conversejs.org/

To use this module, in addition to adding it to the modules section, you must also enable it in listen → ejabberd_http →

request_handlers.

Make sure either mod_bosh or ejabberd_http_ws are enabled in at least one request_handlers .

When conversejs_css and conversejs_script are auto , by default they point to the public Converse client.

Available options:

bosh_service_url: auto | BoshURL

BOSH service URL to which Converse can connect to. The keyword @HOST@ is replaced with the real virtual host name. If set

to auto , it will build the URL of the first configured BOSH request handler. The default value is auto .

conversejs_css: auto | URL

Converse CSS URL. The keyword @HOST@ is replaced with the hostname. The default value is auto .

conversejs_options: {Name: Value}

added in 22.05 Specify additional options to be passed to Converse. See Converse configuration. Only boolean, integer

and string values are supported; lists are not supported.

conversejs_resources: Path

added in 22.05 Local path to the Converse files. If not set, the public Converse client will be used instead.

conversejs_script: auto | URL

Converse main script URL. The keyword @HOST@ is replaced with the hostname. The default value is auto .

default_domain: Domain

Specify a domain to act as the default for user JIDs. The keyword @HOST@ is replaced with the hostname. The default value is

@HOST@ .

websocket_url: auto | WebSocketURL

A WebSocket URL to which Converse can connect to. The @HOST@ keyword is replaced with the real virtual host name. If set to

auto , it will build the URL of the first configured WebSocket request handler. The default value is auto .

Examples:

Manually setup WebSocket url, and use the public Converse client:

Host Converse locally and let auto detection of WebSocket and Converse URLs:

Configure some additional options for Converse

•

•

•

•

•

•

•

listen:
-

port: 5280
module: ejabberd_http
request_handlers:

/bosh: mod_bosh
/websocket: ejabberd_http_ws
/conversejs: mod_conversejs

modules:
mod_bosh: {}
mod_conversejs:

websocket_url: "ws://@HOST@:5280/websocket"

listen:
-

port: 443
module: ejabberd_http
tls: true
request_handlers:

/websocket: ejabberd_http_ws
/conversejs: mod_conversejs

modules:
mod_conversejs:

conversejs_resources: "/home/ejabberd/conversejs-9.0.0/package/dist"

modules:
mod_conversejs:

websocket_url: auto
conversejs_options:

auto_away: 30

mod_conversejs

- 138/175 - Copyright © 2008 - 2024 ProcessOne

https://conversejs.org/docs/html/configuration.html

mod_delegation

This module is an implementation of XEP-0355: Namespace Delegation. Only admin mode has been implemented by now.

Namespace delegation allows external services to handle IQ using specific namespace. This may be applied for external PEP

service.

Security issue: Namespace delegation gives components access to sensitive data, so permission should be granted carefully, only if

you trust the component.

This module is complementary to mod_privilege but can also be used separately.

Available options:

namespaces: {Namespace: Options}

If you want to delegate namespaces to a component, specify them in this option, and associate them to an access rule. The

Options are:

access: AccessName

The option defines which components are allowed for namespace delegation. The default value is none .

filtering: Attributes

The list of attributes. Currently not used.

Examples:

Make sure you do not delegate the same namespace to several services at the same time. As in the example provided later, to

have the sat-pubsub.example.org component perform correctly disable the mod_pubsub module.

mod_disco

This module adds support for XEP-0030: Service Discovery. With this module enabled, services on your server can be discovered

by XMPP clients.

clear_cache_on_logout: true
i18n: "pt"
locked_domain: "@HOST@"
message_archiving: always
theme: dracula

Warning

Note

•

•

•

access_rules:
external_pubsub:

allow: external_component
external_mam:

allow: external_component

acl:
external_component:

server: sat-pubsub.example.org

modules:
mod_delegation:

namespaces:
urn:xmpp:mam:1:

access: external_mam
http://jabber.org/protocol/pubsub:

access: external_pubsub

mod_delegation

- 139/175 - Copyright © 2008 - 2024 ProcessOne

https://xmpp.org/extensions/xep-0355.html
https://xmpp.org/extensions/xep-0030.html

Available options:

extra_domains: [Domain, ...]

With this option, you can specify a list of extra domains that are added to the Service Discovery item list. The default value is

an empty list.

name: Name

A name of the server in the Service Discovery. This will only be displayed by special XMPP clients. The default value is

ejabberd .

server_info: [Info, ...]

Specify additional information about the server, as described in XEP-0157: Contact Addresses for XMPP Services. Every Info

element in the list is constructed from the following options:

modules: all | [Module, ...]

The value can be the keyword all , in which case the information is reported in all the services, or a list of ejabberd modules,

in which case the information is only specified for the services provided by those modules.

name: Name

The field var name that will be defined. See XEP-0157 for some standardized names.

urls: [URI, ...]

A list of contact URIs, such as HTTP URLs, XMPP URIs and so on.

Example:

mod_fail2ban

The module bans IPs that show the malicious signs. Currently only C2S authentication failures are detected.

Unlike the standalone program, mod_fail2ban clears the record of authentication failures after some time since the first failure or

on a successful authentication. It also does not simply block network traffic, but provides the client with a descriptive error

message.

You should not use this module behind a proxy or load balancer. ejabberd will see the failures as coming from the load balancer and,

when the threshold of auth failures is reached, will reject all connections coming from the load balancer. You can lock all your user

base out of ejabberd when using this module behind a proxy.

•

•

•

•

•

•

server_info:
-

modules: all
name: abuse-addresses
urls: ["mailto:abuse@shakespeare.lit"]

-
modules: [mod_muc]
name: "Web chatroom logs"
urls: ["http://www.example.org/muc-logs"]

-
modules: [mod_disco]
name: feedback-addresses
urls:

- http://shakespeare.lit/feedback.php
- mailto:feedback@shakespeare.lit
- xmpp:feedback@shakespeare.lit

-
modules:

- mod_disco
- mod_vcard

name: admin-addresses
urls:

- mailto:xmpp@shakespeare.lit
- xmpp:admins@shakespeare.lit

Warning

mod_fail2ban

- 140/175 - Copyright © 2008 - 2024 ProcessOne

https://xmpp.org/extensions/xep-0157.html

Available options:

access: AccessName

Specify an access rule for whitelisting IP addresses or networks. If the rule returns allow for a given IP address, that address

will never be banned. The AccessName should be of type ip . The default value is none .

c2s_auth_ban_lifetime: timeout()

The lifetime of the IP ban caused by too many C2S authentication failures. The default value is 1 hour.

c2s_max_auth_failures: Number

The number of C2S authentication failures to trigger the IP ban. The default value is 20 .

mod_host_meta

added in 22.05

This module serves small host-meta files as described in XEP-0156: Discovering Alternative XMPP Connection Methods.

To use this module, in addition to adding it to the modules section, you must also enable it in listen → ejabberd_http →

request_handlers.

Notice it only works if ejabberd_http has tls enabled.

Available options:

bosh_service_url: undefined | auto | BoshURL

BOSH service URL to announce. The keyword @HOST@ is replaced with the real virtual host name. If set to auto , it will build

the URL of the first configured BOSH request handler. The default value is auto .

websocket_url: undefined | auto | WebSocketURL

WebSocket URL to announce. The keyword @HOST@ is replaced with the real virtual host name. If set to auto , it will build the

URL of the first configured WebSocket request handler. The default value is auto .

Example:

mod_http_api

This module provides a ReST interface to call ejabberd API commands using JSON data.

To use this module, in addition to adding it to the modules section, you must also enable it in listen → ejabberd_http →

request_handlers.

To use a specific API version N, when defining the URL path in the request_handlers, add a vN. For example: /api/v2:

mod_http_api .

To run a command, send a POST request to the corresponding URL: http://localhost:5280/api/COMMAND-NAME

•

•

•

•

•

listen:
-

port: 443
module: ejabberd_http
tls: true
request_handlers:

/bosh: mod_bosh
/ws: ejabberd_http_ws
/.well-known/host-meta: mod_host_meta
/.well-known/host-meta.json: mod_host_meta

modules:
mod_bosh: {}
mod_host_meta:

bosh_service_url: "https://@HOST@:5443/bosh"
websocket_url: "wss://@HOST@:5443/ws"

mod_host_meta

- 141/175 - Copyright © 2008 - 2024 ProcessOne

https://xmpp.org/extensions/xep-0156.html

Available options:

*default_version 🟤 *: integer() | string()

added in 24.12 What API version to use when none is specified in the URL path. If setting an ejabberd version, it will use

the latest API version that was available in that ejabberd version. For example, setting "24.06" in this option implies 2 . The

default value is the latest version.

Example:

mod_http_fileserver

This simple module serves files from the local disk over HTTP.

Available options:

accesslog: Path

File to log accesses using an Apache-like format. No log will be recorded if this option is not specified.

content_types: {Extension: Type}

Specify mappings of extension to content type. There are several content types already defined. With this option you can add

new definitions or modify existing ones. The default values are:

Example:

custom_headers: {Name: Value}

Indicate custom HTTP headers to be included in all responses. There are no custom headers by default.

default_content_type: Type

Specify the content type to use for unknown extensions. The default value is application/octet-stream .

directory_indices: [Index, ...]

Indicate one or more directory index files, similarly to Apache’s DirectoryIndex variable. When an HTTP request hits a

directory instead of a regular file, those directory indices are looked in order, and the first one found is returned. The default

value is an empty list.

docroot: Path

Directory to serve the files from. This is a mandatory option.

must_authenticate_with: [{Username, Hostname}, ...]

List of accounts that are allowed to use this service. Default value: [] .

Examples:

•

listen:
-

port: 5280
module: ejabberd_http
request_handlers:

/api: mod_http_api

modules:
mod_http_api:

default_version: 2

•

•

content_types:
.css: text/css
.gif: image/gif
.html: text/html
.jar: application/java-archive
.jpeg: image/jpeg
.jpg: image/jpeg
.js: text/javascript
.png: image/png
.svg: image/svg+xml
.txt: text/plain
.xml: application/xml
.xpi: application/x-xpinstall
.xul: application/vnd.mozilla.xul+xml

•

•

•

•

•

mod_http_fileserver

- 142/175 - Copyright © 2008 - 2024 ProcessOne

This example configuration will serve the files from the local directory /var/www in the address http://example.org:5280/pub/

content/ . In this example a new content type ogg is defined, png is redefined, and jpg definition is deleted:

mod_http_upload

This module allows for requesting permissions to upload a file via HTTP as described in XEP-0363: HTTP File Upload. If the

request is accepted, the client receives a URL for uploading the file and another URL from which that file can later be

downloaded.

