
ejabberd Docs

ejabberd Community Server

Copyright © 2008 - 2024 ProcessOne

Table of contents

5Overview

5Getting started 👋

8Features

10Frequently Asked Questions

12ejabberd Use Cases

15GNU GENERAL PUBLIC LICENSE

19Readme

21Install

21Installation

22Install ejabberd using a Container Image

23ejabberd Container Image

29ecs Container Image

36Binary Installers

38Operating System Packages

39Install ejabberd from Source Code

46Install ejabberd on macOS

47Installing ejabberd development environment on OSX

50Next Steps

52Configure

52Configuring ejabberd

53File format

55Basic Configuration

65Authentication

70Database Configuration

75LDAP Configuration

85Listen Modules

94Listen Options

100Top-Level Options

128Modules Options

187Advanced

187Advanced ejabberd Administration

188Architecture

190Clustering

193Managing an ejabberd server

199Add More Modules

Table of contents

- 2/450 - Copyright © 2008 - 2024 ProcessOne

202Securing ejabberd

205Troubleshooting ejabberd

207Upgrade Procedure for ejabberd

210ejabberd and XMPP tutorials

212Getting started with MIX

216MQTT Support

220Setting vCards / Avatars for MUC rooms

222Using ejabberd with MySQL

227Development

227ejabberd for Developers

228ejabberd Developer Guide

242PubSub overview

253Roster versioning

254ejabberd Stanza Routing

256ejabberd SQL Database Schema

263External authentication

263Main contribution repository

263ejabberd API libraries

263Old / obsolete contributions

264Contributing to ejabberd

267Contributor Covenant Code of Conduct

269Contributors

270Understanding ejabberd and its dependencies

272ejabberd Docs Source Code

274ejabberd for Elixir Developers

281The ejabberd Developer Livebook

285Internationalization and Localization

286ejabberd Modules Development

290MucSub: Multi-User Chat Subscriptions

297ejabberd Test Suites

299Developing ejabberd with VSCode

301Getting Started with XMPPFramework

302API

302ejabberd Rest API

304API Reference

388API Tags

396Simple ejabberd Rest API Configuration

399API Permissions

Table of contents

- 3/450 - Copyright © 2008 - 2024 ProcessOne

402OAuth Support

409ejabberd commands

411API Versioning

413Archive

413ChangeLog

442Roadmap

442ejabberd Roadmap

Table of contents

- 4/450 - Copyright © 2008 - 2024 ProcessOne

Overview

Getting started 👋

Meet ejabberd, your superpowerful messaging framework

This web site is dedicated to help you use and develop for ejabberd XMPP messaging server.

ejabberd has been in development since 2002 and is used all over the world to power the largest XMPP deployments. This

project is so versatile that you can deploy it and customize it for very large scale, no matter what your use case is.

This incredible power comes with a price. You need to learn how to leverage it. Fortunately, the goal of this website is to get you

started on your path to mastery. Whether you are a sysadmin, an architect, a developer planning to extend it, or even a simple

XMPP user, we have something for you here.

Overview

ejabberd is the de facto XMPP server in the world. The fact that it is used to power the largest deployments in the world should

not intimidate you. ejabberd is equally suitable for small instances.

ejabberd has been designed from the ground-up, since 2002 for robust, enterprise deployment. The goal has always been to

shoot for the moon and this is what made it a long-lasting success.

ejabberd is specifically designed for enterprise purposes: it is fault-tolerant, can utilise the resources of multiple clustered

machines, and can easily scale when more capacity is required (by just adding a box/VM).

Designed at a moment when clients were mostly desktops that only supported a kind of HTTP polling call BOSH, the project

managed to adapt to recent changes by introducing support for WebSockets, BOSH improvements, and a solid mobile stack.

It was developed at a time when XMPP was still known as "Jabber", but quickly adopted an evolution process in order to support

the various versions of XMPP RFCs. It now encourages innovation and experimentation by supporting most, if not all, extensions

produced by the XSF.

ejabberd relies on a dynamic community all over the world. To get an idea of existing contributions, you can check ejabberd main

repository or the repository containing a great amount of contributed extensions.

This is possible thanks to a modular architecture based on a core router and an extremely powerful plugin mechanism that is

getting richer every day.

Welcome to the beginning of your journey of ejabberd mastery!

Options to use ejabberd

ejabberd can be used in different ways. The most common one is to use ejabberd Community Edition. This is the standard Open

Source version that everyone loves: highly scalable and flexible.

Fortunately, if you need more than just the ejabberd platform software, ProcessOne can help you with a commercial offering.

Commercial offering come in two type of packaging:

ejabberd Business Edition, including features for large companies (enhanced geodistributed companies and mobile support

to develop own, rich clients) and world-class support, that can please even the most demanding businesses, with 24/7 options.

Fluux.io being a way to access and benefit of all the features of ejabberd Business Edition at an attractive and scalable price.

Fluux.io allows you to keep control of your data thanks to integration API you can implement on your backend to become a

data provider for ejabberd SaaS.

•

•

Overview

- 5/450 - Copyright © 2008 - 2024 ProcessOne

https://www.github.com/processone/ejabberd
https://www.github.com/processone/ejabberd
https://github.com/processone/ejabberd-contrib
https://process-one.net
https://fluux.io

Whatever approach you choose, you can hardly make the wrong choice with ejabberd! In every case you can easily integrate

ejabberd with your existing application using:

REST API and ejabberdctl command-line tool

Mobile libraries for iOS: XMPPFramework, Jayme REST API

Mobile libraries for Android: Smack, Retrofit

Web library with WebSocket support and fallback to BOSH: Strophe

Architecture of an ejabberd service

ejabberd brings configurability, scalability and fault-tolerance to the core feature of XMPP – routing messages.

Its architecture is based on a set of pluggable modules that enable different features, including:

One-to-one messaging

Store-and-forward (offline messages)

Contact list (roster) and presence

Groupchat: MUC (Multi-User Chat)

Messaging archiving with Message Archive Management (MAM)

User presence extension: Personal Event Protocol (PEP) and typing indicator

Privacy settings, through privacy list and simple blocking extensions

User profile with vCards

Full feature web support, with BOSH and websockets

Stream management for message reliability on mobile (aka XEP-0198)

Message Delivery Receipts (aka XEP-184)

Last activity

Metrics and full command-line administration

and many many more.

The full list of supported protocol and extensions is available on Protocols Supported by ejabberd page.

This modular architecture allows high customisability and easy access to the required features.

ejabberd enables authenticating users using external or internal databases (Mnesia, SQL), LDAP or external scripts. It also

allows connecting anonymous users, when required.

For storing persistent data, ejabberd uses Mnesia (the distributed internal Erlang database), but you can opt for SQL database

like MySQL or PostgreSQL

And of course, thanks to its API, ejabberd can be customised to work with a database chosen by the customer.

Deploying and managing an ejabberd service

ejabberd can be deployed for a number of scenarios fitting end-user / developer / customer needs. The default installation setup

consists of a single ejabberd node using Mnesia, so it does not require any additional configuration. This primary system is

sufficient for fast deployment and connecting XMPP clients. It should be good enough for most of the small deployments (and

even medium ones).

A more scalable solution would be deploying ejabberd with an external database for persistent data. As Mnesia is caching part of

its data in ejabberd memory (actually in Erlang VM node), this kind of setup make your system more scalable and typically easier

to integrate with your usual database. As a sysadmin, yes, you can use your standard backup process.

Those larger setup can run as a cluster of ejabberd nodes. This is a clustering mode where all nodes are active, so it can be use

for fault-tolerance, but also to increase the capacity of your ejabberd deployment.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Architecture of an ejabberd service

- 6/450 - Copyright © 2008 - 2024 ProcessOne

https://github.com/robbiehanson/XMPPFramework
https://github.com/inaka/Jayme
https://github.com/igniterealtime/Smack
https://github.com/square/retrofit
https://strophe.im/
https://www.process-one.net/en/ejabberd/protocols/

With such a deployment you can load balance the traffic to your cluster node using one of the following solution:

traditional TCP/IP load balancer (beware of the cost of your solution, typical XMPP connections are persistent).

DNS load balancing.

Custom approach that requires client cooperation.

If deployed on a 16 GB RAM machine with at least 4 cores, a single ejabberd node can typically handle 200-300 K online users.

This setup is suitable for systems with up to 10 nodes.

Note that your mileage may vary depending on your use case, the feature your are using and how clean the architecture design

and the client is developed. That's why, if you plan to reach huge volume, it is recommended to start asking advices from day 1 to

an ejabberd expert. Initial mistakes in the solution design are harder to fix once the project is in production.

If the service requires a cluster of more than 10 nodes, we recommend not relying on Mnesia clustering mode. Many solutions

are available, the easiest and more inexpensive being to rely on ejabberd Software-as-a-Service approach.

ejabberd also allows connecting different clusters as parts of larger systems. This is a standard XMPP feature call server-to-

server (aka s2s in XMPP lingo). It is used in geo-localised services handling massive traffic from all over the world. Special

extension are also available from ProcessOne to handle geodistribution in an even more robust way.

To manage the users, rosters, messages and general settings, we provide a command-line tool, ejabberdctl. That command-line

allows you to gather metrics from ejabberd to be able to monitor what is happening in your system, understand and even

anticipate issues.

The main benefit of ejabberd is the ability to reach a command-line to type Erlang commands. This allows you to fix and

troubleshoot most of the tricky situation and even update and reload code without stopping the service. This is a life saver for

your uptime.

Welcome to the benefit of Erlang hot-code swapping!

ejabberd is more than XMPP

Thanks to the modular architecture of ejabberd, the platform is becoming a core component for messaging applications.

Messaging applications require to transfer more than text messages. ejabberd has grow a full set of media related features that

makes ejabberd a great choice to support voice and video applications, but also to proxy various kind of media transfer (images,

audio and video files for example).

As such, ejabberd support:

Jingle, XMPP based voice protocol

SIP (Session Initiation Protocol): Yes, you can pass SIP calls using ejabberd :)

ICE (Interactive Connectivity Establishment: A Protocol for Network Address Translator (NAT) Traversal)

STUN

TURN

Proxy65 media relay

This makes ejabberd the best XMPP server to support SIP and WebRTC based communication tools.

Helping us in the development process

With thousands of more or less official forks, the core ejabberd team, supported by ProcessOne, is constantly monitoring and

reviewing improvements. We use our 15 years of experience to filter the best ideas or improvements to make sure ejabberd is

always your most solid choice in term of scalability, robustness and manageability.

The best way to start developing for ejabberd is to clone, watch and star the project, to get in touch on our developer chatroom

(ejabberd@conference.process-one.net) or to join ejabberd community on StackOverflow.

•

•

•

•

•

•

•

•

•

ejabberd is more than XMPP

- 7/450 - Copyright © 2008 - 2024 ProcessOne

https://www.process-one.net
https://www.process-one.net/en/ejabberd/saas/
https://www.github.com/processone/ejabberd
mailto:ejabberd@conference.process-one.net
https://stackoverflow.com/questions/tagged/ejabberd?sort=newest

Features

ejabberd is a free and open source instant messaging server written in Erlang/OTP .

ejabberd is cross-platform, distributed, fault-tolerant, and based on open standards to achieve real-time communication.

ejabberd is designed to be a rock-solid and feature rich XMPP server.

ejabberd is suitable for small deployments, whether they need to be scalable or not, as well as extremely large deployments.

Check also the features in ejabberd.im, ejabberd at ProcessOne, and the list of supported protocols in ProcessOne and XMPP.org.

Key Features

ejabberd is:

Cross-platform: ejabberd runs under Microsoft Windows and Unix-derived systems such as Linux, FreeBSD and NetBSD.

Distributed: You can run ejabberd on a cluster of machines all serving the same Jabber domain(s). When you need more

capacity you can simply add a new cheap node to your cluster. Accordingly, you do not need to buy an expensive high-end

machine to support tens of thousands concurrent users.

Fault-tolerant: You can deploy an ejabberd cluster so that all the information required for a properly working service will be

replicated permanently on all nodes. This means that if one of the nodes crashes, the others will continue working without

disruption. In addition, nodes can be added or replaced on the fly.

Administrator Friendly: ejabberd is built on top of the Erlang programming language. As a result, if you wish, you can perform

self-contained deployments. You are not required to install an external database, an external web server, amongst others

because everything is already included, and ready to run out of the box. Other administrator benefits include:

Comprehensive documentation.

Straightforward installers for Linux, Mac OS X, and Windows.

Web Administration.

Shared Roster Groups.

Command line administration tool.

Can integrate with existing authentication mechanisms.

Capability to send announce messages.

Internationalized: ejabberd leads in internationalization and is well suited to build services available across the world. Related

features are:

Translated to 25 languages.

Support for IDNA .

Open Standards: ejabberd is the first Open Source Jabber server staking a claiming to full complyiance to the XMPP standard.

Fully XMPP compliant.

XML-based protocol.

Many protocols supported.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Features

- 8/450 - Copyright © 2008 - 2024 ProcessOne

https://erlang.org/
https://erlang.org/
https://ejabberd.im/
https://www.process-one.net/en/ejabberd/
https://www.process-one.net/en/ejabberd/protocols/
https://xmpp.org/software/servers/ejabberd/
https://tools.ietf.org/html/rfc3490
https://tools.ietf.org/html/rfc3490
https://ejabberd.im/protocols

Additional Features

ejabberd also comes with a wide range of other state-of-the-art features:

Modular

Load only the modules you want.

Extend ejabberd with your own custom modules.

Security

SASL and STARTTLS for c2s and s2s connections.

STARTTLS and Dialback s2s connections.

Web Admin accessible via HTTPS secure access.

Databases

Internal database for fast deployment (Mnesia).

Native MySQL support.

Native PostgreSQL support.

ODBC data storage support.

Microsoft SQL Server support.

SQLite support.

Authentication

Internal Authentication.

PAM, LDAP and SQL.

External Authentication script.

Others

Support for virtual hosting.

Compressing XML streams with Stream Compression (XEP-0138).

Statistics via Statistics Gathering (XEP-0039).

IPv6 support both for c2s and s2s connections.

Multi-User Chat module with support for clustering and HTML logging.

Users Directory based on users vCards.

Publish-Subscribe component with support for Personal Eventing via Pubsub .

Support for web clients: Support for XMPP subprotocol for WebSocket and HTTP Binding (BOSH) services.

IRC transport.

SIP support.

Component support: interface with networks such as AIM, ICQ and MSN installing special transports.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Additional Features

- 9/450 - Copyright © 2008 - 2024 ProcessOne

https://xmpp.org/extensions/xep-0138.html
https://xmpp.org/extensions/xep-0138.html
https://xmpp.org/extensions/xep-0039.html
https://xmpp.org/extensions/xep-0039.html
https://xmpp.org/extensions/xep-0045.html
https://xmpp.org/extensions/xep-0045.html
https://xmpp.org/extensions/xep-0060.html
https://xmpp.org/extensions/xep-0060.html
https://xmpp.org/extensions/xep-0163.html
https://xmpp.org/extensions/xep-0163.html
https://tools.ietf.org/html/rfc7395
https://xmpp.org/extensions/xep-0206.html
https://xmpp.org/extensions/xep-0206.html

Frequently Asked Questions

Development process

Why is there a commercial version of ejabberd?

Different needs for different users. Corporations and large scale deployments are very different from smaller deployments and

community projects.

While we put a huge development effort to have a product that is on the edge of innovation with ejabberd community version, we

are requested to provide a stable version with long term commitment and high level of quality, testing, audit, etc.

Maintaining such a version in parallel to the community version, along with extremely strong commitment in terms of availability

and 24/7 support has a tangible cost. With ejabberd business edition we commit to a level of scalability and optimize the software

until it is performing to the level agreed with the customer.

Covering all those costs, along with all our Research and Development cost on ejabberd community in general is the real reason

we need a business edition.

The business edition is also a way for our customers to share the code between our customers only, thus retaining a huge

competitive edge for a limited time (See next section).

So, even if you are not using our business edition, this is a great benefit for you as a user of the community edition and the

reason you have seen so many improvements since 2002. Thanks to our business edition customers, ejabberd project itself is a

major contributor to Erlang and Elixir community.

Does ProcessOne voluntarily hold some code in ejabberd community to push toward the business edition?

No. We never do that and have no plan doing so with the code we produce and we own.

However, when the code is paid by customer, they retain the ownership of the code. Part of our agreement is that the code

produced for them will be limited to a restricted user base, ejabberd business edition until an agreed time expires, generally

between 6 months and 1 year.

This is extremely important for both the users of the commercial edition and the users of the community edition:

For the business edition customers, this is a way to keep their business advantage. This is fair as they paid for the

development.

This is also a great incentive for our customers as they benefit from development for other customers (I guess they agree for

the reciprocal sharing of their own code with customers).

This is fair for the community as the community edition users know they will benefit from new extremely advanced features in

a relatively near future. For example, websocket module was contributed to ejabberd community as part of this process.

This is the model we have found to be fair to our broader user base and lets us produce an amazing code base that benefits all

our users.

This dual model is the core strength of our approach and our secret sauce to make sure everyone benefits.

•

•

•

Frequently Asked Questions

- 10/450 - Copyright © 2008 - 2024 ProcessOne

Performance

Is ejabberd the most scalable version?

Yes. Definitely. Despite claims that there is small change you can make to make it more scalable, we already performed the

changes during the past year, that make those claims unfunded:

ejabberd reduced memory consumption in 2013 by switching to binary representation of string instead of list. This can reduce

given string by 8.

We have improved the C code performance a lot, using new Erlang NIF. This provides better performance, removes

bottlenecks

We have a different clustering mechanism available to make sure we can scale to large clusters

This is a common misconception, but our feedback for production service on various customer sites shows that ejabberd is the

most scalable version. Once it is properly configured, optimized and tuned, you can handle tens of millions of users on ejabberd

systems.

... And we are still improving :)

As a reference, you should read the following blog post: ejabberd Massive Scalability: 1 Node — 2+ Million Concurrent Users

What are the tips to optimize performance?

Optimisation of XMPP servers performance, including ejabberd, is highly dependent on the use case. You really need to find your

bottleneck(s) by monitoring the process queues, finding out what is your limiting factor, tune that and then move to the next one.

The first step is to make sure you run the latest ejabberd. Each new release comes with a bunch of optimisations and a specific

bottleneck you are facing may have gone away in the latest version.

For perspective, ejabberd 15.07 is 2 to 3 times more efficient in memory, latency and CPU compared to ejabberd 2.1.

You should also make sure that you are using the latest Erlang version. Each release of Erlang comes with more optimisation

regarding locks, especially on SMP servers, and using the latest Erlang version can also help tremendously.

Erlang support

Is ejabberd conforming to the best Erlang practices?

Yes. Our build system is primarily based on rebar. However, as we are multiplatform and need to run in many various

environments, we rely on a toolchain that can detect required library dependencies using autotools.

This gives developers and admins the best of both worlds. A very flexible and very versatile build chain, that is very adequate to

make sure ejabberd can be used in most operating systems and even integrated in Linux distributions.

•

•

•

Performance

- 11/450 - Copyright © 2008 - 2024 ProcessOne

https://www.process-one.net/blog/ejabberd-massive-scalability-1node-2-million-concurrent-users/

ejabberd Use Cases

ejabberd is very versatile and is a solid choice to build messaging services across a large number of industries:

ejabberd

Mobile messaging

ejabberd's massive scalability makes it the most solid choice as the backbone for a very large number of mobile messaging

services.

This includes:

Chaatz

Libon

Nokia OVI Chat

Roo Kids : Safe & fun instant messaging app for kids with minimum yet critical parental controls.

Swisscom IO

Versapp

Whatsapp

Gaming

Electronic Arts

FACEIT

Kixeye

Machine Zone (Game of War)

Nokia nGage

Riot Games (League of Legends)

Voice and video messaging

Nimbuzz

ooVoo

Sipphone

WowApp

Internet of Things

AeroFS

IMA Teleassistance

Nabaztag (Violet, Mindscape, then Aldebaran Robotics)

Telecom / Hosting

Fastmail

GMX

Mailfence

Orange

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

ejabberd Use Cases

- 12/450 - Copyright © 2008 - 2024 ProcessOne

https://www.process-one.net/en/customers/case/libon/
https://en.wikipedia.org/wiki/Ovi_(Nokia)
http://highscalability.com/blog/2014/2/26/the-whatsapp-architecture-facebook-bought-for-19-billion.html
https://www.ea.com/
https://www.faceit.com/
https://www.kixeye.com/
https://www.machinezone.com
https://en.wikipedia.org/wiki/N-Gage_(service)
http://highscalability.com/blog/2014/10/13/how-league-of-legends-scaled-chat-to-70-million-players-it-t.html
https://en.wikipedia.org/wiki/Nimbuzz
https://www.oovoo.com/
https://www.process-one.net/resources/case_studies/ProcessOne_SIP_Phone_Case_Study_v3.pdf
https://en.wikipedia.org/wiki/Nabaztag
https://blog.fastmail.com/2011/08/24/new-xmppjabber-server/
https://blog.mailfence.com/mailfence-groups/

SAPO - Portugal Telecom

Customer chat / CRM

CoBrowser.net: Coder Interview.

iAdvize

LiveHelpercChat: Blog post: Full XMPP chat support for ejabberd

Media

AFP

BBC

Social media

Facebook

Nasza Klasa (NKTalk messenger)

StudiVZ

Sify

Tuenti

Sport

Major League of Baseball (MLB)

Education

Apollo group

Laureate

Push alerts

Nokia push notifications

Notify.me

Dating

Grindr

Meetic

Community sites

Jabber.at

Talkr.im

XMPP Use Cases

XMPP is a very versatile protocol designed to address many use cases of modern real-time messaging needs. However, it is also a

very large protocol and it is difficult to understand at first sight all the use cases that XMPP adequately addresses.

This page is gathering XMPP specifications that make XMPP a good fit for a given use case of industry.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

XMPP Use Cases

- 13/450 - Copyright © 2008 - 2024 ProcessOne

https://www.process-one.net/resources/case_studies/ProcessOne_SAPO_Case_Study_v7.pdf
https://www.process-one.net/blog/code-as-craft-interview-cobrowser-net/
https://livehelperchat.com
https://livehelperchat.com/full-xmpp-chat-support-for-ejabberd-423a.html
https://www.afp.com/en/
https://www.process-one.net/resources/case_studies/ProcessOne_BBC_Case_Study_v2.pdf
https://www.quora.com/Why-was-Erlang-chosen-for-use-in-Facebook-chat
https://en.wikipedia.org/wiki/StudiVZ
http://highscalability.com/blog/2010/5/10/sifycom-architecture-a-portal-at-3900-requests-per-second.html
https://en.wikipedia.org/wiki/Tuenti
https://www.process-one.net/resources/case_studies/ProcessOne_ML_Baseball_Case_Study_v5.pdf
https://www.process-one.net/blog/sea_beyond_2011_talk_7_jukka_alakontiola_on_nokia_push_notifications/
http://highscalability.com/blog/2008/10/27/notifyme-architecture-synchronicity-kills.html
https://www.meetic.com/
https://xmpp.org

Realtime web

XMPP was designed before the advent of realtime web. However, it managed to adapt thanks to the following specifications:

XMPP PubSub is defined in XEP-0060. This is a very powerful mechanism that defines channel based communication on top of

the XMPP protocol itself. A server can handle millions of channels, called Pubsub nodes. Users interested in specific channels

can subscribe to nodes. When data needs to be send to a given channel, authorized publishers can send data to that node. The

XMPP server will then broadcast the content to all subscribers. This is very adequate for realtime web as it allows you to

broadcast relevant events to web pages.

WebSocket: XMPP over WebSocket is defined in RFC 7395. It is more efficient and more scalable than XMPP for web's

previous specifications called BOSH. WebSocket being a true bidirectional channel, it allows lower latency messaging and is

very reliable. Note that BOSH can still be used transparently along with WebSocket to support old web browsers.

Use cases: News, interactive web page, web chat, web games.

Supported by ejabberd: Yes.

•

•

XMPP Use Cases

- 14/450 - Copyright © 2008 - 2024 ProcessOne

https://xmpp.org/extensions/xep-0060.html
https://tools.ietf.org/html/rfc7395
https://xmpp.org/extensions/xep-0124.html

As a special exception, the authors give permission to link this program with the OpenSSL library and distribute the resulting

binary.

GNU GENERAL PUBLIC LICENSE

Version 2, June 1991

Preamble

The licenses for most software are designed to take away your freedom to share and change it. By contrast, the GNU General

Public License is intended to guarantee your freedom to share and change free software--to make sure the software is free for all

its users. This General Public License applies to most of the Free Software Foundation's software and to any other program

whose authors commit to using it. (Some other Free Software Foundation software is covered by the GNU Lesser General Public

License instead.) You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are designed to make sure

that you have the freedom to distribute copies of free software (and charge for this service if you wish), that you receive source

code or can get it if you want it, that you can change the software or use pieces of it in new free programs; and that you know

you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these rights or to ask you to surrender the

rights. These restrictions translate to certain responsibilities for you if you distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must give the recipients all the rights

that you have. You must make sure that they, too, receive or can get the source code. And you must show them these terms so

they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this license which gives you legal permission

to copy, distribute and/or modify the software.

Also, for each author's protection and ours, we want to make certain that everyone understands that there is no warranty for this

free software. If the software is modified by someone else and passed on, we want its recipients to know that what they have is

not the original, so that any problems introduced by others will not reflect on the original authors' reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid the danger that redistributors of a free

program will individually obtain patent licenses, in effect making the program proprietary. To prevent this, we have made it clear

that any patent must be licensed for everyone's free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains a notice placed by the copyright holder saying it may be

distributed under the terms of this General Public License. The "Program", below, refers to any such program or work, and a

"work based on the Program" means either the Program or any derivative work under copyright law: that is to say, a work

containing the Program or a portion of it, either verbatim or with modifications and/or translated into another language.

(Hereinafter, translation is included without limitation in the term "modification".) Each licensee is addressed as "you".

Activities other than copying, distribution and modification are not covered by this License; they are outside its scope. The act of

running the Program is not restricted, and the output from the Program is covered only if its contents constitute a work based on

the Program (independent of having been made by running the Program). Whether that is true depends on what the Program

does.

Copyright (C) 1989, 1991 Free Software Foundation, Inc.
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

GNU GENERAL PUBLIC LICENSE

- 15/450 - Copyright © 2008 - 2024 ProcessOne

1. You may copy and distribute verbatim copies of the Program's source code as you receive it, in any medium, provided that you

conspicuously and appropriately publish on each copy an appropriate copyright notice and disclaimer of warranty; keep intact all

the notices that refer to this License and to the absence of any warranty; and give any other recipients of the Program a copy of

this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your option offer warranty protection in

exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming a work based on the Program, and copy

and distribute such modifications or work under the terms of Section 1 above, provided that you also meet all of these conditions:

a) You must cause the modified files to carry prominent notices stating that you changed the files and the date of any change.

b) You must cause any work that you distribute or publish, that in whole or in part contains or is derived from the Program or

any part thereof, to be licensed as a whole at no charge to all third parties under the terms of this License.

c) If the modified program normally reads commands interactively when run, you must cause it, when started running for such

interactive use in the most ordinary way, to print or display an announcement including an appropriate copyright notice and a

notice that there is no warranty (or else, saying that you provide a warranty) and that users may redistribute the program under

these conditions, and telling the user how to view a copy of this License. (Exception: if the Program itself is interactive but does

not normally print such an announcement, your work based on the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections of that work are not derived from the Program,

and can be reasonably considered independent and separate works in themselves, then this License, and its terms, do not apply

to those sections when you distribute them as separate works. But when you distribute the same sections as part of a whole

which is a work based on the Program, the distribution of the whole must be on the terms of this License, whose permissions for

other licensees extend to the entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely by you; rather, the intent is

to exercise the right to control the distribution of derivative or collective works based on the Program.