In order to use this module, it must be enabled in listen → ejabberd_http → request_handlers.

listen:
-

port: 5280
module: ejabberd_http
request_handlers:

/pub/content: mod_http_fileserver

modules:
mod_http_fileserver:

docroot: /var/www
accesslog: /var/log/ejabberd/access.log
directory_indices:

- index.html
- main.htm

custom_headers:
X-Powered-By: Erlang/OTP
X-Fry: "It's a widely-believed fact!"

content_types:
.ogg: audio/ogg
.png: image/png

default_content_type: text/html

mod_http_upload

- 143/175 - Copyright © 2008 - 2024 ProcessOne

https://xmpp.org/extensions/xep-0363.html

Available options:

mod_http_upload

- 144/175 - Copyright © 2008 - 2024 ProcessOne

access: AccessName

This option defines the access rule to limit who is permitted to use the HTTP upload service. The default value is local . If no

access rule of that name exists, no user will be allowed to use the service.

custom_headers: {Name: Value}

This option specifies additional header fields to be included in all HTTP responses. By default no custom headers are included.

dir_mode: Permission

This option defines the permission bits of the docroot directory and any directories created during file uploads. The bits are

specified as an octal number (see the chmod(1) manual page) within double quotes. For example: "0755" . The default is

undefined, which means no explicit permissions will be set.

docroot: Path

Uploaded files are stored below the directory specified (as an absolute path) with this option. The keyword @HOME@ is replaced

with the home directory of the user running ejabberd, and the keyword @HOST@ with the virtual host name. The default value is

"@HOME@/upload" .

external_secret: Text

This option makes it possible to offload all HTTP Upload processing to a separate HTTP server. Both ejabberd and the HTTP

server should share this secret and behave exactly as described at Prosody’s mod_http_upload_external: Implementation.

There is no default value.

file_mode: Permission

This option defines the permission bits of uploaded files. The bits are specified as an octal number (see the chmod(1) manual

page) within double quotes. For example: "0644" . The default is undefined, which means no explicit permissions will be set.

get_url: URL

This option specifies the initial part of the GET URLs used for downloading the files. The default value is undefined . When this

option is undefined , this option is set to the same value as put_url . The keyword @HOST@ is replaced with the virtual host name.

NOTE: if GET requests are handled by this module, the get_url must match the put_url . Setting it to a different value only

makes sense if an external web server or mod_http_fileserver is used to serve the uploaded files.

host

Deprecated. Use hosts instead.

hosts: [Host, ...]

This option defines the Jabber IDs of the service. If the hosts option is not specified, the only Jabber ID will be the hostname of

the virtual host with the prefix "upload." . The keyword @HOST@ is replaced with the real virtual host name.

jid_in_url: node | sha1

When this option is set to node , the node identifier of the user’s JID (i.e., the user name) is included in the GET and PUT URLs

generated by mod_http_upload . Otherwise, a SHA-1 hash of the user’s bare JID is included instead. The default value is sha1 .

max_size: Size

This option limits the acceptable file size. Either a number of bytes (larger than zero) or infinity must be specified. The

default value is 104857600 .

name: Name

A name of the service in the Service Discovery. The default value is "HTTP File Upload" . Please note this will only be displayed

by some XMPP clients.

put_url: URL

This option specifies the initial part of the PUT URLs used for file uploads. The keyword @HOST@ is replaced with the virtual

host name. NOTE: different virtual hosts cannot use the same PUT URL. The default value is "https://@HOST@:5443/upload" .

rm_on_unregister: true | false

This option specifies whether files uploaded by a user should be removed when that user is unregistered. The default value is

true .

secret_length: Length

This option defines the length of the random string included in the GET and PUT URLs generated by mod_http_upload . The

minimum length is 8 characters, but it is recommended to choose a larger value. The default value is 40 .

service_url

Deprecated.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

mod_http_upload

- 145/175 - Copyright © 2008 - 2024 ProcessOne

https://modules.prosody.im/mod_http_upload_external.html#implementation

thumbnail: true | false

This option specifies whether ejabberd should create thumbnails of uploaded images. If a thumbnail is created, a <thumbnail/

> element that contains the download <uri/> and some metadata is returned with the PUT response. The default value is

false .

vcard: vCard

A custom vCard of the service that will be displayed by some XMPP clients in Service Discovery. The value of vCard is a YAML

map constructed from an XML representation of vCard. Since the representation has no attributes, the mapping is

straightforward.

Example:

Example:

mod_http_upload_quota

This module adds quota support for mod_http_upload.

This module depends on mod_http_upload.

Available options:

access_hard_quota: AccessName

This option defines which access rule is used to specify the "hard quota" for the matching JIDs. That rule must yield a positive

number for any JID that is supposed to have a quota limit. This is the number of megabytes a corresponding user may upload.

When this threshold is exceeded, ejabberd deletes the oldest files uploaded by that user until their disk usage equals or falls

below the specified soft quota (see also option access_soft_quota). The default value is hard_upload_quota .

access_soft_quota: AccessName

This option defines which access rule is used to specify the "soft quota" for the matching JIDs. That rule must yield a positive

number of megabytes for any JID that is supposed to have a quota limit. See the description of the access_hard_quota option for

details. The default value is soft_upload_quota .

max_days: Days

If a number larger than zero is specified, any files (and directories) older than this number of days are removed from the

subdirectories of the docroot directory, once per day. The default value is infinity .

Examples:

•

•

This XML representation of vCard:
<vCard xmlns='vcard-temp'>
<FN>Conferences</FN>
<ADR>
<WORK/>
<STREET>Elm Street</STREET>
</ADR>
</vCard>
#
is translated to:
vcard:

fn: Conferences
adr:

-
work: true
street: Elm Street

listen:
-

port: 5443
module: ejabberd_http
tls: true
request_handlers:

/upload: mod_http_upload

modules:
mod_http_upload:

docroot: /ejabberd/upload
put_url: "https://@HOST@:5443/upload"

•

•

•

mod_http_upload_quota

- 146/175 - Copyright © 2008 - 2024 ProcessOne

Notice it’s not necessary to specify the access_hard_quota and access_soft_quota options in order to use the quota feature. You

can stick to the default names and just specify access rules such as those in this example:

mod_jidprep

This module allows XMPP clients to ask the server to normalize a JID as per the rules specified in RFC 6122: XMPP Address

Format. This might be useful for clients in certain constrained environments, or for testing purposes.

Available options:

access: AccessName

This option defines which access rule will be used to control who is allowed to use this service. The default value is local .

mod_last

This module adds support for XEP-0012: Last Activity. It can be used to discover when a disconnected user last accessed the

server, to know when a connected user was last active on the server, or to query the uptime of the ejabberd server.

Available options:

cache_life_time: timeout()

Same as top-level cache_life_time option, but applied to this module only.

cache_missed: true | false

Same as top-level cache_missed option, but applied to this module only.

cache_size: pos_integer() | infinity

Same as top-level cache_size option, but applied to this module only.

db_type: mnesia | sql

Same as top-level default_db option, but applied to this module only.

use_cache: true | false

Same as top-level use_cache option, but applied to this module only.

mod_legacy_auth

The module implements XEP-0078: Non-SASL Authentication.

This type of authentication was obsoleted in 2008 and you unlikely need this module unless you have something like outdated Jabber

bots.

The module has no options.

shaper_rules:
soft_upload_quota:

1000: all # MiB
hard_upload_quota:

1100: all # MiB

modules:
mod_http_upload: {}
mod_http_upload_quota:

max_days: 100

•

•

•

•

•

•

Note

mod_jidprep

- 147/175 - Copyright © 2008 - 2024 ProcessOne

https://tools.ietf.org/html/rfc6122
https://tools.ietf.org/html/rfc6122
https://xmpp.org/extensions/xep-0012.html
https://xmpp.org/extensions/xep-0078.html

mod_mam

This module implements XEP-0313: Message Archive Management and XEP-0441: Message Archive Management Preferences.

Compatible XMPP clients can use it to store their chat history on the server.

Available options:

access_preferences: AccessName

This access rule defines who is allowed to modify the MAM preferences. The default value is all .

assume_mam_usage: true | false

This option determines how ejabberd’s stream management code (see mod_stream_mgmt) handles unacknowledged messages

when the connection is lost. Usually, such messages are either bounced or resent. However, neither is done for messages that

were stored in the user’s MAM archive if this option is set to true . In this case, ejabberd assumes those messages will be

retrieved from the archive. The default value is false .

cache_life_time: timeout()

Same as top-level cache_life_time option, but applied to this module only.

cache_missed: true | false

Same as top-level cache_missed option, but applied to this module only.

cache_size: pos_integer() | infinity

Same as top-level cache_size option, but applied to this module only.

clear_archive_on_room_destroy: true | false

Whether to destroy message archive of a room (see mod_muc) when it gets destroyed. The default value is true .

compress_xml: true | false

When enabled, new messages added to archives are compressed using a custom compression algorithm. This feature works

only with SQL backends. The default value is false .

db_type: mnesia | sql

Same as top-level default_db option, but applied to this module only.

default: always | never | roster

The option defines default policy for chat history. When always is set every chat message is stored. With roster only chat

history with contacts from user’s roster is stored. And never fully disables chat history. Note that a client can change its policy

via protocol commands. The default value is never .

request_activates_archiving: true | false

If the value is true , no messages are stored for a user until their client issue a MAM request, regardless of the value of the

default option. Once the server received a request, that user’s messages are archived as usual. The default value is false .

use_cache: true | false

Same as top-level use_cache option, but applied to this module only.

user_mucsub_from_muc_archive: true | false

When this option is disabled, for each individual subscriber a separate mucsub message is stored. With this option enabled,

when a user fetches archive virtual mucsub, messages are generated from muc archives. The default value is false .

mod_matrix_gw

added in 24.02

Matrix gateway. Erlang/OTP 25 or higher is required to use this module.

•

•

•

•

•

•

•

•

•

•

•

•

mod_mam

- 148/175 - Copyright © 2008 - 2024 ProcessOne

https://xmpp.org/extensions/xep-0313.html
https://xmpp.org/extensions/xep-0441.html
https://matrix.org/

Available options:

host: Host

This option defines the Jabber IDs of the service. If the host option is not specified, the Jabber ID will be the hostname of the

virtual host with the prefix "matrix." . The keyword @HOST@ is replaced with the real virtual host name.

key: string()

Value of the matrix signing key, in base64.

key_name: string()

Name of the matrix signing key.

matrix_domain: Domain

Specify a domain in the Matrix federation. The keyword @HOST@ is replaced with the hostname. The default value is @HOST@ .

matrix_id_as_jid: true | false

If set to true , all packets failing to be delivered via an XMPP server-to-server connection will then be routed to the Matrix

gateway by translating a Jabber ID user@matrixdomain.tld to a Matrix user identifier @user:matrixdomain.tld . When set to

false , messages must be explicitly sent to the matrix gateway service Jabber ID to be routed to a remote Matrix server. In this

case, to send a message to Matrix user @user:matrixdomain.tld , the client must send a message to the JID

user%<matrixdomain.tld@matrix.myxmppdomain>.tld , where matrix.myxmppdomain.tld is the JID of the gateway service as set by the

host option. The default is false .

Example:

mod_metrics

This module sends events to external backend (by now only grapherl is supported). Supported events are:

sm_register_connection

sm_remove_connection

user_send_packet

user_receive_packet

s2s_send_packet

s2s_receive_packet

register_user

remove_user

offline_message

When enabled, every call to these hooks triggers a counter event to be sent to the external backend.

•

•

•

•

•

listen:
-

port: 8448
module: ejabberd_http
tls: true
request_handlers:

"/_matrix": mod_matrix_gw

modules:
mod_matrix_gw:

key_name: "key1"
key: "XXX"
matrix_id_as_jid: true

•

•

•

•

•

•

•

•

•

mod_metrics

- 149/175 - Copyright © 2008 - 2024 ProcessOne

https://github.com/processone/grapherl

Available options:

ip: IPv4Address

IPv4 address where the backend is located. The default value is 127.0.0.1 .

port: Port

An internet port number at which the backend is listening for incoming connections/packets. The default value is 11111 .

mod_mix

added in 16.03 and improved in 19.02

This module is an experimental implementation of XEP-0369: Mediated Information eXchange (MIX). It’s asserted that the MIX

protocol is going to replace the MUC protocol in the future (see mod_muc).

To learn more about how to use that feature, you can refer to our tutorial: Getting started with MIX

The module depends on mod_mam.

Available options:

access_create: AccessName

An access rule to control MIX channels creations. The default value is all .

db_type: mnesia | sql

Same as top-level default_db option, but applied to this module only.

host

Deprecated. Use hosts instead.

hosts: [Host, ...]

This option defines the Jabber IDs of the service. If the hosts option is not specified, the only Jabber ID will be the hostname of

the virtual host with the prefix "mix." . The keyword @HOST@ is replaced with the real virtual host name.

name: Name

A name of the service in the Service Discovery. This will only be displayed by special XMPP clients. The default value is

Channels .

mod_mix_pam

This module implements XEP-0405: Mediated Information eXchange (MIX): Participant Server Requirements. The module is

needed if MIX compatible clients on your server are going to join MIX channels (either on your server or on any remote servers).

mod_mix is not required for this module to work, however, without mod_mix_pam the MIX functionality of your local XMPP clients will

be impaired.

•

•

•

•

•

•

•

Note

mod_mix

- 150/175 - Copyright © 2008 - 2024 ProcessOne

https://xmpp.org/extensions/xep-0369.html
https://xmpp.org/extensions/xep-0405.html

Available options:

cache_life_time: timeout()

Same as top-level cache_life_time option, but applied to this module only.

cache_missed: true | false

Same as top-level cache_missed option, but applied to this module only.

cache_size: pos_integer() | infinity

Same as top-level cache_size option, but applied to this module only.

db_type: mnesia | sql

Same as top-level default_db option, but applied to this module only.

use_cache: true | false

Same as top-level use_cache option, but applied to this module only.

mod_mqtt

This module adds support for the MQTT protocol version 3.1.1 and 5.0 . Remember to configure mod_mqtt in modules and

listen sections.

Available options:

access_publish: {TopicFilter: AccessName}

Access rules to restrict access to topics for publishers. By default there are no restrictions.

access_subscribe: {TopicFilter: AccessName}

Access rules to restrict access to topics for subscribers. By default there are no restrictions.

cache_life_time: timeout()

Same as top-level cache_life_time option, but applied to this module only.

cache_missed: true | false

Same as top-level cache_missed option, but applied to this module only.

cache_size: pos_integer() | infinity

Same as top-level cache_size option, but applied to this module only.

db_type: mnesia | sql

Same as top-level default_db option, but applied to this module only.

match_retained_limit: pos_integer() | infinity

The option limits the number of retained messages returned to a client when it subscribes to some topic filter. The default

value is 1000 .

max_queue: Size

Maximum queue size for outgoing packets. The default value is 5000 .

max_topic_aliases: 0..65535

The maximum number of aliases a client is able to associate with the topics. The default value is 100 .

max_topic_depth: Depth

The maximum topic depth, i.e. the number of slashes (/) in the topic. The default value is 8 .

queue_type: ram | file

Same as top-level queue_type option, but applied to this module only.

ram_db_type: mnesia

Same as top-level default_ram_db option, but applied to this module only.

session_expiry: timeout()

The option specifies how long to wait for an MQTT session resumption. When 0 is set, the session gets destroyed when the

underlying client connection is closed. The default value is 5 minutes.

use_cache: true | false

Same as top-level use_cache option, but applied to this module only.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

mod_mqtt

- 151/175 - Copyright © 2008 - 2024 ProcessOne

mod_mqtt_bridge

This module adds ability to synchronize local MQTT topics with data on remote servers It can update topics on remote servers

when local user updates local topic, or can subscribe for changes on remote server, and update local copy when remote data is

updated. It is available since ejabberd 23.01.

Available options:

replication_user: JID

Identifier of a user that will be assigned as owner of local changes.

servers: {ServerUrl: {Key: Value}}

Declaration of data to share for each ServerUrl. Server URLs can use schemas: mqtt , mqtts (mqtt with tls), mqtt5 , mqtt5s

(both to trigger v5 protocol), ws , wss , ws5 , wss5 . Keys must be:

authentication: {AuthKey: AuthValue}

List of authentication information, where AuthKey can be: username and password fields, or certfile pointing to client

certificate. Certificate authentication can be used only with mqtts, mqtt5s, wss, wss5.

publish: {LocalTopic: RemoteTopic}

Either publish or subscribe must be set, or both.

subscribe: {RemoteTopic: LocalTopic}

Either publish or subscribe must be set, or both.

Example:

mod_muc

This module provides support for XEP-0045: Multi-User Chat. Users can discover existing rooms, join or create them. Occupants

of a room can chat in public or have private chats.

The MUC service allows any Jabber ID to register a nickname, so nobody else can use that nickname in any room in the MUC

service. To register a nickname, open the Service Discovery in your XMPP client and register in the MUC service.

It is also possible to register a nickname in a room, so nobody else can use that nickname in that room. If a nick is registered in

the MUC service, that nick cannot be registered in any room, and vice versa: a nick that is registered in a room cannot be

registered at the MUC service.

This module supports clustering and load balancing. One module can be started per cluster node. Rooms are distributed at

creation time on all available MUC module instances. The multi-user chat module is clustered but the rooms themselves are not

clustered nor fault-tolerant: if the node managing a set of rooms goes down, the rooms disappear and they will be recreated on

an available node on first connection attempt.

•

•

•

•

•

modules:
mod_mqtt_bridge:

replication_user: "mqtt@xmpp.server.com"
servers:

"mqtt://server.com":
authentication:

certfile: "/etc/ejabberd/mqtt_server.pem"
publish:

"localA": "remoteA" # local changes to 'localA' will be replicated on remote server as 'remoteA'
"topicB": "topicB"

subscribe:
"remoteB": "localB" # changes to 'remoteB' on remote server will be stored as 'localB' on local server

mod_mqtt_bridge

- 152/175 - Copyright © 2008 - 2024 ProcessOne

https://xmpp.org/extensions/xep-0045.html

Available options:

mod_muc

- 153/175 - Copyright © 2008 - 2024 ProcessOne

access: AccessName

You can specify who is allowed to use the Multi-User Chat service. By default everyone is allowed to use it.

access_admin: AccessName

This option specifies who is allowed to administrate the Multi-User Chat service. The default value is none , which means that

only the room creator can administer their room. The administrators can send a normal message to the service JID, and it will

be shown in all active rooms as a service message. The administrators can send a groupchat message to the JID of an active

room, and the message will be shown in the room as a service message.

access_create: AccessName

To configure who is allowed to create new rooms at the Multi-User Chat service, this option can be used. The default value is

all , which means everyone is allowed to create rooms.

access_mam: AccessName

To configure who is allowed to modify the mam room option. The default value is all , which means everyone is allowed to

modify that option.

access_persistent: AccessName

To configure who is allowed to modify the persistent room option. The default value is all , which means everyone is allowed

to modify that option.

access_register: AccessName

improved in 23.10 This option specifies who is allowed to register nickname within the Multi-User Chat service and rooms.

The default is all for backward compatibility, which means that any user is allowed to register any free nick in the MUC

service and in the rooms.

cleanup_affiliations_on_start: true | false

added in 22.05 Remove affiliations for non-existing local users on startup. The default value is false .

db_type: mnesia | sql

Same as top-level default_db option, but applied to this module only.