In addition, mere aggregation of another work not based on the Program with the Program (or with a work based on the

Program) on a volume of a storage or distribution medium does not bring the other work under the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under Section 2) in object code or executable form under the

terms of Sections 1 and 2 above provided that you also do one of the following:

a) Accompany it with the complete corresponding machine-readable source code, which must be distributed under the terms of

Sections 1 and 2 above on a medium customarily used for software interchange; or,

b) Accompany it with a written offer, valid for at least three years, to give any third party, for a charge no more than your cost of

physically performing source distribution, a complete machine-readable copy of the corresponding source code, to be distributed

under the terms of Sections 1 and 2 above on a medium customarily used for software interchange; or,

c) Accompany it with the information you received as to the offer to distribute corresponding source code. (This alternative is

allowed only for noncommercial distribution and only if you received the program in object code or executable form with such an

offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modifications to it. For an executable work,

complete source code means all the source code for all modules it contains, plus any associated interface definition files, plus the

scripts used to control compilation and installation of the executable. However, as a special exception, the source code

distributed need not include anything that is normally distributed (in either source or binary form) with the major components

(compiler, kernel, and so on) of the operating system on which the executable runs, unless that component itself accompanies the

executable.

If distribution of executable or object code is made by offering access to copy from a designated place, then offering equivalent

access to copy the source code from the same place counts as distribution of the source code, even though third parties are not

compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly provided under this License. Any attempt

otherwise to copy, modify, sublicense or distribute the Program is void, and will automatically terminate your rights under this

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

- 16/450 - Copyright © 2008 - 2024 ProcessOne

License. However, parties who have received copies, or rights, from you under this License will not have their licenses

terminated so long as such parties remain in full compliance.

5. You are not required to accept this License, since you have not signed it. However, nothing else grants you permission to

modify or distribute the Program or its derivative works. These actions are prohibited by law if you do not accept this License.

Therefore, by modifying or distributing the Program (or any work based on the Program), you indicate your acceptance of this

License to do so, and all its terms and conditions for copying, distributing or modifying the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the Program), the recipient automatically receives a license

from the original licensor to copy, distribute or modify the Program subject to these terms and conditions. You may not impose

any further restrictions on the recipients' exercise of the rights granted herein. You are not responsible for enforcing compliance

by third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringement or for any other reason (not limited to patent

issues), conditions are imposed on you (whether by court order, agreement or otherwise) that contradict the conditions of this

License, they do not excuse you from the conditions of this License. If you cannot distribute so as to satisfy simultaneously your

obligations under this License and any other pertinent obligations, then as a consequence you may not distribute the Program at

all. For example, if a patent license would not permit royalty-free redistribution of the Program by all those who receive copies

directly or indirectly through you, then the only way you could satisfy both it and this License would be to refrain entirely from

distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular circumstance, the balance of the section is

intended to apply and the section as a whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property right claims or to contest validity of

any such claims; this section has the sole purpose of protecting the integrity of the free software distribution system, which is

implemented by public license practices. Many people have made generous contributions to the wide range of software

distributed through that system in reliance on consistent application of that system; it is up to the author/donor to decide if he or

she is willing to distribute software through any other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the rest of this License.

8. If the distribution and/or use of the Program is restricted in certain countries either by patents or by copyrighted interfaces,

the original copyright holder who places the Program under this License may add an explicit geographical distribution limitation

excluding those countries, so that distribution is permitted only in or among countries not thus excluded. In such case, this

License incorporates the limitation as if written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the General Public License from time to time. Such

new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a version number of this License which applies to

it and "any later version", you have the option of following the terms and conditions either of that version or of any later version

published by the Free Software Foundation. If the Program does not specify a version number of this License, you may choose

any version ever published by the Free Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs whose distribution conditions are different, write to

the author to ask for permission. For software which is copyrighted by the Free Software Foundation, write to the Free Software

Foundation; we sometimes make exceptions for this. Our decision will be guided by the two goals of preserving the free status of

all derivatives of our free software and of promoting the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR THE PROGRAM, TO THE

EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS

AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR

IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A

PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU.

SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR

CORRECTION.

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

- 17/450 - Copyright © 2008 - 2024 ProcessOne

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER,

OR ANY OTHER PARTY WHO MAY MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO

YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF

THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING

RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO

OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE

POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public, the best way to achieve this is to

make it free software which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the start of each source file to most effectively

convey the exclusion of warranty; and each file should have at least the "copyright" line and a pointer to where the full notice is

found.

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when it starts in an interactive mode:

The hypothetical commands `show w' and `show c' should show the appropriate parts of the General Public License. Of course,

the commands you use may be called something other than `show w' and `show c'; they could even be mouse-clicks or menu

items--whatever suits your program.

You should also get your employer (if you work as a programmer) or your school, if any, to sign a "copyright disclaimer" for the

program, if necessary. Here is a sample; alter the names:

This General Public License does not permit incorporating your program into proprietary programs. If your program is a

subroutine library, you may consider it more useful to permit linking proprietary applications with the library. If this is what you

want to do, use the GNU Lesser General Public License instead of this License.

one line to give the program's name and an idea of what it does.
Copyright (C) yyyy name of author

This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.

Gnomovision version 69, Copyright (C) year name of author
Gnomovision comes with ABSOLUTELY NO WARRANTY; for details
type `show w'. This is free software, and you are welcome
to redistribute it under certain conditions; type `show c'
for details.

Yoyodyne, Inc., hereby disclaims all copyright
interest in the program `Gnomovision'
(which makes passes at compilers) written
by James Hacker.

signature of Ty Coon, 1 April 1989
Ty Coon, President of Vice

How to Apply These Terms to Your New Programs

- 18/450 - Copyright © 2008 - 2024 ProcessOne

https://www.gnu.org/licenses/lgpl.html

Readme

ejabberd is an open-source, robust, scalable and extensible realtime platform built using Erlang/OTP, that includes XMPP Server,

MQTT Broker and SIP Service.

Check the features in ejabberd.im, ejabberd Docs, ejabberd at ProcessOne, and the list of supported protocols in ProcessOne and

XMPP.org.

Installation

There are several ways to install ejabberd:

Source code: compile yourself, see COMPILE

Installers: ProcessOne Download and GitHub Releases for releases, GitHub Actions for master branch (run/deb/rpm for x64

and arm64)

ecs container image: Docker Hub and Github Packages, see ecs README (for x64)

ejabberd container image: Github Packages for releases and master branch, see CONTAINER (for x64 and arm64)

Using your Operating System package

Using the Homebrew package manager

Documentation

Please check the ejabberd Docs website.

When compiling from source code, you can get some help with:

Once ejabberd is installed, try:

Development

Bug reports and features are tracked using GitHub Issues, please check CONTRIBUTING for details.

v24.10v24.10 hexhex v24.7.0v24.7.0 homebrewhomebrew v24.07v24.07 ecsecs v24.07v24.07 ejabberdejabberd v24.10v24.10

CICI passingpassing coveragecoverage 33%33% translatedtranslated 66%66% docsdocs v24.10v24.10

•

•

•

•

•

•

./configure --help
make help

ejabberdctl help
man ejabberd.yml

Readme

- 19/450 - Copyright © 2008 - 2024 ProcessOne

https://github.com/processone/ejabberd/tags
https://github.com/processone/ejabberd/tags
https://hex.pm/packages/ejabberd
https://hex.pm/packages/ejabberd
https://formulae.brew.sh/formula/ejabberd
https://formulae.brew.sh/formula/ejabberd
https://hub.docker.com/r/ejabberd/ecs/
https://hub.docker.com/r/ejabberd/ecs/
https://github.com/processone/ejabberd/pkgs/container/ejabberd
https://github.com/processone/ejabberd/pkgs/container/ejabberd
https://github.com/processone/ejabberd/actions/workflows/ci.yml
https://github.com/processone/ejabberd/actions/workflows/ci.yml
https://coveralls.io/github/processone/ejabberd?branch=master
https://coveralls.io/github/processone/ejabberd?branch=master
https://hosted.weblate.org/projects/ejabberd/ejabberd-po/
https://hosted.weblate.org/projects/ejabberd/ejabberd-po/
https://docs.ejabberd.im/
https://docs.ejabberd.im/
https://ejabberd.im/
https://www.erlang.org/
https://xmpp.org/
https://mqtt.org/
https://en.wikipedia.org/wiki/Session_Initiation_Protocol
https://ejabberd.im/
https://docs.ejabberd.im/admin/introduction/
https://www.process-one.net/en/ejabberd/
https://www.process-one.net/en/ejabberd/protocols/
https://xmpp.org/software/servers/ejabberd/
https://www.process-one.net/en/ejabberd/downloads/
https://github.com/processone/ejabberd/releases
https://github.com/processone/ejabberd/actions/workflows/installers.yml
https://hub.docker.com/r/ejabberd/ecs/
https://github.com/processone/docker-ejabberd/pkgs/container/ecs
https://github.com/processone/docker-ejabberd/tree/master/ecs#readme
https://github.com/processone/ejabberd/pkgs/container/ejabberd
https://docs.ejabberd.im/admin/install/os-package/
https://docs.ejabberd.im/admin/install/homebrew/
https://docs.ejabberd.im
https://github.com/processone/ejabberd/issues

Translations can be improved online using Weblate or in your local machine as explained in Localization.

Documentation for developers is available in ejabberd docs: Developers.

There are nightly builds of ejabberd, both for master branch and for Pull Requests: - Installers: go to GitHub Actions: Installers,

open the most recent commit, on the bottom of that commit page, download the ejabberd-packages.zip artifact. - ejabberd

container image: go to ejabberd Github Packages

Security reports or concerns should preferably be reported privately, please send an email to the address: contact at process-one

dot net or some other method from ProcessOne Contact.

For commercial offering and support, including ejabberd Business Edition and Fluux (ejabberd in the Cloud), please check

ProcessOne ejabberd page.

Community

There are several places to get in touch with other ejabberd developers and administrators:

ejabberd XMPP chatroom: ejabberd@conference.process-one.net

GitHub Discussions

Stack Overflow

License

ejabberd is released under the GNU General Public License v2 (see COPYING), and ejabberd translations under MIT License.

•

•

•

Community

- 20/450 - Copyright © 2008 - 2024 ProcessOne

https://hosted.weblate.org/projects/ejabberd/ejabberd-po/
https://docs.ejabberd.im/developer/extending-ejabberd/localization/
https://docs.ejabberd.im/developer/
https://github.com/processone/ejabberd/actions/workflows/installers.yml
https://github.com/processone/ejabberd/pkgs/container/ejabberd
https://www.process-one.net/en/company/contact/
https://www.process-one.net/en/ejabberd/
https://fluux.io/
https://www.process-one.net/en/ejabberd/
xmpp:ejabberd@conference.process-one.net
https://github.com/processone/ejabberd/discussions
https://stackoverflow.com/questions/tagged/ejabberd?sort=newest
https://github.com/processone/ejabberd-po/

Install

Installation

There are several ways to install ejabberd Community Server, depending on your needs and your infrastructure.

Self-hosted

Container Images

ejabberd and ecs Container Images – Ideal for Windows, macOS, Linux, ...

Binary Installers

Linux RUN Installer – Suitable for various Linux distributions

Linux DEB and RPM Installers – Specifically for DEB and RPM based Linux

Linux and *BSD

Operating System Package – Tailored for System Operators

MacOS

Homebrew – Optimized for MacOS

Source Code

Source Code – Geared towards developers and advanced administrators

On-Premise (eBE)

ejabberd Business Edition – Explore professional support and managed services on your infrastructure

Cloud Hosting (Fluux)

Fluux.io – Opt for ejabberd hosting with a user-friendly web dashboard

•

•

•

•

•

•

•

•

Install

- 21/450 - Copyright © 2008 - 2024 ProcessOne

https://www.process-one.net/en/ejabberd/
https://fluux.io

Install ejabberd using a Container Image

There are two official container images of ejabberd that you can install using docker (or podman):

ejabberd Container Image

The "ejabberd" container image is available in the GitHub Container Registry. It is available for x64 and arm64, both for stable

ejabberd releases and the master branch. Check the "ejabberd" container documentation.

For example, download the latest stable ejabberd release:

If you use Microsoft Windows 7, 10, or similar operating systems, check those tutorials:

Install ejabberd on Windows 10 using Docker Desktop

Install ejabberd on Windows 7 using Docker Toolbox

For bug reports and improvement suggestions, if you use the "ecs" container image please go to the docker-ejabberd GitHub

Issues, if using the "ejabberd" container image from github please go to the ejabberd GitHub Issues

ecs Container Image

The "ecs" container image allows to get ejabberd stable releases in x64 machines. Check the "ecs" container documentation.

Download ejabberd with:

docker pull ghcr.io/processone/ejabberd

•

•

docker pull docker.io/ejabberd/ecs

Install ejabberd using a Container Image

- 22/450 - Copyright © 2008 - 2024 ProcessOne

https://github.com/processone/ejabberd/pkgs/container/ejabberd
https://github.com/processone/ejabberd/pkgs/container/ejabberd
https://www.process-one.net/blog/install-ejabberd-on-windows-10-using-docker-desktop/
https://www.process-one.net/blog/install-ejabberd-on-windows-7-using-docker-toolbox/
https://github.com/processone/docker-ejabberd/issues
https://github.com/processone/docker-ejabberd/issues
https://github.com/processone/ejabberd/issues?q=is-3Aopen+is-3Aissue+label-3APackaging-3AContainer
https://hub.docker.com/r/ejabberd/ecs
https://hub.docker.com/r/ejabberd/ecs

ejabberd Container Image

ejabberd is an open-source, robust, scalable and extensible realtime platform built using Erlang/OTP, that includes XMPP Server,

MQTT Broker and SIP Service.