•

•

•

•

•

•

•

•

mod_muc

- 154/175 - Copyright © 2008 - 2024 ProcessOne

default_room_options: Options

Define the default room options. Note that the creator of a room can modify the options of his room at any time using an XMPP

client with MUC capability. The Options are:

•

mod_muc

- 155/175 - Copyright © 2008 - 2024 ProcessOne

allow_change_subj: true | false

Allow occupants to change the subject. The default value is true .

allow_private_messages_from_visitors: anyone | moderators | nobody Visitors can send private messages to other

occupants. The default value is anyone which means visitors can send private messages to any occupant.

allow_query_users: true | false

Occupants can send IQ queries to other occupants. The default value is true .

allow_subscription: true | false

Allow users to subscribe to room events as described in Multi-User Chat Subscriptions. The default value is false .

allow_user_invites: true | false

Allow occupants to send invitations. The default value is false .

allow_visitor_nickchange: true | false

Allow visitors to change nickname. The default value is true .

allow_visitor_status: true | false

Allow visitors to send status text in presence updates. If disallowed, the status text is stripped before broadcasting the

presence update to all the room occupants. The default value is true .

allow_voice_requests: true | false

Allow visitors in a moderated room to request voice. The default value is true .

allowpm: anyone | participants | moderators | none

Who can send private messages. The default value is anyone .

anonymous: true | false

The room is anonymous: occupants don’t see the real JIDs of other occupants. Note that the room moderators can always see

the real JIDs of the occupants. The default value is true .

captcha_protected: true | false

When a user tries to join a room where they have no affiliation (not owner, admin or member), the room requires them to fill a

CAPTCHA challenge (see section CAPTCHA in order to accept their join in the room. The default value is false .

description: Room Description

Short description of the room. The default value is an empty string.

enable_hats: true | false

Allow extended roles as defined in XEP-0317 Hats. The default value is false .

lang: Language

Preferred language for the discussions in the room. The language format should conform to RFC 5646. There is no value by

default.

logging: true | false

The public messages are logged using mod_muc_log. The default value is false .

mam: true | false

Enable message archiving. Implies mod_mam is enabled. The default value is false .

max_users: Number

Maximum number of occupants in the room. The default value is 200 .

members_by_default: true | false

The occupants that enter the room are participants by default, so they have "voice". The default value is true .

members_only: true | false

Only members of the room can enter. The default value is false .

moderated: true | false

Only occupants with "voice" can send public messages. The default value is true .

password: Password

Password of the room. Implies option password_protected set to true . There is no default value.

password_protected: true | false

The password is required to enter the room. The default value is false .

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

mod_muc

- 156/175 - Copyright © 2008 - 2024 ProcessOne

persistent: true | false

The room persists even if the last participant leaves. The default value is false .

presence_broadcast: [Role]

List of roles for which presence is broadcasted. The list can contain one or several of: moderator , participant , visitor . The

default value is shown in the example below:

Example:

public: true | false

The room is public in the list of the MUC service, so it can be discovered. MUC admins and room participants will see private

rooms in Service Discovery if their XMPP client supports this feature. The default value is true .

public_list: true | false

The list of participants is public, without requiring to enter the room. The default value is true .

pubsub: PubSub Node

XMPP URI of associated Publish/Subscribe node. The default value is an empty string.

title: Room Title

A human-readable title of the room. There is no default value

vcard: vCard

A custom vCard for the room. See the equivalent mod_muc option.The default value is an empty string.

voice_request_min_interval: Number

Minimum interval between voice requests, in seconds. The default value is 1800 .

hibernation_timeout: infinity | Seconds

Timeout before hibernating the room process, expressed in seconds. The default value is infinity .

history_size: Size

A small history of the current discussion is sent to users when they enter the room. With this option you can define the number

of history messages to keep and send to users joining the room. The value is a non-negative integer. Setting the value to 0

disables the history feature and, as a result, nothing is kept in memory. The default value is 20 . This value affects all rooms on

the service. NOTE: modern XMPP clients rely on Message Archives (XEP-0313), so feel free to disable the history feature if

you’re only using modern clients and have mod_mam module loaded.

host

Deprecated. Use hosts instead.

hosts: [Host, ...]

This option defines the Jabber IDs of the service. If the hosts option is not specified, the only Jabber ID will be the hostname of

the virtual host with the prefix "conference.". The keyword @HOST@ is replaced with the real virtual host name.

max_captcha_whitelist: Number

added in 21.01 This option defines the maximum number of characters that Captcha Whitelist can have when configuring

the room. The default value is infinity .

max_password: Number

added in 21.01 This option defines the maximum number of characters that Password can have when configuring the

room. The default value is infinity .

max_room_desc: Number

This option defines the maximum number of characters that Room Description can have when configuring the room. The

default value is infinity .

max_room_id: Number

This option defines the maximum number of characters that Room ID can have when creating a new room. The default value is

infinity .

•

•

presence_broadcast:
- moderator
- participant
- visitor

•

•

•

•

•

•

•

•

•

•

•

•

•

•

mod_muc

- 157/175 - Copyright © 2008 - 2024 ProcessOne

max_room_name: Number

This option defines the maximum number of characters that Room Name can have when configuring the room. The default

value is infinity .

max_rooms_discoitems: Number

When there are more rooms than this Number , only the non-empty ones are returned in a Service Discovery query. The default

value is 100 .

max_user_conferences: Number

This option defines the maximum number of rooms that any given user can join. The default value is 100 . This option is used to

prevent possible abuses. Note that this is a soft limit: some users can sometimes join more conferences in cluster

configurations.

max_users: Number

This option defines at the service level, the maximum number of users allowed per room. It can be lowered in each room

configuration but cannot be increased in individual room configuration. The default value is 200 .

max_users_admin_threshold: Number

This option defines the number of service admins or room owners allowed to enter the room when the maximum number of

allowed occupants was reached. The default limit is 5 .

max_users_presence: Number

This option defines after how many users in the room, it is considered overcrowded. When a MUC room is considered

overcrowded, presence broadcasts are limited to reduce load, traffic and excessive presence "storm" received by participants.

The default value is 1000 .

min_message_interval: Number

This option defines the minimum interval between two messages send by an occupant in seconds. This option is global and

valid for all rooms. A decimal value can be used. When this option is not defined, message rate is not limited. This feature can

be used to protect a MUC service from occupant abuses and limit number of messages that will be broadcasted by the service.

A good value for this minimum message interval is 0.4 second. If an occupant tries to send messages faster, an error is send

back explaining that the message has been discarded and describing the reason why the message is not acceptable.

min_presence_interval: Number

This option defines the minimum of time between presence changes coming from a given occupant in seconds. This option is

global and valid for all rooms. A decimal value can be used. When this option is not defined, no restriction is applied. This

option can be used to protect a MUC service for occupants abuses. If an occupant tries to change its presence more often than

the specified interval, the presence is cached by ejabberd and only the last presence is broadcasted to all occupants in the

room after expiration of the interval delay. Intermediate presence packets are silently discarded. A good value for this option is

4 seconds.

name: string()

The value of the service name. This name is only visible in some clients that support XEP-0030: Service Discovery. The default

is Chatrooms .

preload_rooms: true | false

Whether to load all persistent rooms in memory on startup. If disabled, the room is only loaded on first participant join. The

default is true . It makes sense to disable room preloading when the number of rooms is high: this will improve server startup

time and memory consumption.

queue_type: ram | file

Same as top-level queue_type option, but applied to this module only.

ram_db_type: mnesia | sql

Same as top-level default_ram_db option, but applied to this module only.

regexp_room_id: string()

This option defines the regular expression that a Room ID must satisfy to allow the room creation. The default value is the

empty string.

room_shaper: none | ShaperName

This option defines shaper for the MUC rooms. The default value is none .

user_message_shaper: none | ShaperName

This option defines shaper for the users messages. The default value is none .

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

mod_muc

- 158/175 - Copyright © 2008 - 2024 ProcessOne

https://xmpp.org/extensions/xep-0030.html

user_presence_shaper: none | ShaperName

This option defines shaper for the users presences. The default value is none .

vcard: vCard

A custom vCard of the service that will be displayed by some XMPP clients in Service Discovery. The value of vCard is a YAML

map constructed from an XML representation of vCard. Since the representation has no attributes, the mapping is

straightforward.

Example:

mod_muc_admin

This module provides commands to administer local MUC services and their MUC rooms. It also provides simple WebAdmin

pages to view the existing rooms.

This module depends on mod_muc.

Available options:

subscribe_room_many_max_users: Number

added in 22.05 How many users can be subscribed to a room at once using the subscribe_room_many API. The default

value is 50 .

mod_muc_log

This module enables optional logging of Multi-User Chat (MUC) public conversations to HTML. Once you enable this module,

users can join a room using a MUC capable XMPP client, and if they have enough privileges, they can request the configuration

form in which they can set the option to enable room logging.

Features:

Room details are added on top of each page: room title, JID, author, subject and configuration.

The room JID in the generated HTML is a link to join the room (using XMPP URI).

Subject and room configuration changes are tracked and displayed.

Joins, leaves, nick changes, kicks, bans and /me are tracked and displayed, including the reason if available.

Generated HTML files are XHTML 1.0 Transitional and CSS compliant.

Timestamps are self-referencing links.

Links on top for quicker navigation: Previous day, Next day, Up.

CSS is used for style definition, and a custom CSS file can be used.

URLs on messages and subjects are converted to hyperlinks.

Timezone used on timestamps is shown on the log files.

A custom link can be added on top of each page.

•

•

This XML representation of vCard:
<vCard xmlns='vcard-temp'>
<FN>Conferences</FN>
<ADR>
<WORK/>
<STREET>Elm Street</STREET>
</ADR>
</vCard>
#
is translated to:
vcard:

fn: Conferences
adr:

-
work: true
street: Elm Street

•

•

•

•

•

•

•

•

•

•

•

•

mod_muc_admin

- 159/175 - Copyright © 2008 - 2024 ProcessOne

The module depends on mod_muc.

Available options:

access_log: AccessName

This option restricts which occupants are allowed to enable or disable room logging. The default value is muc_admin . NOTE: for

this default setting you need to have an access rule for muc_admin in order to take effect.

cssfile: Path | URL

With this option you can set whether the HTML files should have a custom CSS file or if they need to use the embedded CSS.

Allowed values are either Path to local file or an URL to a remote file. By default a predefined CSS will be embedded into the

HTML page.

dirname: room_jid | room_name

Configure the name of the room directory. If set to room_jid , the room directory name will be the full room JID. Otherwise, the

room directory name will be only the room name, not including the MUC service name. The default value is room_jid .

dirtype: subdirs | plain

The type of the created directories can be specified with this option. If set to subdirs , subdirectories are created for each year

and month. Otherwise, the names of the log files contain the full date, and there are no subdirectories. The default value is

subdirs .

file_format: html | plaintext

Define the format of the log files: html stores in HTML format, plaintext stores in plain text. The default value is html .

file_permissions: {mode: Mode, group: Group}

Define the permissions that must be used when creating the log files: the number of the mode, and the numeric id of the group

that will own the files. The default value is shown in the example below:

Example:

outdir: Path

This option sets the full path to the directory in which the HTML files should be stored. Make sure the ejabberd daemon user

has write access on that directory. The default value is www/muc .

spam_prevention: true | false

If set to true , a special attribute is added to links that prevent their indexation by search engines. The default value is true ,

which mean that nofollow attributes will be added to user submitted links.

timezone: local | universal

The time zone for the logs is configurable with this option. If set to local , the local time, as reported to Erlang emulator by the

operating system, will be used. Otherwise, UTC time will be used. The default value is local .

top_link: {URL: Text}

With this option you can customize the link on the top right corner of each log file. The default value is shown in the example

below:

Example:

url: URL

A top level URL where a client can access logs of a particular conference. The conference name is appended to the URL if

dirname option is set to room_name or a conference JID is appended to the URL otherwise. There is no default value.

mod_muc_occupantid

added in 23.10

This module implements XEP-0421: Anonymous unique occupant identifiers for MUCs.

•

•

•

•

•

•

file_permissions:
mode: 644
group: 33

•

•

•

•

top_link:
/: Home

•

mod_muc_occupantid

- 160/175 - Copyright © 2008 - 2024 ProcessOne

https://xmpp.org/extensions/xep-0421.html

When the module is enabled, the feature is enabled in all semi-anonymous rooms.

The module has no options.

mod_muc_rtbl

added in 23.04

This module implement Real-time blocklists for MUC rooms.

It works by observing remote pubsub node conforming with specification described in https://xmppbl.org/.

Available options:

rtbl_node: PubsubNodeName

Name of pubsub node that should be used to track blocked users. The default value is muc_bans_sha256 .

rtbl_server: Domain

Domain of xmpp server that serves block list. The default value is xmppbl.org

mod_multicast

This module implements a service for XEP-0033: Extended Stanza Addressing.

Available options:

access: Access

The access rule to restrict who can send packets to the multicast service. Default value: all .

host

Deprecated. Use hosts instead.

hosts: [Host, ...]

This option defines the Jabber IDs of the service. If the hosts option is not specified, the only Jabber ID will be the hostname of

the virtual host with the prefix "multicast.". The keyword @HOST@ is replaced with the real virtual host name. The default value

is multicast.@HOST@ .

limits: Sender: Stanza: Number

Specify a list of custom limits which override the default ones defined in XEP-0033. Limits are defined per sender type and

stanza type, where:

sender can be: local or remote .

stanza can be: message or presence .

number can be a positive integer or infinite .

Example:

name

Service name to provide in the Info query to the Service Discovery. Default is "Multicast" .

vcard

vCard element to return when queried. Default value is undefined .

Example:

•

•

•

•

•

•

•

•

•

Default values:
local:

message: 100
presence: 100

remote:
message: 20
presence: 20

•

•

mod_muc_rtbl

- 161/175 - Copyright © 2008 - 2024 ProcessOne

https://xmppbl.org/
https://xmpp.org/extensions/xep-0033.html

mod_offline

This module implements XEP-0160: Best Practices for Handling Offline Messages and XEP-0013: Flexible Offline Message

Retrieval. This means that all messages sent to an offline user will be stored on the server until that user comes online again.

Thus it is very similar to how email works. A user is considered offline if no session presence priority > 0 are currently open.

The delete_expired_messages API allows to delete expired messages, and delete_old_messages API deletes older ones.

Only admins can send packets to multicast service
access_rules:

multicast:
- allow: admin

If you want to allow all your users:
access_rules:

multicast:
- allow

This allows both admins and remote users to send packets,
but does not allow local users
acl:

allservers:
server_glob: "*"

access_rules:
multicast:

- allow: admin
- deny: local
- allow: allservers

modules:
mod_multicast:

host: multicast.example.org
access: multicast
limits:

local:
message: 40
presence: infinite

remote:
message: 150

mod_offline

- 162/175 - Copyright © 2008 - 2024 ProcessOne

https://xmpp.org/extensions/xep-0160.html
https://xmpp.org/extensions/xep-0013.html
https://xmpp.org/extensions/xep-0013.html

Available options:

access_max_user_messages: AccessName

This option defines which access rule will be enforced to limit the maximum number of offline messages that a user can have

(quota). When a user has too many offline messages, any new messages that they receive are discarded, and a <resource-

constraint/> error is returned to the sender. The default value is max_user_offline_messages .

bounce_groupchat: true | false

This option is use the disable an optimization that avoids bouncing error messages when groupchat messages could not be

stored as offline. It will reduce chat room load, without any drawback in standard use cases. You may change default value

only if you have a custom module which uses offline hook after mod_offline . This option can be useful for both standard MUC

and MucSub, but the bounce is much more likely to happen in the context of MucSub, so it is even more important to have it

on large MucSub services. The default value is false , meaning the optimization is enabled.

cache_life_time: timeout()

Same as top-level cache_life_time option, but applied to this module only.

cache_size: pos_integer() | infinity

Same as top-level cache_size option, but applied to this module only.

db_type: mnesia | sql

Same as top-level default_db option, but applied to this module only.

store_empty_body: true | false | unless_chat_state

Whether or not to store messages that lack a <body/> element. The default value is unless_chat_state , which tells ejabberd to

store messages even if they lack the <body/> element, unless they only contain a chat state notification (as defined in

XEP-0085: Chat State Notifications.

store_groupchat: true | false

Whether or not to store groupchat messages. The default value is false .

use_cache: true | false

Same as top-level use_cache option, but applied to this module only.

use_mam_for_storage: true | false

This is an experimental option. By enabling the option, this module uses the archive table from mod_mam instead of its own

spool table to retrieve the messages received when the user was offline. This allows client developers to slowly drop XEP-0160

and rely on XEP-0313 instead. It also further reduces the storage required when you enable MucSub. Enabling this option has

a known drawback for the moment: most of flexible message retrieval queries don’t work (those that allow retrieval/deletion of

messages by id), but this specification is not widely used. The default value is false to keep former behaviour as default.

Examples:

This example allows power users to have as much as 5000 offline messages, administrators up to 2000, and all the other users up

to 100:

•

•

•

•

•

•

•

•

•

acl:
admin:

user:
- admin1@localhost
- admin2@example.org

poweruser:
user:

- bob@example.org
- jane@example.org

shaper_rules:
max_user_offline_messages:

- 5000: poweruser
- 2000: admin
- 100

modules:
...
mod_offline:

access_max_user_messages: max_user_offline_messages
...

mod_offline

- 163/175 - Copyright © 2008 - 2024 ProcessOne

https://xmpp.org/extensions/xep-0085.html

mod_ping

This module implements support for XEP-0199: XMPP Ping and periodic keepalives. When this module is enabled ejabberd

responds correctly to ping requests, as defined by the protocol.

Available options:

ping_ack_timeout: timeout()

How long to wait before deeming that a client has not answered a given server ping request. NOTE: when mod_stream_mgmt

is loaded and stream management is enabled by a client, this value is ignored, and the ack_timeout applies instead. The default

value is undefined .

ping_interval: timeout()

How often to send pings to connected clients, if option send_pings is set to true . If a client connection does not send or

receive any stanza within this interval, a ping request is sent to the client. The default value is 1 minute.

send_pings: true | false

If this option is set to true , the server sends pings to connected clients that are not active in a given interval defined in

ping_interval option. This is useful to keep client connections alive or checking availability. The default value is false .

timeout_action: none | kill

What to do when a client does not answer to a server ping request in less than period defined in ping_ack_timeout option: kill

means destroying the underlying connection, none means to do nothing. NOTE: when mod_stream_mgmt is loaded and stream

management is enabled by a client, killing the client connection doesn’t mean killing the client session - the session will be

kept alive in order to give the client a chance to resume it. The default value is none .

Example:

mod_pres_counter

This module detects flood/spam in presence subscriptions traffic. If a user sends or receives more of those stanzas in a given time

interval, the exceeding stanzas are silently dropped, and a warning is logged.

Available options:

count: Number

The number of subscription presence stanzas (subscribe, unsubscribe, subscribed, unsubscribed) allowed for any direction

(input or output) per time defined in interval option. Please note that two users subscribing to each other usually generate 4

stanzas, so the recommended value is 4 or more. The default value is 5 .

interval: timeout()

The time interval. The default value is 1 minute.

Example:

mod_privacy

This module implements XEP-0016: Privacy Lists.

•

•

•

•

modules:
mod_ping:

send_pings: true
ping_interval: 4 min
timeout_action: kill

•

•

modules:
mod_pres_counter:

count: 5
interval: 30 secs

mod_ping

- 164/175 - Copyright © 2008 - 2024 ProcessOne

https://xmpp.org/extensions/xep-0199.html
https://xmpp.org/extensions/xep-0016.html

Nowadays modern XMPP clients rely on XEP-0191: Blocking Command which is implemented by mod_blocking. However, you still

need mod_privacy loaded in order for mod_blocking to work.

Available options:

cache_life_time: timeout()

Same as top-level cache_life_time option, but applied to this module only.

cache_missed: true | false

Same as top-level cache_missed option, but applied to this module only.

cache_size: pos_integer() | infinity

Same as top-level cache_size option, but applied to this module only.

db_type: mnesia | sql

Same as top-level default_db option, but applied to this module only.

use_cache: true | false

Same as top-level use_cache option, but applied to this module only.

mod_private

This module adds support for XEP-0049: Private XML Storage.

Using this method, XMPP entities can store private data on the server, retrieve it whenever necessary and share it between

multiple connected clients of the same user. The data stored might be anything, as long as it is a valid XML. One typical usage is

storing a bookmark of all user’s conferences (XEP-0048: Bookmarks).