This document explains how to use the ejabberd container image available in ghcr.io/processone/ejabberd, built using the files

in .github/container/ . This image is based in Alpine 3.19, includes Erlang/OTP 26.2 and Elixir 1.16.1.

Alternatively, there is also the ecs container image available in docker.io/ejabberd/ecs, built using the docker-ejabberd/ecs

repository. Check the differences between ejabberd and ecs images.

If you are using a Windows operating system, check the tutorials mentioned in ejabberd Docs > Docker Image.

Start ejabberd

With default configuration

Start ejabberd in a new container:

That runs the container as a daemon, using ejabberd default configuration file and XMPP domain "localhost".

Stop the running container:

Restart the stopped ejabberd container:

Start with Erlang console attached

Start ejabberd with an Erlang console attached using the live command:

That uses the default configuration file and XMPP domain "localhost".

Start with your configuration and database

Pass a configuration file as a volume and share the local directory to store database:

Notice that ejabberd runs in the container with an account named ejabberd , and the volumes you mount must grant proper

rights to that account.

v24.10v24.10 ejabberdejabberd v24.10v24.10 ecsecs v24.07v24.07

docker run --name ejabberd -d -p 5222:5222 ghcr.io/processone/ejabberd

docker stop ejabberd

docker restart ejabberd

docker run --name ejabberd -it -p 5222:5222 ghcr.io/processone/ejabberd live

mkdir database
chown ejabberd database

cp ejabberd.yml.example ejabberd.yml

docker run --name ejabberd -it \
-v $(pwd)/ejabberd.yml:/opt/ejabberd/conf/ejabberd.yml \
-v $(pwd)/database:/opt/ejabberd/database \
-p 5222:5222 ghcr.io/processone/ejabberd live

ejabberd Container Image

- 23/450 - Copyright © 2008 - 2024 ProcessOne

https://github.com/processone/ejabberd/tags
https://github.com/processone/ejabberd/tags
https://github.com/processone/ejabberd/pkgs/container/ejabberd
https://github.com/processone/ejabberd/pkgs/container/ejabberd
https://hub.docker.com/r/ejabberd/ecs/
https://hub.docker.com/r/ejabberd/ecs/
https://ejabberd.im/
https://www.erlang.org/
https://xmpp.org/
https://mqtt.org/
https://en.wikipedia.org/wiki/Session_Initiation_Protocol
https://github.com/processone/ejabberd/pkgs/container/ejabberd
https://hub.docker.com/r/ejabberd/ecs/
https://github.com/processone/docker-ejabberd/tree/master/ecs
https://github.com/processone/docker-ejabberd/blob/master/ecs/HUB-README.md#alternative-image-in-github
https://github.com/processone/docker-ejabberd/blob/master/ecs/HUB-README.md#alternative-image-in-github
https://github.com/processone/docker-ejabberd/blob/master/ecs/HUB-README.md#alternative-image-in-github
https://docs.ejabberd.im/admin/install/container/#ejabberd-container-image

Next steps

Register the administrator account

The default ejabberd configuration does not grant admin privileges to any account, you may want to register a new account in

ejabberd and grant it admin rights.

Register an account using the ejabberdctl script:

Then edit conf/ejabberd.yml and add the ACL as explained in ejabberd Docs: Administration Account

Check ejabberd log files

Check the content of the log files inside the container, even if you do not put it on a shared persistent drive:

Inspect the container files

The container uses Alpine Linux. Start a shell inside the container:

Open ejabberd debug console

Open an interactive debug Erlang console attached to a running ejabberd in a running container:

CAPTCHA

ejabberd includes two example CAPTCHA scripts. If you want to use any of them, first install some additional required libraries:

Now update your ejabberd configuration file, for example:

and add this option:

Finally, reload the configuration file or restart the container:

If the CAPTCHA image is not visible, there may be a problem generating it (the ejabberd log file may show some error message);

or the image URL may not be correctly detected by ejabberd, in that case you can set the correct URL manually, for example:

For more details about CAPTCHA options, please check the CAPTCHA documentation section.

docker exec -it ejabberd ejabberdctl register admin localhost passw0rd

docker exec -it ejabberd tail -f logs/ejabberd.log

docker exec -it ejabberd sh

docker exec -it ejabberd ejabberdctl debug

docker exec --user root ejabberd apk add imagemagick ghostscript-fonts bash

docker exec -it ejabberd vi conf/ejabberd.yml

captcha_cmd: /opt/ejabberd-22.04/lib/captcha.sh

docker exec ejabberd ejabberdctl reload_config

captcha_url: https://localhost:5443/captcha

Next steps

- 24/450 - Copyright © 2008 - 2024 ProcessOne

https://docs.ejabberd.im/admin/install/next-steps/#administration-account
https://docs.ejabberd.im/admin/configuration/basic/#captcha

Advanced Container Configuration

Ports

This container image exposes the ports:

5222 : The default port for XMPP clients.

5269 : For XMPP federation. Only needed if you want to communicate with users on other servers.

5280 : For admin interface.

5443 : With encryption, used for admin interface, API, CAPTCHA, OAuth, Websockets and XMPP BOSH.

1883 : Used for MQTT

4369-4399 : EPMD and Erlang connectivity, used for ejabberdctl and clustering

5210 : Erlang connectivity when ERL_DIST_PORT is set, alternative to EPMD

Volumes

ejabberd produces two types of data: log files and database spool files (Mnesia). This is the kind of data you probably want to

store on a persistent or local drive (at least the database).

The volumes you may want to map:

/opt/ejabberd/conf/ : Directory containing configuration and certificates

/opt/ejabberd/database/ : Directory containing Mnesia database. You should back up or export the content of the directory to

persistent storage (host storage, local storage, any storage plugin)

/opt/ejabberd/logs/ : Directory containing log files

/opt/ejabberd/upload/ : Directory containing uploaded files. This should also be backed up.

All these files are owned by ejabberd user inside the container.

It's possible to install additional ejabberd modules using volumes, this comment explains how to install an additional module

using docker-compose.

Commands on start

The ejabberdctl script reads the CTL_ON_CREATE environment variable the first time the container is started, and reads

CTL_ON_START every time the container is started. Those variables can contain one ejabberdctl command, or several commands

separated with the blankspace and ; characters.

By default failure of any of commands executed that way would abort start, this can be disabled by prefixing commands with !

Example usage (or check the full example):

Clustering

When setting several containers to form a cluster of ejabberd nodes, each one must have a different Erlang Node Name and the

same Erlang Cookie.

For this you can either: - edit conf/ejabberdctl.cfg and set variables ERLANG_NODE and ERLANG_COOKIE - set the environment

variables ERLANG_NODE_ARG and ERLANG_COOKIE

Example to connect a local ejabberdctl to a containerized ejabberd: 1. When creating the container, export port 5210, and set

ERLANG_COOKIE :

•

•

•

•

•

•

•

•

•

•

•

environment:
- CTL_ON_CREATE=! register admin localhost asd
- CTL_ON_START=stats registeredusers ;

check_password admin localhost asd ;
status

Advanced Container Configuration

- 25/450 - Copyright © 2008 - 2024 ProcessOne

https://github.com/processone/docker-ejabberd/issues/81#issuecomment-1036115146
https://docs.ejabberd.im/admin/guide/clustering/
https://docs.ejabberd.im/admin/guide/security/#erlang-node-name
https://docs.ejabberd.im/admin/guide/security/#erlang-cookie

2. Set ERL_DIST_PORT=5210 in ejabberdctl.cfg of container and local ejabberd 3. Restart the container 4. Now use ejabberdctl in your

local ejabberd deployment

To connect using a local ejabberd script:

Example using environment variables (see full example docker-compose.yml):

Build a Container Image

This container image includes ejabberd as a standalone OTP release built using Elixir. That OTP release is configured with:

mix.exs : Customize ejabberd release

vars.config : ejabberd compilation configuration options

config/runtime.exs : Customize ejabberd paths

ejabberd.yml.template : ejabberd default config file

Direct build

Build ejabberd Community Server container image from ejabberd master git repository:

Podman build

It's also possible to use podman instead of docker, just notice: - EXPOSE 4369-4399 port range is not supported, remove that in

Dockerfile - It mentions that healthcheck is not supported by the Open Container Initiative image format - to start with command

live , you may want to add environment variable EJABBERD_BYPASS_WARNINGS=true

Package build for arm64

By default, .github/container/Dockerfile builds this container by directly compiling ejabberd, it is a fast and direct method.

However, a problem with QEMU prevents building the container in QEMU using Erlang/OTP 25 for the arm64 architecture.

Providing --build-arg METHOD=package is an alternate method to build the container used by the Github Actions workflow that

provides amd64 and arm64 container images. It first builds an ejabberd binary package, and later installs it in the image. That

method avoids using QEMU, so it can build arm64 container images, but is extremely slow the first time it's used, and

consequently not recommended for general use.

docker run --name ejabberd -it \
-e ERLANG_COOKIE=`cat $HOME/.erlang.cookie` \
-p 5210:5210 -p 5222:5222 \
ghcr.io/processone/ejabberd

ERL_DIST_PORT=5210 _build/dev/rel/ejabberd/bin/ejabberd ping

environment:
- ERLANG_NODE_ARG=ejabberd@node7
- ERLANG_COOKIE=dummycookie123

•

•

•

•

docker buildx build \
-t personal/ejabberd \
-f .github/container/Dockerfile \
.

podman build \
-t ejabberd \
-f .github/container/Dockerfile \
.

podman run --name eja1 -d -p 5222:5222 localhost/ejabberd

podman exec eja1 ejabberdctl status

podman exec -it eja1 sh

podman stop eja1

podman run --name eja1 -it -e EJABBERD_BYPASS_WARNINGS=true -p 5222:5222 localhost/ejabberd live

Build a Container Image

- 26/450 - Copyright © 2008 - 2024 ProcessOne

https://github.com/processone/docker-ejabberd/issues/64#issuecomment-887741332

In this case, to build the ejabberd container image for arm64 architecture:

Composer Examples

Minimal Example

This is the barely minimal file to get a usable ejabberd. Store it as docker-compose.yml :

Create and start the container with the command:

Customized Example

This example shows the usage of several customizations: it uses a local configuration file, stores the mnesia database in a local

path, registers an account when it's created, and checks the number of registered accounts every time it's started.

Download or copy the ejabberd configuration file:

Create the database directory and allow the container access to it:

Now write this docker-compose.yml file:

Clustering Example

In this example, the main container is created first. Once it is fully started and healthy, a second container is created, and once

ejabberd is started in it, it joins the first one.

docker buildx build \
--build-arg METHOD=package \
--platform linux/arm64 \
-t personal/ejabberd:$VERSION \
-f .github/container/Dockerfile \
.

services:
main:
image: ghcr.io/processone/ejabberd
container_name: ejabberd
ports:
- "5222:5222"
- "5269:5269"
- "5280:5280"
- "5443:5443"

docker-compose up

wget https://raw.githubusercontent.com/processone/ejabberd/master/ejabberd.yml.example
mv ejabberd.yml.example ejabberd.yml

mkdir database
sudo chown 9000:9000 database

version: '3.7'

services:

main:
image: ghcr.io/processone/ejabberd
container_name: ejabberd
environment:
- CTL_ON_CREATE=register admin localhost asd
- CTL_ON_START=registered_users localhost ;

status
ports:
- "5222:5222"
- "5269:5269"
- "5280:5280"
- "5443:5443"

volumes:
- ./ejabberd.yml:/opt/ejabberd/conf/ejabberd.yml:ro
- ./database:/opt/ejabberd/database

Composer Examples

- 27/450 - Copyright © 2008 - 2024 ProcessOne

An account is registered in the first node when created (and we ignore errors that can happen when doing that - for example

whenn account already exists), and it should exist in the second node after join.

Notice that in this example the main container does not have access to the exterior; the replica exports the ports and can be

accessed.

version: '3.7'

services:

main:
image: ghcr.io/processone/ejabberd
container_name: ejabberd
environment:
- ERLANG_NODE_ARG=ejabberd@main
- ERLANG_COOKIE=dummycookie123
- CTL_ON_CREATE=! register admin localhost asd

replica:
image: ghcr.io/processone/ejabberd
container_name: replica
depends_on:
main:
condition: service_healthy

ports:
- "5222:5222"
- "5269:5269"
- "5280:5280"
- "5443:5443"

environment:
- ERLANG_NODE_ARG=ejabberd@replica
- ERLANG_COOKIE=dummycookie123
- CTL_ON_CREATE=join_cluster ejabberd@main
- CTL_ON_START=registered_users localhost ;

status

Composer Examples

- 28/450 - Copyright © 2008 - 2024 ProcessOne

ecs Container Image

ejabberd is an open-source XMPP server, robust, scalable and modular, built using Erlang/OTP, and also includes MQTT Broker

and SIP Service.

This container image allows you to run a single node ejabberd instance in a container.

There is an Alternative Image in GitHub Packages, built using a different method and some improvements.

If you are using a Windows operating system, check the tutorials mentioned in ejabberd Docs > Docker Image.

Start ejabberd

With default configuration

You can start ejabberd in a new container with the following command:

This command will run the container image as a daemon, using ejabberd default configuration file and XMPP domain "localhost".

To stop the running container, you can run:

If needed, you can restart the stopped ejabberd container with:

Start with Erlang console attached

If you would like to start ejabberd with an Erlang console attached you can use the live command:

This command will use default configuration file and XMPP domain "localhost".

Start with your configuration and database

This command passes the configuration file using the volume feature and shares the local directory to store database:

Next steps

Register the administrator account

The default ejabberd configuration has already granted admin privilege to an account that would be called admin@localhost , so

you just need to register such an account to start using it for administrative purposes. You can register this account using the

ejabberdctl script, for example:

v24.10v24.10 ejabberdejabberd v24.10v24.10 ecsecs v24.07v24.07

TestsTests passingpassing image sizeimage size 36.9 MB36.9 MB docker starsdocker stars 6767 docker pullsdocker pulls 5.9M5.9M StarsStars 9595

docker run --name ejabberd -d -p 5222:5222 ejabberd/ecs

docker stop ejabberd

docker restart ejabberd

docker run -it -p 5222:5222 ejabberd/ecs live

mkdir database
docker run -d --name ejabberd -v $(pwd)/ejabberd.yml:/home/ejabberd/conf/ejabberd.yml -v $(pwd)/database:/home/ejabberd/database -p 5222:5222 ejabberd/ecs

docker exec -it ejabberd ejabberdctl register admin localhost passw0rd

ecs Container Image

- 29/450 - Copyright © 2008 - 2024 ProcessOne

https://github.com/processone/ejabberd/tags
https://github.com/processone/ejabberd/tags
https://github.com/processone/ejabberd/pkgs/container/ejabberd
https://github.com/processone/ejabberd/pkgs/container/ejabberd
https://hub.docker.com/r/ejabberd/ecs/
https://hub.docker.com/r/ejabberd/ecs/
https://github.com/processone/docker-ejabberd/actions/workflows/tests.yml
https://github.com/processone/docker-ejabberd/actions/workflows/tests.yml
https://hub.docker.com/r/ejabberd/ecs/
https://hub.docker.com/r/ejabberd/ecs/
https://hub.docker.com/r/ejabberd/ecs/
https://hub.docker.com/r/ejabberd/ecs/
https://hub.docker.com/r/ejabberd/ecs/
https://hub.docker.com/r/ejabberd/ecs/
https://github.com/processone/docker-ejabberd
https://github.com/processone/docker-ejabberd
https://docs.ejabberd.im/admin/installation/#docker-image

Check ejabberd log files

Check the ejabberd log file in the container:

Inspect the container files

The container uses Alpine Linux. You can start a shell there with:

Open ejabberd debug console

You can open a live debug Erlang console attached to a running container:

CAPTCHA

ejabberd includes two example CAPTCHA scripts. If you want to use any of them, first install some additional required libraries:

Now update your ejabberd configuration file, for example:

and add this option:

Finally, reload the configuration file or restart the container:

If the CAPTCHA image is not visible, there may be a problem generating it (the ejabberd log file may show some error message);

or the image URL may not be correctly detected by ejabberd, in that case you can set the correct URL manually, for example:

For more details about CAPTCHA options, please check the CAPTCHA documentation section.

Use ejabberdapi

When the container is running (and thus ejabberd), you can exec commands inside the container using ejabberdctl or any other

of the available interfaces, see Understanding ejabberd "commands"

Additionally, this container image includes the ejabberdapi executable. Please check the ejabberd-api homepage for

configuration and usage details.

For example, if you configure ejabberd like this:

docker exec -it ejabberd tail -f logs/ejabberd.log

docker exec -it ejabberd sh

docker exec -it ejabberd ejabberdctl debug

docker exec --user root ejabberd apk add imagemagick ghostscript-fonts bash

docker exec -it ejabberd vi conf/ejabberd.yml

captcha_cmd: /home/ejabberd/lib/ejabberd-21.1.0/priv/bin/captcha.sh

docker exec ejabberd ejabberdctl reload_config

captcha_url: https://localhost:5443/captcha

listen:
-
port: 5282
module: ejabberd_http
request_handlers:
"/api": mod_http_api

acl:
loopback:
ip:
- 127.0.0.0/8
- ::1/128

Next steps

- 30/450 - Copyright © 2008 - 2024 ProcessOne

https://docs.ejabberd.im/admin/configuration/basic/#captcha
https://docs.ejabberd.im/developer/ejabberd-api/#understanding-ejabberd-commands
https://github.com/processone/ejabberd-api

Then you could register new accounts with this query:

Advanced container configuration

Ports

This container image exposes the ports:

5222 : The default port for XMPP clients.

5269 : For XMPP federation. Only needed if you want to communicate with users on other servers.

5280 : For admin interface.

5443 : With encryption, used for admin interface, API, CAPTCHA, OAuth, Websockets and XMPP BOSH.

1883 : Used for MQTT

4369-4399 : EPMD and Erlang connectivity, used for ejabberdctl and clustering

Volumes

ejabberd produces two types of data: log files and database (Mnesia). This is the kind of data you probably want to store on a

persistent or local drive (at least the database).

Here are the volume you may want to map:

/home/ejabberd/conf/ : Directory containing configuration and certificates

/home/ejabberd/database/ : Directory containing Mnesia database. You should back up or export the content of the directory to

persistent storage (host storage, local storage, any storage plugin)

/home/ejabberd/logs/ : Directory containing log files

/home/ejabberd/upload/ : Directory containing uploaded files. This should also be backed up.

All these files are owned by ejabberd user inside the container. Corresponding UID:GID is 9000:9000 . If you prefer bind mounts

instead of volumes, then you need to map this to valid UID:GID on your host to get read/write access on mounted directories.

Commands on start

The ejabberdctl script reads the CTL_ON_CREATE environment variable the first time the container is started, and reads

CTL_ON_START every time the container is started. Those variables can contain one ejabberdctl command, or several commands

separated with the blankspace and ; characters.

By default failure of any of commands executed that way would abort start, this can be disabled by prefixing commands with !

Example usage (or check the full example):

- ::FFFF:127.0.0.1/128

api_permissions:
"admin access":
who:
access:
allow:
acl: loopback

what:
- "register"

docker exec -it ejabberd ejabberdapi register --endpoint=http://127.0.0.1:5282/ --jid=admin@localhost --password=passw0rd

•

•

•

•

•

•

•

•

•

•

environment:
- CTL_ON_CREATE=! register admin localhost asd
- CTL_ON_START=stats registeredusers ;

check_password admin localhost asd ;
status

Advanced container configuration

- 31/450 - Copyright © 2008 - 2024 ProcessOne

Clustering

When setting several containers to form a cluster of ejabberd nodes, each one must have a different Erlang Node Name and the

same Erlang Cookie. For this you can either: - edit conf/ejabberdctl.cfg and set variables ERLANG_NODE and ERLANG_COOKIE - set the

environment variables ERLANG_NODE_ARG and ERLANG_COOKIE

Once you have the ejabberd nodes properly set and running, you can tell the secondary nodes to join the master node using the

join_cluster API call.

Example using environment variables (see the full docker-compose.yml clustering example):

Change Mnesia Node Name

To use the same Mnesia database in a container with a different hostname, it is necessary to change the old hostname stored in

Mnesia.

This section is equivalent to the ejabberd Documentation Change Computer Hostname, but particularized to containers that use

this ecs container image from ejabberd 23.01 or older.

SETUP OLD CONTAINER

Let's assume a container running ejabberd 23.01 (or older) from this ecs container image, with the database directory binded

and one registered account. This can be produced with:

Methods to know the Erlang node name:

CHANGE MNESIA NODE

First of all let's store the Erlang node names and paths in variables. In this example they would be:

environment:
- ERLANG_NODE_ARG=ejabberd@replica
- ERLANG_COOKIE=dummycookie123
- CTL_ON_CREATE=join_cluster ejabberd@main

OLDCONTAINER=ejaold
NEWCONTAINER=ejanew

mkdir database
sudo chown 9000:9000 database
docker run -d --name $OLDCONTAINER -p 5222:5222 \

-v $(pwd)/database:/home/ejabberd/database \
ejabberd/ecs:23.01

docker exec -it $OLDCONTAINER ejabberdctl started
docker exec -it $OLDCONTAINER ejabberdctl register user1 localhost somepass
docker exec -it $OLDCONTAINER ejabberdctl registered_users localhost

ls database/ | grep ejabberd@
docker exec -it $OLDCONTAINER ejabberdctl status
docker exec -it $OLDCONTAINER grep "started in the node" logs/ejabberd.log

OLDCONTAINER=ejaold
NEWCONTAINER=ejanew
OLDNODE=ejabberd@95145ddee27c
NEWNODE=ejabberd@localhost
OLDFILE=/home/ejabberd/database/old.backup
NEWFILE=/home/ejabberd/database/new.backup

Advanced container configuration

- 32/450 - Copyright © 2008 - 2024 ProcessOne

https://docs.ejabberd.im/admin/guide/clustering/
https://docs.ejabberd.im/admin/guide/security/#erlang-node-name
https://docs.ejabberd.im/admin/guide/security/#erlang-cookie
https://docs.ejabberd.im/developer/ejabberd-api/admin-api/#join-cluster
https://docs.ejabberd.im/developer/ejabberd-api/admin-api/#join-cluster
https://docs.ejabberd.im/admin/guide/managing/#change-computer-hostname

Start your old container that can still read the Mnesia database correctly. If you have the Mnesia spool files, but don't have access

to the old container anymore, go to Create Temporary Container and later come back here.

Generate a backup file and check it was created:

Stop ejabberd:

Create the new container. For example:

Convert the backup file to new node name:

Install the backup file as a fallback:

Restart the container:

Check that the information of the old database is available. In this example, it should show that the account user1 is registered:

When the new container is working perfectly with the converted Mnesia database, you may want to remove the unneeded files: the

old container, the old Mnesia spool files, and the backup files.

CREATE TEMPORARY CONTAINER

In case the old container that used the Mnesia database is not available anymore, a temporary container can be created just to

read the Mnesia database and make a backup of it, as explained in the previous section.

This method uses --hostname command line argument for docker, and ERLANG_NODE_ARG environment variable for ejabberd. Their

values must be the hostname of your old container and the Erlang node name of your old ejabberd node. To know the Erlang

node name please check Setup Old Container.

Command line example:

Check the old database content is available:

Now that you have ejabberd running with access to the Mnesia database, you can continue with step 2 of previous section

Change Mnesia Node.

1.

2.

docker exec -it $OLDCONTAINER ejabberdctl backup $OLDFILE
ls -l database/*.backup

3.

docker stop $OLDCONTAINER

4.

docker run \
--name $NEWCONTAINER \
-d \
-p 5222:5222 \
-v $(pwd)/database:/home/ejabberd/database \
ejabberd/ecs:latest

5.

docker exec -it $NEWCONTAINER ejabberdctl mnesia_change_nodename $OLDNODE $NEWNODE $OLDFILE $NEWFILE

6.

docker exec -it $NEWCONTAINER ejabberdctl install_fallback $NEWFILE

7.

docker restart $NEWCONTAINER

8.

docker exec -it $NEWCONTAINER ejabberdctl registered_users localhost

9.

OLDHOST=${OLDNODE#*@}
docker run \

-d \
--name $OLDCONTAINER \
--hostname $OLDHOST \
-p 5222:5222 \
-v $(pwd)/database:/home/ejabberd/database \
-e ERLANG_NODE_ARG=$OLDNODE \
ejabberd/ecs:latest

docker exec -it $OLDCONTAINER ejabberdctl registered_users localhost

Advanced container configuration

- 33/450 - Copyright © 2008 - 2024 ProcessOne

Generating ejabberd release

Configuration

Image is built by embedding an ejabberd Erlang/OTP standalone release in the image.

The configuration of ejabberd Erlang/OTP release is customized with:

rel/config.exs : Customize ejabberd release

rel/dev.exs : ejabberd environment configuration for development release

rel/prod.exs : ejabberd environment configuration for production release

vars.config : ejabberd compilation configuration options

conf/ejabberd.yml : ejabberd default config file

Build ejabberd Community Server base image from ejabberd master on Github:

Build ejabberd Community Server base image for a given ejabberd version:

Composer Examples

Minimal Example

This is the barely minimal file to get a usable ejabberd. Store it as docker-compose.yml :

Create and start the container with the command:

Customized Example

This example shows the usage of several customizations: it uses a local configuration file, stores the mnesia database in a local

path, registers an account when it's created, and checks the number of registered accounts every time it's started.

Download or copy the ejabberd configuration file:

Create the database directory and allow the container access to it:

Now write this docker-compose.yml file:

•

•

•

•

•

docker build -t ejabberd/ecs .

./build.sh 18.03

services:
main:
image: ejabberd/ecs
container_name: ejabberd
ports:
- "5222:5222"
- "5269:5269"
- "5280:5280"
- "5443:5443"

docker-compose up

wget https://raw.githubusercontent.com/processone/ejabberd/master/ejabberd.yml.example
mv ejabberd.yml.example ejabberd.yml

mkdir database
sudo chown 9000:9000 database

version: '3.7'

services:

main:
image: ejabberd/ecs
container_name: ejabberd

Generating ejabberd release

- 34/450 - Copyright © 2008 - 2024 ProcessOne

Clustering Example

In this example, the main container is created first. Once it is fully started and healthy, a second container is created, and once

ejabberd is started in it, it joins the first one.

An account is registered in the first node when created (and we ignore errors that can happen when doing that - for example

when account already exists), and it should exist in the second node after join.