It also implements the bookmark conversion described in XEP-0402: PEP Native Bookmarks, see bookmarks_to_pep API.

Available options:

cache_life_time: timeout()

Same as top-level cache_life_time option, but applied to this module only.

cache_missed: true | false

Same as top-level cache_missed option, but applied to this module only.

cache_size: pos_integer() | infinity

Same as top-level cache_size option, but applied to this module only.

db_type: mnesia | sql

Same as top-level default_db option, but applied to this module only.

use_cache: true | false

Same as top-level use_cache option, but applied to this module only.

mod_privilege

improved in 24.10

This module is an implementation of XEP-0356: Privileged Entity. This extension allows components to have privileged access to

other entity data (send messages on behalf of the server or on behalf of a user, get/set user roster, access presence information,

etc.). This may be used to write powerful external components, for example implementing an external PEP or MAM service.

By default a component does not have any privileged access. It is worth noting that the permissions grant access to the

component to a specific data type for all users of the virtual host on which mod_privilege is loaded.

Note

•

•

•

•

•

•

•

•

•

•

mod_private

- 165/175 - Copyright © 2008 - 2024 ProcessOne

https://xmpp.org/extensions/xep-0191.html
https://xmpp.org/extensions/xep-0049.html
https://xmpp.org/extensions/xep-0048.html
https://xmpp.org/extensions/xep-0402.html
https://xmpp.org/extensions/xep-0356.html
https://xmpp.org/extensions/xep-0163.html
https://xmpp.org/extensions/xep-0313.html

Make sure you have a listener configured to connect your component. Check the section about listening ports for more

information.

Security issue: Privileged access gives components access to sensitive data, so permission should be granted carefully, only if you

trust a component.

This module is complementary to mod_delegation, but can also be used separately.

Available options:

iq: {Namespace: Options}

This option defines namespaces and their IQ permissions. By default no permissions are given. The Options are:

both: AccessName

Allows sending IQ stanzas of type get and set . The default value is none .

get: AccessName

Allows sending IQ stanzas of type get . The default value is none .

set: AccessName

Allows sending IQ stanzas of type set . The default value is none .

message: Options

This option defines permissions for messages. By default no permissions are given. The Options are:

outgoing: AccessName

The option defines an access rule for sending outgoing messages by the component. The default value is none .

presence: Options

This option defines permissions for presences. By default no permissions are given. The Options are:

managed_entity: AccessName

An access rule that gives permissions to the component to receive server presences. The default value is none .

roster: AccessName

An access rule that gives permissions to the component to receive the presence of both the users and the contacts in their

roster. The default value is none .

roster: Options

This option defines roster permissions. By default no permissions are given. The Options are:

both: AccessName

Sets read/write access to a user’s roster. The default value is none .

get: AccessName

Sets read access to a user’s roster. The default value is none .

set: AccessName

Sets write access to a user’s roster. The default value is none .

Example:

Warning

Note

•

•

•

•

•

•

•

•

•

•

•

•

•

modules:
mod_privilege:

iq:
http://jabber.org/protocol/pubsub:

get: all
roster:

get: all
presence:

mod_privilege

- 166/175 - Copyright © 2008 - 2024 ProcessOne

mod_proxy65

This module implements XEP-0065: SOCKS5 Bytestreams. It allows ejabberd to act as a file transfer proxy between two XMPP

clients.

Available options:

access: AccessName

Defines an access rule for file transfer initiators. The default value is all . You may want to restrict access to the users of your

server only, in order to avoid abusing your proxy by the users of remote servers.

auth_type: anonymous | plain

SOCKS5 authentication type. The default value is anonymous . If set to plain , ejabberd will use authentication backend as it

would for SASL PLAIN.

host

Deprecated. Use hosts instead.

hostname: Host

Defines a hostname offered by the proxy when establishing a session with clients. This is useful when you run the proxy behind

a NAT. The keyword @HOST@ is replaced with the virtual host name. The default is to use the value of ip option. Examples:

proxy.mydomain.org , 200.150.100.50 .

hosts: [Host, ...]

This option defines the Jabber IDs of the service. If the hosts option is not specified, the only Jabber ID will be the hostname of

the virtual host with the prefix "proxy.". The keyword @HOST@ is replaced with the real virtual host name.

ip: IPAddress

This option specifies which network interface to listen for. The default value is an IP address of the service’s DNS name, or, if

fails, 127.0.0.1 .

max_connections: pos_integer() | infinity

Maximum number of active connections per file transfer initiator. The default value is infinity .

name: Name

The value of the service name. This name is only visible in some clients that support XEP-0030: Service Discovery. The default

is "SOCKS5 Bytestreams".

port: 1..65535

A port number to listen for incoming connections. The default value is 7777 .

ram_db_type: mnesia | redis | sql

Same as top-level default_ram_db option, but applied to this module only.

recbuf: Size

A size of the buffer for incoming packets. If you define a shaper, set the value of this option to the size of the shaper in order to

avoid traffic spikes in file transfers. The default value is 65536 bytes.

shaper: Shaper

This option defines a shaper for the file transfer peers. A shaper with the maximum bandwidth will be selected. The default is

none , i.e. no shaper.

sndbuf: Size

A size of the buffer for outgoing packets. If you define a shaper, set the value of this option to the size of the shaper in order to

avoid traffic spikes in file transfers. The default value is 65536 bytes.

vcard: vCard

A custom vCard of the service that will be displayed by some XMPP clients in Service Discovery. The value of vCard is a YAML

map constructed from an XML representation of vCard. Since the representation has no attributes, the mapping is

straightforward.

managed_entity: all
message:

outgoing: all

•

•

•

•

•

•

•

•

•

•

•

•

•

•

mod_proxy65

- 167/175 - Copyright © 2008 - 2024 ProcessOne

https://xmpp.org/extensions/xep-0065.html
https://xmpp.org/extensions/xep-0030.html

Example:

mod_pubsub

This module offers a service for XEP-0060: Publish-Subscribe. The functionality in mod_pubsub can be extended using plugins. The

plugin that implements PEP (XEP-0163: Personal Eventing via Pubsub) is enabled in the default ejabberd configuration file, and it

requires mod_caps.

acl:
admin:

user: admin@example.org
proxy_users:

server: example.org

access_rules:
proxy65_access:

allow: proxy_users

shaper_rules:
proxy65_shaper:

none: admin
proxyrate: proxy_users

shaper:
proxyrate: 10240

modules:
mod_proxy65:

host: proxy1.example.org
name: "File Transfer Proxy"
ip: 200.150.100.1
port: 7778
max_connections: 5
access: proxy65_access
shaper: proxy65_shaper
recbuf: 10240
sndbuf: 10240

mod_pubsub

- 168/175 - Copyright © 2008 - 2024 ProcessOne

https://xmpp.org/extensions/xep-0060.html
https://xmpp.org/extensions/xep-0163.html

Available options:

mod_pubsub

- 169/175 - Copyright © 2008 - 2024 ProcessOne

access_createnode: AccessName

This option restricts which users are allowed to create pubsub nodes using acl and access . By default any account in the local

ejabberd server is allowed to create pubsub nodes. The default value is: all .

db_type: mnesia | sql

Same as top-level default_db option, but applied to this module only.

default_node_config: List of Key:Value

To override default node configuration, regardless of node plugin. Value is a list of key-value definition. Node configuration still

uses default configuration defined by node plugin, and overrides any items by value defined in this configurable list.

force_node_config: List of Node and the list of its Key:Value

Define the configuration for given nodes. The default value is: [] .

Example:

host

Deprecated. Use hosts instead.

hosts: [Host, ...]

This option defines the Jabber IDs of the service. If the hosts option is not specified, the only Jabber ID will be the hostname of

the virtual host with the prefix "pubsub.". The keyword @HOST@ is replaced with the real virtual host name.

ignore_pep_from_offline: false | true

To specify whether or not we should get last published PEP items from users in our roster which are offline when we connect.

Value is true or false . If not defined, pubsub assumes true so we only get last items of online contacts.

last_item_cache: false | true

To specify whether or not pubsub should cache last items. Value is true or false . If not defined, pubsub does not cache last

items. On systems with not so many nodes, caching last items speeds up pubsub and allows you to raise the user connection

rate. The cost is memory usage, as every item is stored in memory.

max_item_expire_node: timeout() | infinity

added in 21.12 Specify the maximum item epiry time. Default value is: infinity .

max_items_node: non_neg_integer() | infinity

Define the maximum number of items that can be stored in a node. Default value is: 1000 .

max_nodes_discoitems: pos_integer() | infinity

The maximum number of nodes to return in a discoitem response. The default value is: 100 .

max_subscriptions_node: MaxSubs

Define the maximum number of subscriptions managed by a node. Default value is no limitation: undefined .

name: Name

The value of the service name. This name is only visible in some clients that support XEP-0030: Service Discovery. The default

is vCard User Search .

nodetree: Nodetree

To specify which nodetree to use. If not defined, the default pubsub nodetree is used: tree . Only one nodetree can be used per

host, and is shared by all node plugins.

tree nodetree store node configuration and relations on the database. flat nodes are stored without any relationship, and

hometree nodes can have child nodes.

virtual nodetree does not store nodes on database. This saves resources on systems with tons of nodes. If using the virtual

nodetree, you can only enable those node plugins: [flat, pep] or [flat] ; any other plugins configuration will not work. Also,

all nodes will have the default configuration, and this can not be changed. Using virtual nodetree requires to start from a

clean database, it will not work if you used the default tree nodetree before.

pep_mapping: List of Key:Value

In this option you can provide a list of key-value to choose defined node plugins on given PEP namespace. The following

example will use node_tune instead of node_pep for every PEP node with the tune namespace:

•

•

•

•

force_node_config:
Avoid buggy clients to make their bookmarks public
storage:bookmarks:

access_model: whitelist

•

•

•

•

•

•

•

•

•

•

•

•

•

mod_pubsub

- 170/175 - Copyright © 2008 - 2024 ProcessOne

https://xmpp.org/extensions/xep-0030.html

Example:

plugins: [Plugin, ...]