Notice that in this example the main container does not have access to the exterior; the replica exports the ports and can be

accessed.

environment:
- CTL_ON_CREATE=register admin localhost asd
- CTL_ON_START=registered_users localhost ;

status
ports:
- "5222:5222"
- "5269:5269"
- "5280:5280"
- "5443:5443"

volumes:
- ./ejabberd.yml:/home/ejabberd/conf/ejabberd.yml:ro
- ./database:/home/ejabberd/database

version: '3.7'

services:

main:
image: ejabberd/ecs
container_name: main
environment:
- ERLANG_NODE_ARG=ejabberd@main
- ERLANG_COOKIE=dummycookie123
- CTL_ON_CREATE=! register admin localhost asd

healthcheck:
test: netstat -nl | grep -q 5222
start_period: 5s
interval: 5s
timeout: 5s
retries: 120

replica:
image: ejabberd/ecs
container_name: replica
depends_on:
main:
condition: service_healthy

ports:
- "5222:5222"
- "5269:5269"
- "5280:5280"
- "5443:5443"

environment:
- ERLANG_NODE_ARG=ejabberd@replica
- ERLANG_COOKIE=dummycookie123
- CTL_ON_CREATE=join_cluster ejabberd@main
- CTL_ON_START=registered_users localhost ;

status

Composer Examples

- 35/450 - Copyright © 2008 - 2024 ProcessOne

Binary Installers

Linux RUN Installer

The *.run binary installer will deploy and configure a full featured ejabberd server and does not require any extra dependencies.

It includes a stripped down version of Erlang. As such, when using ejabberd installer, you do not need to install Erlang

separately.

Those instructions assume installation on localhost for development purposes. In this document, when mentioning ejabberd-

YY.MM , we assume YY.MM is the release number, for example 18.01.

Installation using the *.run binary installer:

Go to ejabberd GitHub Releases.

Download the run package for your architecture

Right-click on the downloaded file and select "Properties", click on the "Permissions" tab and tick the box that says "Allow

executing file as program". Alternatively, you can set the installer as executable using the command line:

If the installer runs as superuser (by root or using sudo), it installs ejabberd binaries in /opt/ejabberd-XX.YY/ ; installs your

configuration, Mnesia database and logs in /opt/ejabberd/ , and setups an ejabberd service unit in systemd :

If the installer runs as a regular user, it asks the base path where ejabberd should be installed. In that case, the ejabberd service

unit is not set in systemd , and systemctl cannot be used to start ejabberd; start it manually.

After successful installation by root, ejabberd is automatically started. Check its status with

Now that ejabberd is installed and running with the default configuration, it's time to do some basic setup: edit /opt/ejabberd/conf/

ejabberd.yml and setup in the hosts option the domain that you want ejabberd to serve. By default it's set to the name of your

computer on the local network.

Restart ejabberd completely using systemctl, or using ejabberdctl, or simply tell it to reload the configuration file:

Quite probably you will want to register an account and grant it admin rights, please check Next Steps: Administration Account.

Now you can go to the web dashboard at http://localhost:5280/admin/ and fill the username field with the full account JID, for

example admin@domain (or admin@localhost as above). Then fill the password field with that account's password . The next step is to

get to know how to configure ejabberd.

If something goes wrong during the installation and you would like to start from scratch, you will find the steps to uninstall in the

file /opt/ejabberd-22.05/uninstall.txt .

Linux DEB and RPM Installers

ProcessOne provides DEB and RPM all-in-one binary installers with the same content that the *.run binary installer mentioned

in the previous section.

Those are self-sufficient packages that contain a minimal Erlang distribution, this ensures that it does not interfere with your

existing Erlang version and is also a good way to make sure ejabberd will run with the latest Erlang version.

Those packages install ejabberd in /opt/ejabberd-XX.YY/ . Your configuration, Mnesia database and logs are available in /opt/

ejabberd/ .

1.

2.

3.

chmod +x ejabberd-YY.MM-1-linux-x64.run

4.

sudo ./ejabberd-YY.MM-1-linux-x64.run

5.

6.

systemctl status ejabberd

7.

8.

sudo systemctl restart ejabberd
sudo /opt/ejabberd-22.05/bin/ejabberdctl restart
sudo /opt/ejabberd-22.05/bin/ejabberdctl reload_config

9.

10.

11.

Binary Installers

- 36/450 - Copyright © 2008 - 2024 ProcessOne

https://github.com/processone/ejabberd/releases

You can download directly the DEB and RPM packages from ejabberd GitHub Releases.

If you prefer, you can also get those packages from our official ejabberd packages repository.

Linux DEB and RPM Installers

- 37/450 - Copyright © 2008 - 2024 ProcessOne

https://github.com/processone/ejabberd/releases
https://repo.process-one.net

Operating System Packages

Many operating systems provide specific ejabberd packages adapted to the system architecture and libraries. They usually also

check dependencies and perform basic configuration tasks like creating the initial administrator account.

List of known ejabberd packages:

Alpine Linux

Arch Linux

Debian

Fedora

FreeBSD

Gentoo

OpenSUSE

NetBSD

Ubuntu

Consult the resources provided by your Operating System for more information.

There's also an ejabberd snap to install ejabberd on several operating systems using Snap package manager.

•

•

•

•

•

•

•

•

•

Operating System Packages

- 38/450 - Copyright © 2008 - 2024 ProcessOne

https://pkgs.alpinelinux.org/packages?name=ejabberd&branch=edge
https://archlinux.org/packages/extra/x86_64/ejabberd/
https://tracker.debian.org/pkg/ejabberd
https://packages.fedoraproject.org/pkgs/ejabberd/ejabberd/
https://www.freshports.org/net-im/ejabberd/
https://packages.gentoo.org/packages/net-im/ejabberd
https://software.opensuse.org/package/ejabberd
https://pkgsrc.se/chat/ejabberd/
https://packages.ubuntu.com/search?keywords=ejabberd
https://snapcraft.io/ejabberd

Install ejabberd from Source Code

The canonical distribution form of ejabberd stable releases is the source code package. Compiling ejabberd from source code is

quite easy in *nix systems, as long as your system have all the dependencies.

Requirements

To compile ejabberd you need:

GNU Make

GCC

Libexpat ≥ 1.95

Libyaml ≥ 0.1.4

Erlang/OTP ≥ 20.0. We recommend using Erlang OTP 25.3, which is the version used in the binary installers and container

images.

OpenSSL ≥ 1.0.0

Other optional libraries are:

Zlib ≥ 1.2.3, For Zlib Stream Compression

PAM library, for PAM Authentication

ImageMagick’s Convert program and Ghostscript fonts, for CAPTCHA challenges.

Elixir ≥ 1.10.3, for Elixir Development. It is recommended Elixir 1.13.4 or higher and Erlang/OTP 23.0 or higher.

If your system splits packages in libraries and development headers, install the development packages too.

For example, in Debian:

Download

There are several ways to obtain the ejabberd source code:

Source code package from ProcessOne Downloads or GitHub Releases

Latest development code from ejabberd Git repository using the commands:

Compile

The generic instructions to compile ejabberd are:

Let's view them in detail.

•

•

•

•

•

•

•

•

•

•

apt-get install libexpat1-dev libgd-dev libpam0g-dev \
libsqlite3-dev libwebp-dev libyaml-dev \
autoconf automake erlang elixir rebar3

•

•

git clone https://github.com/processone/ejabberd.git
cd ejabberd

./autogen.sh

./configure
make

Install ejabberd from Source Code

- 39/450 - Copyright © 2008 - 2024 ProcessOne

https://www.erlang.org/
https://elixir-lang.org/
https://www.process-one.net/en/ejabberd/downloads/
https://github.com/processone/ejabberd/releases
https://github.com/processone/ejabberd

./configure

The build configuration script supports many options. Get the full list:

In this example, ./configure prepares the installed program to run with a user called ejabberd that should exist in the system (it

isn't recommended to run ejabberd with root user):

If you get Error loading module rebar3 , please consult how to use rebar with old Erlang.

./configure --help

./configure --enable-user=ejabberd --enable-mysql

Compile

- 40/450 - Copyright © 2008 - 2024 ProcessOne

Options details:

--bindir=/ : Specify the path to the user executables (where epmd and iex are available).

--prefix=/ : Specify the path prefix where the files will be copied when running the make install command.

--with-rebar=/ : Specify the path to rebar, rebar3 or mix

added in 20.12 and improved in 24.02

--enable-user[=USER] : Allow this normal system user to execute the ejabberdctl script (see section ejabberdctl), read the

configuration files, read and write in the spool directory, read and write in the log directory. The account user and group must

exist in the machine before running make install . This account needs a HOME directory, because the Erlang cookie file will be

created and read there.

--enable-group[=GROUP] : Use this option additionally to --enable-user when that account is in a group that doesn't coincide

with its username.

--enable-all : Enable many of the database and dependencies options described here, this is useful for Dialyzer checks: --

enable-debug --enable-elixir --enable-mysql --enable-odbc --enable-pam --enable-pgsql --enable-redis --enable-sip --enable-sqlite

--enable-stun --enable-tools --enable-zlib

--disable-debug : Compile without +debug_info .

--enable-elixir : Build ejabberd with Elixir extension support. Works only with rebar3, not rebar2. Requires to have Elixir

installed. If interested in Elixir development, you may prefer to use --with-rebar=mix

improved in 24.02

--disable-erlang-version-check : Don't check Erlang/OTP version.

--enable-full-xml : Use XML features in XMPP stream (ex: CDATA). This requires XML compliant clients).

--enable-hipe : Compile natively with HiPE. This is an experimental feature, and not recommended.

--enable-lager : Use lager Erlang logging tool instead of standard error logger.

--enable-latest-deps : Makes rebar use latest versions of dependencies developed alongside ejabberd instead of version

specified in rebar.config. Should be only used when developing ejabberd.

--enable-lua : Enable Lua support, to import from Prosody.

added in 21.04

--enable-mssql : Enable Microsoft SQL Server support, this option requires --enable-odbc (see [Supported storages][18]).

--enable-mysql : Enable MySQL support (see [Supported storages][18]).

--enable-new-sql-schema : Use new SQL schema.

--enable-odbc : Enable pure ODBC support.

--enable-pam : Enable the PAM authentication method (see PAM Authentication section).

--enable-pgsql : Enable PostgreSQL support (see [Supported storages][18]).

--enable-redis : Enable Redis support to use for external session storage.

--enable-roster-gateway-workaround : Turn on workaround for processing gateway subscriptions.

--enable-sip : Enable SIP support.

--enable-sqlite : Enable SQLite support (see [Supported storages][18]).

--disable-stun : Disable STUN/TURN support.

--enable-system-deps : Makes rebar use locally installed dependencies instead of downloading them.

--enable-tools : Enable the use of development tools.

changed in 21.04

--disable-zlib : Disable Stream Compression (XEP-0138) using zlib.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Compile

- 41/450 - Copyright © 2008 - 2024 ProcessOne

make

This gets the erlang depencies and compiles everything, among other tasks:

Get, update, compile dependencies; clean files

System install, uninstall

Build OTP production / development releases

Development: edoc, options, translations, tags

Testing: dialyzer, hooks, test, xref

Get the full task list:

Note: The required erlang dependencies are downloaded from Internet. Or you can copy $HOME/.hex/ package cache from

another machine.

Install

There are several ways to install and run ejabberd after it's compiled from source code:

system install

building a production release

building a development release

don't install at all, just start with make relive

System Install

To install ejabberd in the destination directories, run:

Note that you probably need administrative privileges in the system to install ejabberd.

•

•

•

•

•

make help

•

•

•

•

make install

Install

- 42/450 - Copyright © 2008 - 2024 ProcessOne

The created files and directories depend on the options provided to ./configure , by default they are:

/etc/ejabberd/ : Configuration directory:

ejabberd.yml : ejabberd configuration file (see File Format)

ejabberdctl.cfg : Configuration file of the administration script (see Erlang Runtime System)

inetrc : Network DNS configuration file for Erlang

/lib/ejabberd/ :

ebin/ : Erlang binary files (*.beam)

include/ : Erlang header files (*.hrl)

priv/ : Additional files required at runtime

bin/ : Executable programs

lib/ : Binary system libraries (*.so)

msgs/ : Translation files (*.msgs) (see Default Language)

/sbin/ejabberdctl : Administration script (see ejabberdctl)

/share/doc/ejabberd/ : Documentation of ejabberd

/var/lib/ejabberd/ : Spool directory:

.erlang.cookie : The Erlang cookie file

acl.DCD, ... : Mnesia database spool files (*.DCD, *.DCL, *.DAT)

/var/log/ejabberd/ : Log directory (see Logging):

ejabberd.log : ejabberd service log

erlang.log : Erlang/OTP system log

Production Release

improved in 21.07

You can build an OTP release that includes ejabberd, Erlang/OTP and all the required erlang dependencies in a single tar.gz file.

Then you can copy that file to another machine that has the same machine architecture, and run ejabberd without installing

anything else.

To build that production release, run:

If you provided to ./configure the option --with-rebar to use rebar3 or mix, this will directly produce a tar.gz that you can copy.

This example uses rebar3 to manage the compilation, builds an OTP production release, copies the resulting package to a

temporary path, and starts ejabberd there:

Development Release

new in 21.07

If you provided to ./configure the option --with-rebar to use rebar3 or mix, you can build an OTP development release.

This is designed to run ejabberd in the local machine for development, manual testing... without installing in the system.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

make prod

./autogen.sh

./configure --with-rebar=rebar3
make
make prod
mkdir $HOME/eja-release
tar -xzvf _build/prod/ejabberd-*.tar.gz -C $HOME/eja-release
$HOME/eja-release/bin/ejabberdctl live

Install

- 43/450 - Copyright © 2008 - 2024 ProcessOne

This development release has some customizations: uses a dummy certificate file, if you register the account admin@localhost it

has admin rights...

This example uses Elixir's mix to manage the compilation, builds an OTP development release, and starts ejabberd there:

Specific notes

asdf

When Erlang/OTP (and/or Elixir) is installed using asdf (multiple runtime version manager), it is available only for your account,

in $HOME/.asdf/shims/erl . In that case, you cannot install ejabberd globally in the system, and you cannot use the root account to

start it, because that account doesn't have access to erlang.

In that scenario, there are several ways to run/install ejabberd:

Run a development release locally without installing

Copy a production release locally

Use system install, but install it locally:

BSD

The command to compile ejabberd in BSD systems is gmake .

You may want to check pkgsrc.se for ejabberd.

Up to ejabberd 23.04, some old scripts where included in ejabberd source for NetBSD compilation, and you can take a look to

those files for reference in ejabberd 23.04/examples/mtr/ path.

macOS

If compiling from sources on Mac OS X, you must configure ejabberd to use custom OpenSSL, Yaml, iconv. The best approach is

to use Homebrew to install your dependencies, then exports your custom path to let configure and make be aware of them.

Check also the guide for Installing ejabberd development environment on OSX

rebar with old Erlang

The ejabberd source code package includes rebar and rebar3 binaries that work with Erlang/OTP 24.0 up to 27.

To compile ejabberd using rebar/rebar3 and Erlang 20.0 up to 23.3, you can install it from your operating system, or compile

yourself from the rebar source code, or download the old binary from ejabberd 21.12:

./autogen.sh

./configure --with-rebar=mix
make
make dev
_build/dev/rel/ejabberd/bin/ejabberdctl live

•

•

•

./autogen.sh

./configure --prefix=$HOME/eja-install --enable-user
make
make install
$HOME/eja-install/sbin/ejabberdctl live

brew install git erlang elixir openssl expat libyaml libiconv libgd sqlite rebar rebar3 automake autoconf
export LDFLAGS="-L/usr/local/opt/openssl/lib -L/usr/local/lib -L/usr/local/opt/expat/lib"
export CFLAGS="-I/usr/local/opt/openssl/include -I/usr/local/include -I/usr/local/opt/expat/include"
export CPPFLAGS="-I/usr/local/opt/openssl/include/ -I/usr/local/include -I/usr/local/opt/expat/include"
./configure
make

wget https://github.com/processone/ejabberd/raw/21.12/rebar
wget https://github.com/processone/ejabberd/raw/21.12/rebar3

Specific notes

- 44/450 - Copyright © 2008 - 2024 ProcessOne

https://asdf-vm.com/
https://pkgsrc.se/chat/ejabberd/
https://github.com/processone/ejabberd/tree/23.04/examples/mtr
https://github.com/processone/ejabberd/tree/23.04/examples/mtr
https://brew.sh/

Start

You can use the ejabberdctl command line administration script to start and stop ejabberd. Some examples, depending on your

installation method:

When installed in the system:

When built an OTP production release:

Start interactively without installing or building OTP release:

•

ejabberdctl start
/sbin/ejabberdctl start

•

_build/prod/rel/ejabberd/bin/ejabberdctl start
_build/prod/rel/ejabberd/bin/ejabberdctl live

•

make relive

Start

- 45/450 - Copyright © 2008 - 2024 ProcessOne

Install ejabberd on macOS

Homebrew

Homebrew is a package manager for macOS that aims to port the many Unix & Linux software that is not easily available or

compatible. Homebrew installation is simple and the instruction is available on its website.

Check also the guide for Installing ejabberd development environment on OSX

The ejabberd configuration included in Homebrew's ejabberd has as default domain localhost , and has already granted

administrative privileges to the account admin@localhost .

Once you have Homebrew installed, open Terminal. Run

This should install the latest or at most the one-before-latest version of ejabberd. The installation directory should be reported at

the end of this process, but usually the main executable is stored at /usr/local/sbin/ejabberdctl .

Start ejabberd in interactive mode, which prints useful messages in the Terminal.

Create the account admin@localhost with password set as password :

Now you can go to the web dashboard at http://localhost:5280/admin/ and fill the username field with the full account JID, for

example admin@localhost , then fill the password field with that account's password .

Without configuration there's not much to see here, therefore the next step is to get to know how to configure ejabberd.

1.

brew install ejabberd

2.

/usr/local/sbin/ejabberdctl live

3.

/usr/local/sbin/ejabberdctl register admin localhost password

4.

5.

Install ejabberd on macOS

- 46/450 - Copyright © 2008 - 2024 ProcessOne

https://brew.sh/

Installing ejabberd development environment on OSX

This short guide will show you how to compile ejabberd from source code on Mac OS X, and get users chatting right away.

Before you start

ejabberd is supported on Mac OS X 10.6.8 and later. Before you can compile and run ejabberd, you also need the following to be

installed on your system:

Gnu Make and GCC (the GNU Compiler Collection). To ensure that these are installed, you can install the Command Line Tools

for Xcode, available via Xcode or from the Apple Developer website.

Git

Erlang/OTP 19.1 or higher. We recommend using Erlang 21.2.

Autotools

Homebrew

An easy way to install some of the dependencies is by using a package manager, such as Homebrew – the Homebrew commands

are provided here:

Git: brew install git

Erlang /OTP: brew install erlang

Elixir: brew install elixir

Autoconf: brew install autoconf

Automake: brew install automake

Openssl: brew install openssl

Expat: brew install expat

Libyaml: brew install libyaml

Libiconv: brew install libiconv

Sqlite: brew install sqlite

GD: brew install gd

Rebar: brew install rebar rebar3

You can install everything with a single command:

Installation

To build and install ejabberd from source code, do the following:

Clone the Git repository: git clone git@github.com:processone/ejabberd.git

Go to your ejabberd build directory: cd ejabberd

Run the following commands, assuming you want to install your ejabberd deployment into your home directory:

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

brew install erlang elixir openssl expat libyaml libiconv libgd sqlite rebar rebar3 automake autoconf

1.

2.

3.

chmod +x autogen.sh
./autogen.sh
export LDFLAGS="-L/usr/local/opt/openssl/lib -L/usr/local/lib -L/usr/local/opt/expat/lib"
export CFLAGS="-I/usr/local/opt/openssl/include/ -I/usr/local/include -I/usr/local/opt/expat/include"
export CPPFLAGS="-I/usr/local/opt/openssl/include/ -I/usr/local/include -I/usr/local/opt/expat/include"
./configure --prefix=$HOME/my-ejabberd --enable-sqlite
make && make install

Installing ejabberd development environment on OSX

- 47/450 - Copyright © 2008 - 2024 ProcessOne

https://brew.sh/

Note that the previous command reference the previously installed dependencies from Homebrew.

Running ejabberd

From your ejabberd build directory, go to the installation directory: cd $HOME/my-ejabberd

To start the ejabberd server, run the following command: sbin/ejabberdctl start

To verify that ejabberd is running, enter the following: sbin/ejabberdctl status If the server is running, response should be as

follow:

To connect to the ejabberd console after starting the server: sbin/ejabberdctl debug

Alternatively, you can also run the server in interactive mode: sbin/ejabberdctl live

Registering a user

The default XMPP domain served by ejabberd right after the build is localhost . This is different from the IP address, DNS name

of the server. It means remote users can connect to ejabberd even if it is running on your machine with localhost XMPP domain,

by using your computer IP address or DNS name. This can prove handy in development phase to get more testers.

Adium

Adium is a popular XMPP client on OSX. You can use it

Launch Adium. If the Adium Setup Assistant opens, close it.

In the Adium menu, select Preferences, and then select the Accounts tab.

Click the + button and select XMPP (Jabber).

Enter a Jabber ID (for example, “user1@localhost”) and password, and then click Register New Account.

In the Server field, enter the following:

Users registering on the computer on which ejabberd is running: localhost

Users registering from a different computer: the ejabberd server’s IP address

Click Request New Account.

After registration, the user will connect automatically.

Registered users wishing to add an existing account to Adium should enter the ejabberd server’s IP address in the Connect

Server field on the Options tab.

Command line

You can register a user with the ejabberdctl utility: ejabberdctl register user domain password

For example: ejabberdctl register user1 localhost myp4ssw0rd

Domains

To use your system’s domain name instead of localhost, edit the following ejabberd configuration file: $HOME/my-ejabberd/etc/

ejabberd.yml (point to the place of your real installation).

Note: You may find example ejabberd.cfg files. This is the old obsolete format for configuration file. You can ignore the and focus

on the new and more user friendly Yaml format.

Find the line listing the hosts:

•

•

•

$ sbin/ejabberdctl status
The node ejabberd@localhost is started with status: started
ejabberd 14.12.40 is running in that node

•

•

1.

2.

3.

4.

5.

6.

7.

8.

Running ejabberd

- 48/450 - Copyright © 2008 - 2024 ProcessOne

https://brew.sh/

Replace localhost with your XMPP domain name, for example:

Save the configuration file and restart the ejabberd server. A user’s Jabber ID will then use the domain instead of localhost, for

example: user1@example.org

You can also configure multiple (virtual) domains for one server:

Get chatting

Users that are registered on your server can now add their accounts in a chat application like Adium (specifying either the

server’s IP address or domain name), add each other as contacts, and start chatting.

hosts:
- "localhost"

hosts:
- "example.org"

hosts:
- "example1.org"
- "example2.org"

Get chatting

- 49/450 - Copyright © 2008 - 2024 ProcessOne

Next Steps

Starting ejabberd

Depending on how you installed ejabberd, it may be started automatically by the operating system at system boot time.

You can use the ejabberdctl command line administration script to start and stop ejabberd, check its status and many other

administrative tasks.

If you provided the configure option --enable-user=USER (see compilation options , you can execute ejabberdctl with either that

system account or root.

Usage example:

If ejabberd doesn't start correctly and a crash dump file is generated, there was a severe problem. You can try to start ejabberd

in interactive mode with the command bin/ejabberdctl live to see the error messages provided by Erlang and identify the exact

the problem.

The ejabberdctl administration script is included in the bin directory in the Linux Installers and Docker image.

Please refer to the section ejabberdctl for details about ejabberdctl , and configurable options to fine tune the Erlang runtime

system.

Autostart on Linux

If you compiled ejabberd from source code or some other method that doesn't setup autostarting ejabberd, you can try this

method.

On a *nix system, create a system user called 'ejabberd', give it write access to the directories database/ and logs/ , and set that

as home.

If you want ejabberd to be started as daemon at boot time with that user, copy ejabberd.init from the bin directory to

something like /etc/init.d/ejabberd . Then you can call /etc/inid.d/ejabberd start to start the server.

Or if you have a systemd distribution:

copy ejabberd.service to /etc/systemd/system/

run systemctl daemon-reload

run systemctl enable ejabberd.service

To start the server, you can run systemctl start ejabberd

When ejabberd is started, the processes that are started in the system are beam or beam.smp , and also epmd . For more

information regarding epmd consult the section relating to epmd.

Administration Account

Some ejabberd installation methods ask you details for the first account, and take care to register that account and grant it

administrative rights; in that case you can skip this section.

prompt> ejabberdctl start

prompt> ejabberdctl status
The node ejabberd@localhost is started with status: started
ejabberd is running in that node

prompt> ejabberdctl stop

1.

2.

3.

4.

Next Steps

- 50/450 - Copyright © 2008 - 2024 ProcessOne

After installing ejabberd from source code or other methods, you may want to register the first XMPP account and grant it

administrative rights:

Register an XMPP account on your ejabberd server. For example, if example.org is configured in the hosts section in your ejabberd

configuration file, then you may want to register an account with JID admin1@example.org .

There are two ways to register an XMPP account in ejabberd:

Using an XMPP client and In-Band Registration.

Using ejabberdctl:

Edit the ejabberd configuration file to give administration rights to the XMPP account you registered:

You can grant administrative privileges to many XMPP accounts, and also to accounts in other XMPP servers.

Restart ejabberd to load the new configuration, or run the reload_config command.

Open the Web Admin page in your favourite browser. The exact address depends on your ejabberd configuration, and may be:

http://localhost:5280/admin/ on binary installers

https://localhost:5443/admin/ on binary installers

https://localhost:5280/admin/ on Debian package

Your web browser shows a login window. Introduce the full JID, in this example admin1@example.org , and the account password. If

the web address hostname is the same that the account JID, you can provide simply the username instead of the full JID: admin1 .

See Web Admin for details.

Configuring ejabberd

Now that you got ejabberd installed and running, it's time to configure it to your needs. You can follow on the Configuration

section and take also a look at the Tutorials.

1.

•

•

ejabberdctl register admin1 example.org password

2.

acl:
admin:
user: admin1@example.org

access_rules:
configure:
allow: admin

3.

4.

•

•

•

5.

Configuring ejabberd

- 51/450 - Copyright © 2008 - 2024 ProcessOne

http://localhost:5280/admin/
https://localhost:5443/admin/
https://localhost:5280/admin/

Configure

Configuring ejabberd

Here are the main entry points to learn more about ejabberd configuration. ejabberd is extremely powerful and can be

configured in many ways with many options.

Do not let this complexity scare you. Most of you will be fine with default config file (or light changes).

Tutorials for first-time users:

How to move to ejabberd XMPP server

How to set up ejabberd video & voice calling (STUN/TURN)

How to configure ejabberd to get 100% in XMPP compliance test

Detailed documentation in sections:

File Format

Basic Configuration: hosts, acl, logging...

Authentication: auth_method

Databases

LDAP

Listen Modules: c2s, s2s, http, sip, stun...

Listen Options

Top-Level Options

Modules Options

There's also a copy of the old configuration document which was used up to ejabberd 20.03.

•

•

•

•

•

•

•

•

•

•

•

•

Configure

- 52/450 - Copyright © 2008 - 2024 ProcessOne

https://www.process-one.net/blog/how-to-move-the-office-to-real-time-im-on-ejabberd/
https://www.process-one.net/blog/how-to-set-up-ejabberd-video-voice-calling/
https://www.process-one.net/blog/how-to-configure-ejabberd-to-get-100-in-xmpp-compliance-test/

File format

Yaml File Format

ejabberd loads its configuration file during startup. This configuration file is written in YAML format, and its file name MUST have

“.yml” or “.yaml” extension. This helps ejabberd to differentiate between this new format and the legacy configuration file

format.

Please, consult ejabberd.log for configuration errors. ejabberd will report syntax related errors, as well as complains about

unknown options and invalid values. Make sure you respect indentation (YAML is sensitive to this) or you will get pretty cryptic

errors.