To specify which pubsub node plugins to use. The first one in the list is used by default. If this option is not defined, the default

plugins list is: [flat] . PubSub clients can define which plugin to use when creating a node: add type='plugin-

name ' attribute to the create stanza element.

flat plugin handles the default behaviour and follows standard XEP-0060 implementation.

pep plugin adds extension to handle Personal Eventing Protocol (XEP-0163) to the PubSub engine. When enabled, PEP is

handled automatically.

vcard: vCard

A custom vCard of the server that will be displayed by some XMPP clients in Service Discovery. The value of vCard is a YAML

map constructed from an XML representation of vCard. Since the representation has no attributes, the mapping is

straightforward.

Example:

Examples:

Example of configuration that uses flat nodes as default, and allows use of flat, hometree and pep nodes:

Using relational database requires using mod_pubsub with db_type sql . Only flat, hometree and pep plugins supports SQL. The

following example shows previous configuration with SQL usage:

modules:
...
mod_pubsub:

pep_mapping:
http://jabber.org/protocol/tune: tune

...

•

•

•

•

This XML representation of vCard:
<vCard xmlns='vcard-temp'>
<FN>Conferences</FN>
<ADR>
<WORK/>
<STREET>Elm Street</STREET>
</ADR>
</vCard>
#
is translated to:
vcard:

fn: Conferences
adr:

-
work: true
street: Elm Street

modules:
mod_pubsub:

access_createnode: pubsub_createnode
max_subscriptions_node: 100
default_node_config:

notification_type: normal
notify_retract: false
max_items: 4

plugins:
- flat
- pep

modules:
mod_pubsub:

db_type: sql
access_createnode: pubsub_createnode
ignore_pep_from_offline: true
last_item_cache: false
plugins:

- flat
- pep

mod_pubsub

- 171/175 - Copyright © 2008 - 2024 ProcessOne

mod_push

This module implements the XMPP server’s part of the push notification solution specified in XEP-0357: Push Notifications. It

does not generate, for example, APNS or FCM notifications directly. Instead, it’s designed to work with so-called "app servers"

operated by third-party vendors of mobile apps. Those app servers will usually trigger notification delivery to the user’s mobile

device using platform-dependent backend services such as FCM or APNS.

Available options:

cache_life_time: timeout()

Same as top-level cache_life_time option, but applied to this module only.

cache_missed: true | false

Same as top-level cache_missed option, but applied to this module only.

cache_size: pos_integer() | infinity

Same as top-level cache_size option, but applied to this module only.

db_type: mnesia | sql

Same as top-level default_db option, but applied to this module only.

include_body: true | false | Text

If this option is set to true , the message text is included with push notifications generated for incoming messages with a body.

The option can instead be set to a static Text , in which case the specified text will be included in place of the actual message

body. This can be useful to signal the app server whether the notification was triggered by a message with body (as opposed to

other types of traffic) without leaking actual message contents. The default value is "New message".

include_sender: true | false

If this option is set to true , the sender’s JID is included with push notifications generated for incoming messages with a body.

The default value is false .

notify_on: messages | all

added in 23.10 If this option is set to messages , notifications are generated only for actual chat messages with a body text

(or some encrypted payload). If it’s set to all , any kind of XMPP stanza will trigger a notification. If unsure, it’s strongly

recommended to stick to all , which is the default value.

use_cache: true | false

Same as top-level use_cache option, but applied to this module only.

mod_push_keepalive

This module tries to keep the stream management session (see mod_stream_mgmt) of a disconnected mobile client alive if the

client enabled push notifications for that session. However, the normal session resumption timeout is restored once a push

notification is issued, so the session will be closed if the client doesn’t respond to push notifications.

The module depends on mod_push.

Available options:

resume_timeout: timeout()

This option specifies the period of time until the session of a disconnected push client times out. This timeout is only in effect

as long as no push notification is issued. Once that happened, the resumption timeout configured for mod_stream_mgmt is

restored. The default value is 72 hours.

wake_on_start: true | false

If this option is set to true , notifications are generated for all registered push clients during server startup. This option should

not be enabled on servers with many push clients as it can generate significant load on the involved push services and the

server itself. The default value is false .

wake_on_timeout: true | false

If this option is set to true , a notification is generated shortly before the session would time out as per the resume_timeout

option. The default value is true .

•

•

•

•

•

•

•

•

•

•

•

mod_push

- 172/175 - Copyright © 2008 - 2024 ProcessOne

https://xmpp.org/extensions/xep-0357.html

mod_register

This module adds support for XEP-0077: In-Band Registration. This protocol enables end users to use an XMPP client to:

Register a new account on the server.

Change the password from an existing account on the server.

Delete an existing account on the server.

This module reads also the top-level registration_timeout option defined globally for the server, so please check that option

documentation too.

Available options:

access: AccessName

Specify rules to restrict what usernames can be registered. If a rule returns deny on the requested username, registration of

that user name is denied. There are no restrictions by default. If AccessName is none , then registering new accounts using In-

Band Registration is disabled and the corresponding stream feature is not announced to clients.

access_from: AccessName

By default, ejabberd doesn’t allow the client to register new accounts from s2s or existing c2s sessions. You can change it by

defining access rule in this option. Use with care: allowing registration from s2s leads to uncontrolled massive accounts

creation by rogue users.

access_remove: AccessName

Specify rules to restrict access for user unregistration. By default any user is able to unregister their account.

allow_modules: all | [Module, ...]

added in 21.12 List of modules that can register accounts, or all . The default value is all , which is equivalent to

something like \[mod_register, mod_register_web] .

captcha_protected: true | false

Protect registrations with CAPTCHA. The default is false .

ip_access: AccessName

Define rules to allow or deny account registration depending on the IP address of the XMPP client. The AccessName should be

of type ip . The default value is all .

password_strength: Entropy

This option sets the minimum Shannon entropy for passwords. The value Entropy is a number of bits of entropy. The

recommended minimum is 32 bits. The default is 0 , i.e. no checks are performed.

redirect_url: URL

This option enables registration redirection as described in XEP-0077: In-Band Registration: Redirection.

registration_watchers: [JID, ...]

This option defines a list of JIDs which will be notified each time a new account is registered.

welcome_message: {subject: Subject, body: Body}

Set a welcome message that is sent to each newly registered account. The message will have subject Subject and text Body .

Example:

•

•

•

•

•

•

•

•

•

•

•

•

•

modules:
mod_register:

welcome_message:
subject: "Welcome!"
body: |-

Hi!
Welcome to this XMPP server

mod_register

- 173/175 - Copyright © 2008 - 2024 ProcessOne

https://xmpp.org/extensions/xep-0077.html
https://en.wikipedia.org/wiki/Entropy_(information_theory)
https://xmpp.org/extensions/xep-0077.html#redirect

mod_register_web

This module provides a web page where users can:

Register a new account on the server.

Change the password from an existing account on the server.

Unregister an existing account on the server.

This module supports CAPTCHA to register a new account. To enable this feature, configure the top-level captcha_cmd and top-

level captcha_url options.

As an example usage, the users of the host localhost can visit the page: https://localhost:5280/register/ It is important to

include the last / character in the URL, otherwise the subpages URL will be incorrect.

This module is enabled in listen → ejabberd_http → request_handlers, no need to enable in modules . The module depends on

mod_register where all the configuration is performed.

The module has no options.

Example:

mod_roster

This module implements roster management as defined in RFC6121 Section 2. The module also adds support for XEP-0237:

Roster Versioning.

•

•

•

listen:
-

port: 5280
module: ejabberd_http
request_handlers:

/register: mod_register_web

modules:
mod_register: {}

mod_register_web

- 174/175 - Copyright © 2008 - 2024 ProcessOne

https://tools.ietf.org/html/rfc6121#section-2
https://xmpp.org/extensions/xep-0237.html
https://xmpp.org/extensions/xep-0237.html

Available options:

access: AccessName

This option can be configured to specify rules to restrict roster management. If the rule returns deny on the requested user

name, that user cannot modify their personal roster, i.e. they cannot add/remove/modify contacts or send presence

subscriptions. The default value is all , i.e. no restrictions.

cache_life_time: timeout()

Same as top-level cache_life_time option, but applied to this module only.

cache_missed: true | false

Same as top-level cache_missed option, but applied to this module only.

cache_size: pos_integer() | infinity

Same as top-level cache_size option, but applied to this module only.

db_type: mnesia | sql

Same as top-level default_db option, but applied to this module only.

store_current_id: true | false

If this option is set to true , the current roster version number is stored on the database. If set to false , the roster version

number is calculated on the fly each time. Enabling this option reduces the load for both ejabberd and the database. This

option does not affect the client in any way. This option is only useful if option versioning is set to true . The default value is

false . IMPORTANT: if you use mod_shared_roster or mod_shared_roster_ldap, you must set the value of the option to false .

use_cache: true | false

Same as top-level use_cache option, but applied to this module only.

versioning: true | false

Enables/disables Roster Versioning. The default value is false .

Example:

mod_s2s_bidi

added in 24.10

The module adds support for XEP-0288: Bidirectional Server-to-Server Connections that allows using single s2s connection to

communicate in both directions.

The module has no options.

Example:

mod_s2s_dialback

The module adds support for XEP-0220: Server Dialback to provide server identity verification based on DNS.

DNS-based verification is vulnerable to DNS cache poisoning, so modern servers rely on verification based on PKIX certificates. Thus

this module is only recommended for backward compatibility with servers running outdated software or non-TLS servers, or those

with invalid certificates (as long as you accept the risks, e.g. you assume that the remote server has an invalid certificate due to poor

administration and not because it’s compromised).

•

•

•

•

•

•

•

•

modules:
mod_roster:

versioning: true
store_current_id: false

modules:
mod_s2s_bidi: {}

Warning

mod_s2s_bidi

- 175/175 - Copyright © 2008 - 2024 ProcessOne

https://xmpp.org/extensions/xep-0288.html
https://xmpp.org/extensions/xep-0220.html
https://en.wikipedia.org/wiki/DNS_spoofing

	ejabberd Docs
	Overview
	Getting started 👋
	Meet ejabberd, your superpowerful messaging framework
	Overview
	Options to use ejabberd
	Architecture of an ejabberd service
	Deploying and managing an ejabberd service
	ejabberd is more than XMPP
	Helping us in the development process

	Features
	Key Features
	Additional Features

	Frequently Asked Questions
	Development process
	Why is there a commercial version of ejabberd?
	Does ProcessOne voluntarily hold some code in ejabberd community to push toward the business edition?

	Performance
	Is ejabberd the most scalable version?
	What are the tips to optimize performance?

	Erlang support
	Is ejabberd conforming to the best Erlang practices?

	ejabberd Use Cases
	ejabberd
	Mobile messaging
	Gaming
	Voice and video messaging
	Internet of Things
	Telecom / Hosting
	Customer chat / CRM
	Media
	Social media
	Sport
	Education
	Push alerts
	Dating
	Community sites

	XMPP Use Cases
	Realtime web

	GNU GENERAL PUBLIC LICENSE
	Preamble
	TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
	How to Apply These Terms to Your New Programs

	Security Policy
	Supported Versions
	Reporting a Vulnerability
	Private Reporting
	Response Time
	Resolution
	Acknowledgements

	Public Discussion

	Readme
	Installation
	Documentation
	Development
	Security
	Community
	License

	Install
	Installation
	Self-hosted
	Container Images
	Binary Installers
	Linux and *BSD
	MacOS
	Source Code

	On-Premise (eBE)
	Cloud Hosting (Fluux)

	Install ejabberd using a Container Image
	ejabberd Container Image
	ecs Container Image

	ejabberd Container Image
	Start ejabberd
	With default configuration
	Start with Erlang console attached
	Start with your configuration and database

	Next steps
	Register the administrator account
	Check ejabberd log files
	Inspect the container files
	Open ejabberd debug console
	CAPTCHA

	Advanced Container Configuration
	Ports
	Volumes
	Commands on start
	Macros in environment
	Clustering

	Build a Container Image
	Direct build
	Podman build
	Package build for arm64

	Composer Examples
	Minimal Example
	Customized Example
	Clustering Example

	ecs Container Image
	Start ejabberd
	With default configuration
	Start with Erlang console attached
	Start with your configuration and database

	Next steps
	Register the administrator account
	Check ejabberd log files
	Inspect the container files
	Open ejabberd debug console
	CAPTCHA
	Use ejabberdapi

	Advanced container configuration
	Ports
	Volumes
	Commands on start
	Clustering
	Change Mnesia Node Name
	Setup Old Container
	Change Mnesia Node
	Create Temporary Container

	Generating ejabberd release
	Configuration

	Composer Examples
	Minimal Example
	Customized Example
	Clustering Example

	Binary Installers
	Linux RUN Installer
	Linux DEB and RPM Installers

	Operating System Packages
	Install ejabberd from Source Code
	Requirements
	Download
	Compile
	./configure
	make

	Install
	System Install
	System Install Release
	Production Release
	Development Release

	Specific notes
	asdf
	BSD
	macOS
	man
	rebar with old Erlang

	Start

	Install ejabberd on macOS
	Homebrew

	Installing ejabberd development environment on OSX
	Before you start
	Homebrew
	Installation
	Running ejabberd
	Registering a user
	Adium
	Command line

	Domains
	Get chatting

	Next Steps
	Starting ejabberd
	Autostart on Linux
	Administration Account
	Configuring ejabberd

	Configure
	Configuring ejabberd
	File format
	Yaml File Format
	Reload at Runtime
	Legacy Configuration File
	Include Additional Files
	Macros in Configuration File

	Basic Configuration
	XMPP Domains
	Host Names
	Virtual Hosting

	Logging
	Default Language
	CAPTCHA
	ACME
	Setting up ACME
	ACME implementation details

	Access Rights
	ACL
	Access Rules
	Shaper Rules
	Limiting Opened Sessions
	Connections to Remote Server

	Shapers

	Authentication
	Supported Methods
	General Options
	Internal
	External Script
	Anonymous Login and SASL Anonymous
	PAM Authentication
	JWT Authentication
	SCRAM
	Internal storage
	SQL Database
	Foreign authentication

	Database Configuration
	Supported storages
	Virtual Hosting
	Default database
	Database Schema
	Default and New Schemas
	SQL Options
	SQL with SSL Connection
	SQL Authentication
	SQL Storage
	Microsoft SQL Server
	Redis

	LDAP Configuration
	Supported storages
	LDAP
	LDAP Connection
	LDAP Authentication
	LDAP Examples
	Common example
	Active Directory

	Shared Roster in LDAP
	Filters
	Control parameters
	Retrieving the roster
	Multi-Domain
	Configuration examples
	Flat DIT
	Deep DIT

	vCard in LDAP

	Listen Modules
	Listen Options
	ejabberd_c2s
	ejabberd_s2s_in
	ejabberd_service
	mod_mqtt
	ejabberd_stun
	ejabberd_sip
	ejabberd_http
	ejabberd_http_ws
	WebSocket Config
	WebSocket Discovery
	Testing WebSocket

	ejabberd_xmlrpc

	Examples

	Listen Options
	access
	allow_unencrypted_sasl2
	backlog
	cafile
	certfile
	check_from
	ciphers
	custom_headers
	default_host
	dhfile
	global_routes
	hosts
	max_fsm_queue
	max_payload_size
	max_stanza_size
	password
	port
	protocol_options
	request_handlers
	send_timeout
	shaper
	shaper_rule
	starttls
	starttls_required
	tag
	timeout
	tls
	tls_compression
	tls_verify
	use_proxy_protocol
	zlib

	Top-Level Options
	access_rules
	acl
	acme
	allow_contrib_modules
	allow_multiple_connections
	anonymous_protocol
	api_permissions
	append_host_config
	auth_cache_life_time
	auth_cache_missed
	auth_cache_size
	auth_external_user_exists_check
	auth_method
	auth_opts
	auth_password_format
	auth_scram_hash
	auth_use_cache
	c2s_cafile
	c2s_ciphers
	c2s_dhfile
	c2s_protocol_options
	c2s_tls_compression
	ca_file
	cache_life_time
	cache_missed
	cache_size
	captcha_cmd
	captcha_host
	captcha_limit
	captcha_url
	certfiles
	cluster_backend
	cluster_nodes
	default_db
	default_ram_db
	define_macro
	disable_sasl_mechanisms
	disable_sasl_scram_downgrade_protection
	domain_balancing
	ext_api_headers
	ext_api_http_pool_size
	ext_api_path_oauth
	ext_api_url
	extauth_pool_name
	extauth_pool_size
	extauth_program
	fqdn
	hide_sensitive_log_data
	host_config
	hosts
	include_config_file
	install_contrib_modules
	jwt_auth_only_rule
	jwt_jid_field
	jwt_key
	language
	ldap_backups
	ldap_base
	ldap_deref_aliases
	ldap_dn_filter
	ldap_encrypt
	ldap_filter
	ldap_password
	ldap_port
	ldap_rootdn
	ldap_servers
	ldap_tls_cacertfile
	ldap_tls_certfile
	ldap_tls_depth
	ldap_tls_verify
	ldap_uids
	listen
	log_burst_limit_count
	log_burst_limit_window_time
	log_modules_fully
	log_rotate_count
	log_rotate_size
	loglevel
	max_fsm_queue
	modules
	negotiation_timeout
	net_ticktime
	new_sql_schema
	oauth_access
	oauth_cache_life_time
	oauth_cache_missed
	oauth_cache_rest_failure_life_time
	oauth_cache_size
	oauth_client_id_check
	oauth_db_type
	oauth_expire
	oauth_use_cache
	oom_killer
	oom_queue
	oom_watermark
	outgoing_s2s_families
	outgoing_s2s_ipv4_address
	outgoing_s2s_ipv6_address
	outgoing_s2s_port
	outgoing_s2s_timeout
	pam_service
	pam_userinfotype
	pgsql_users_number_estimate
	queue_dir
	queue_type
	redis_connect_timeout
	redis_db
	redis_password
	redis_pool_size
	redis_port
	redis_queue_type
	redis_server 🟤
	registration_timeout
	resource_conflict
	router_cache_life_time
	router_cache_missed
	router_cache_size
	router_db_type
	router_use_cache
	rpc_timeout
	s2s_access
	s2s_cafile
	s2s_ciphers
	s2s_dhfile
	s2s_dns_retries
	s2s_dns_timeout
	s2s_max_retry_delay
	s2s_protocol_options
	s2s_queue_type
	s2s_timeout
	s2s_tls_compression
	s2s_use_starttls
	s2s_zlib
	shaper
	shaper_rules
	sm_cache_life_time
	sm_cache_missed
	sm_cache_size
	sm_db_type
	sm_use_cache
	sql_connect_timeout
	sql_database
	sql_flags
	sql_keepalive_interval
	sql_odbc_driver
	sql_password
	sql_pool_size
	sql_port
	sql_prepared_statements
	sql_query_timeout
	sql_queue_type
	sql_server
	sql_ssl
	sql_ssl_cafile
	sql_ssl_certfile
	sql_ssl_verify
	sql_start_interval
	sql_type
	sql_username
	trusted_proxies
	update_sql_schema
	update_sql_schema_timeout
	use_cache
	validate_stream
	version
	websocket_origin
	websocket_ping_interval
	websocket_timeout

	Modules Options
	mod_adhoc
	mod_admin_extra
	mod_admin_update_sql
	mod_announce
	mod_auth_fast 🟤
	mod_avatar
	mod_block_strangers
	mod_blocking
	mod_bosh
	mod_caps
	mod_carboncopy
	mod_client_state
	mod_configure
	mod_conversejs
	mod_delegation
	mod_disco
	mod_fail2ban
	mod_host_meta
	mod_http_api
	mod_http_fileserver
	mod_http_upload
	mod_http_upload_quota
	mod_jidprep
	mod_last
	mod_legacy_auth
	mod_mam
	mod_matrix_gw
	mod_metrics
	mod_mix
	mod_mix_pam
	mod_mqtt
	mod_mqtt_bridge
	mod_muc
	mod_muc_admin
	mod_muc_log
	mod_muc_occupantid
	mod_muc_rtbl
	mod_multicast
	mod_offline
	mod_ping
	mod_pres_counter
	mod_privacy
	mod_private
	mod_privilege
	mod_proxy65
	mod_pubsub
	mod_push
	mod_push_keepalive
	mod_register
	mod_register_web
	mod_roster
	mod_s2s_bidi
	mod_s2s_dialback