Note that ejabberd never edits the configuration file. If you are changing parameters at runtime from web admin interface, you

will need to apply them to configuration file manually. This is to prevent messing up with your config file comments, syntax, etc.

Reload at Runtime

You can modify the ejabberd configuration file and reload it at runtime: the changes you made are applied immediately, no need

to restart ejabberd. This applies to adding, changing or removing vhosts, listened ports, modules, ACLs or any other options.

How to do this?

Let's assume your ejabberd server is already running

Modify the configuration file

Run the reload_config command

ejabberd will read that file, check its YAML syntax is valid, check the options are valid and known...

If there's any problem in the configuration file, the reload is aborted and an error message is logged with details, so you can fix the

problem.

If the file is right, it detects the changed options, and applies them immediately (add/remove hosts, add/remove modules, ...)

Legacy Configuration File

In previous ejabberd version the configuration file should be written in Erlang terms. The format is still supported, but it is

highly recommended to convert it to the new YAML format with the convert_to_yaml API command using ejabberdctl.

If you want to specify some options using the old Erlang format, you can set them in an additional cfg file, and include it using

the include_config_file option, see Include Additional Files.

Include Additional Files

The option include_config_file in a configuration file instructs ejabberd to include other configuration files immediately.

This is a basic example:

In this example, the included file is not allowed to contain a listen option. If such an option is present, the option will not be

accepted. The file is in a subdirectory from where the main configuration file is.

Please notice that options already defined in the main configuration file cannot be redefined in the included configuration files.

But you can use host_config and append_host_config as usual (see Virtual Hosting).

1.

2.

3.

4.

5.

6.

include_config_file: /etc/ejabberd/additional.yml

include_config_file:
./example.org/additional_not_listen.yml:
disallow: [listen]

File format

- 53/450 - Copyright © 2008 - 2024 ProcessOne

https://en.wikipedia.org/wiki/YAML
https://en.wikipedia.org/wiki/YAML

In this example, ejabberd.yml defines some ACL for the whole ejabberd server, and later includes another file:

The file acl.yml can add additional administrators to one of the virtual hosts:

Macros in Configuration File

In the ejabberd configuration file, it is possible to define a macro for a value and later use this macro when defining an option.

A macro is defined using the define_macro option.

This example shows the basic usage of a macro:

The resulting option interpreted by ejabberd is: loglevel: 5 .

This example shows that values can be any arbitrary YAML value:

The resulting option interpreted by ejabberd is:

This complex example:

produces this result after being interpreted:

acl:
admin:
user:
- admin@localhost

include_config_file:
/etc/ejabberd/acl.yml

append_host_config:
localhost:
acl:
admin:
user:
- bob@localhost
- jan@localhost

define_macro:
LOG_LEVEL_NUMBER: 5

loglevel: LOG_LEVEL_NUMBER

define_macro:
USERBOB:
user:
- bob@localhost

acl:
admin: USERBOB

acl:
admin:
user:
- bob@localhost

define_macro:
NUMBER_PORT_C2S: 5222
NUMBER_PORT_HTTP: 5280

listen:
-
port: NUMBER_PORT_C2S
module: ejabberd_c2s

-
port: NUMBER_PORT_HTTP
module: ejabberd_http

listen:
-
port: 5222
module: ejabberd_c2s

-
port: 5280
module: ejabberd_http

Macros in Configuration File

- 54/450 - Copyright © 2008 - 2024 ProcessOne

Basic Configuration

XMPP Domains

Host Names

ejabberd supports managing several independent XMPP domains on a single ejabberd instance, using a feature called virtual

hosting.

The option hosts defines a list containing one or more domains that ejabberd will serve.

Of course, the hosts list can contain just one domain if you do not want to host multiple XMPP domains on the same instance.

Examples:

Serving one domain:

Serving three domains:

Virtual Hosting

When managing several XMPP domains in a single instance, those domains are truly independent. It means they can even have

different configuration parameters.

Options can be defined separately for every virtual host using the host_config option.

Examples:

Domain example.net is using the internal authentication method while domain example.com is using the LDAP server running

on the domain localhost to perform authentication:

Domain example.net is using SQL to perform authentication while domain example.com is using the LDAP servers running on

the domains localhost and otherhost :

•

hosts: [example.org]

•

hosts:
- example.net
- example.com
- jabber.somesite.org

•

host_config:
example.net:
auth_method: internal

example.com:
auth_method: ldap
ldap_servers:
- localhost

ldap_uids:
- uid

ldap_rootdn: "dc=localdomain"
ldap_password: ""

•

host_config:
example.net:
auth_method: sql
sql_type: odbc
sql_server: "DSN=ejabberd;UID=ejabberd;PWD=ejabberd"

example.com:
auth_method: ldap
ldap_servers:
- localhost
- otherhost

ldap_uids:
- uid

ldap_rootdn: "dc=example,dc=com"
ldap_password: ""

Basic Configuration

- 55/450 - Copyright © 2008 - 2024 ProcessOne

To define specific ejabberd modules in a virtual host, you can define the global modules option with the common modules, and

later add specific modules to certain virtual hosts. To accomplish that, instead of defining each option in host_config use

append_host_config with the same syntax.

In this example three virtual hosts have some similar modules, but there are also other different modules for some specific virtual

hosts:

Logging

ejabberd configuration can help a lot by having the right amount of logging set up.

There are several toplevel options to configure logging:

loglevel : Verbosity of log files generated by ejabberd.

hide_sensitive_log_data : Privacy option to disable logging of IP address or sensitive data.

log_modules_fully : Modules that will log everything independently from the general loglevel option.

log_rotate_size

log_rotate_count : Setting count to N keeps N rotated logs. Setting count to 0 does not disable rotation, it instead rotates the

file and keeps no previous versions around. Setting size to X rotate log when it reaches X bytes.

log_burst_limit_count

log_burst_limit_window_time

The values in default configuration file are:

For example, log warning and higher messages, but all c2s messages, and hide sensitive data:

Default Language

The language option defines the default language of server strings that can be seen by XMPP clients. If a XMPP client does not

support xml:lang , ejabberd uses the language specified in this option.

The option syntax is:

This ejabberd server has three vhosts:
hosts:
- one.example.org
- two.example.org
- three.example.org

Configuration of modules that are common to all vhosts
modules:
mod_roster: {}
mod_configure: {}
mod_disco: {}
mod_private: {}
mod_time: {}
mod_last: {}
mod_version: {}

append_host_config:
Add some modules to vhost one:
one.example.org:
modules:
mod_muc:
host: conference.one.example.org

mod_ping: {}
Add a module just to vhost two:
two.example.org:
modules:
mod_muc:
host: conference.two.example.org

•

•

•

•

•

•

•

log_rotate_size: 10485760
log_rotate_count: 1

loglevel: warning
hide_sensitive_log_data: true
log_modules_fully: [ejabberd_c2s]

Logging

- 56/450 - Copyright © 2008 - 2024 ProcessOne

language: Language : The default value is en . In order to take effect there must be a translation file Language.msg in ejabberd ’s

msgs directory.

For example, to set Russian as default language:

The page Internationalization and Localization provides more details.

CAPTCHA

Some ejabberd modules can be configured to require a CAPTCHA challenge on certain actions, for instance

mod_block_strangers, mod_muc, mod_register, and mod_register_web. If the client does not support CAPTCHA Forms

(XEP-0158), a web link is provided so the user can fill the challenge in a web browser.

Example scripts are provided that generate the image using ImageMagick’s Convert program and Ghostscript fonts. Remember

to install those dependencies: in Debian install the imagemagick and gsfonts packages; in container images check their

documentation for details.

The relevant top-level options are:

captcha_cmd : Path | Module : Full path to a script that generates the image, or name of a module that supports generating

CAPTCHA images (mod_ecaptcha, mod_captcha_rust). The default value disables the feature: undefined

captcha_url : URL | auto : An URL where CAPTCHA requests should be sent, or auto to determine the URL automatically. The

default value is auto .

And finally, configure request_handlers for the ejabberd_http listener with a path handled by ejabberd_captcha , where the

CAPTCHA images will be served.

Example configuration:

ACME

ACME is used to automatically obtain SSL certificates for the domains served by ejabberd, which means that certificate requests

and renewals are performed to some CA server (aka "ACME server") in a fully automated mode.

Setting up ACME

In ejabberd, ACME is configured using the acme top-level option, check there the available options and example configuration.

The automated mode is enabled by default. However, some configuration of ejabberd is still required, because ACME requires

HTTP challenges: an ACME remote server will connect to your ejabberd server on HTTP port 80 during certificate issuance.

For that reason you must have an ejabberd_http listener with TLS disabled handling an "ACME well known" path. For example:

language: ru

•

•

hosts: [example.org]

captcha_cmd: /lib/ejabberd/priv/bin/captcha.sh
captcha_cmd: /opt/ejabberd-23.01/lib/captcha.sh
captcha_cmd: mod_ecaptcha

captcha_url: auto
captcha_url: http://example.org:5280/captcha
captcha_url: https://example.org:443/captcha
captcha_url: http://example.com/captcha

listen:
-
port: 5280
module: ejabberd_http
request_handlers:
/captcha: ejabberd_captcha

listen:
-
module: ejabberd_http

CAPTCHA

- 57/450 - Copyright © 2008 - 2024 ProcessOne

https://xmpp.org/extensions/xep-0158.html
https://xmpp.org/extensions/xep-0158.html
https://imagemagick.org/
https://www.ghostscript.com/
https://github.com/processone/ejabberd-contrib/tree/master/mod_ecaptcha
https://github.com/processone/ejabberd-contrib/tree/master/mod_captcha_rust
https://tools.ietf.org/html/rfc8555

Note that the ACME protocol requires challenges to be sent on port 80. Since this is a privileged port, ejabberd cannot listen on

it directly without root privileges. Thus you need some mechanism to forward port 80 to the port defined by the listener (port

5280 in the example above). There are several ways to do this: using NAT, setcap (Linux only), or HTTP front-ends (e.g. sslh ,

nginx , haproxy and so on). Pick one that fits your installation the best, but DON'T run ejabberd as root.

If you see errors in the logs with ACME server problem reports, it's highly recommended to change ca_url option in the acme

top-level option to the URL pointing to some staging ACME environment, fix the problems until you obtain a certificate, and then

change the URL back and retry using request-certificate ejabberdctl command (see below). This is needed because ACME

servers typically have rate limits, preventing you from requesting certificates too rapidly and you can get stuck for several hours

or even days. By default, ejabberd uses Let's Encrypt authority. Thus, the default value of ca_url option is https://acme-

v02.api.letsencrypt.org/directory and the staging URL will be https://acme-staging-v02.api.letsencrypt.org/directory :

The automated mode can be disabled by setting auto option to false in the acme top-level option:

In this case automated renewals are still enabled, however, in order to request a new certificate, you need to run

request_certificate API command:

If you only want to request certificates for a subset of the domains, run:

You can view the certificates obtained using ACME and list_certificates:

The output is mostly self-explained: every line contains the domain, the corresponding certificate file, and whether this certificate

file is used or not. A certificate might not be used for several reasons: mostly because ejabberd detects a better certificate (i.e.

not expired, or having a longer lifetime). It's recommended to revoke unused certificates if they are not yet expired (see below).

At any point you can revoke a certificate using revoke_certificate: pick the certificate file from the listing above and run:

If the commands return errors, consult the log files for details.

ACME implementation details

In nutshell, certification requests are performed in two phases. Firstly, ejabberd creates an account at the ACME server. That is

an EC private key. Secondly, a certificate is requested. In the case of a revocation, no account is used - only a certificate in

question is needed. All information is stored under acme directory inside spool directory of ejabberd (typically /var/lib/

ejabberd). An example content of the directory is the following:

port: 5280
tls: false
request_handlers:
/.well-known/acme-challenge: ejabberd_acme

acme:
Staging environment
ca_url: https://acme-staging-v02.api.letsencrypt.org/directory
Production environment (the default):
ca_url: https://acme-v02.api.letsencrypt.org/directory

acme:
auto: false

ejabberdctl request-certificate all

ejabberdctl request-certificate domain.tld,pubsub.domain.tld,server.com,conference.server.com,...

$ ejabberdctl list-certificates
domain.tld /path/to/cert/file1 true
server.com /path/to/cert/file2 false

ejabberdctl revoke-certificate /path/to/cert/file

$ tree /var/lib/ejabberd
/var/lib/ejabberd
├── acme
│ ├── account.key
│ └── live
│ ├── 251ce180d964e98a2f18b65504df2ab7c55943e2

ACME

- 58/450 - Copyright © 2008 - 2024 ProcessOne

https://letsencrypt.org

Here, account.key is the EC private key used to identify the ACME account. You can inspect its content using openssl command:

Obtained certificates are stored under acme/live directory. You can inspect any of the certificates using openssl command as

well:

In the case of errors, you can delete the whole acme directory - ejabberd will recreate its content on next certification request.

However, don't delete it too frequently - usually there is a rate limit on the number of accounts and certificates an ACME server

creates. In particular, for Let's Encrypt the limits are described here.

Access Rights

This section describes new ACL syntax introduced in ejabberd 16.06. For old access rule and ACL syntax documentation, please

refer to configuration document archive

ACL

Access control in ejabberd is performed via Access Control Lists (ACLs), using the acl option. The declarations of ACLs in the

configuration file have the following syntax:

│ └── 93816a8429ebbaa75574eb3f59d4a806b67d6917
...

openssl ec -text -noout -in /var/lib/ejabberd/acme/account.key

openssl x509 -text -noout -in /var/lib/ejabberd/acme/live/251ce180d964e98a2f18b65504df2ab7c55943e2

acl:
ACLName:
ACLType: ACLValue

Access Rights

- 59/450 - Copyright © 2008 - 2024 ProcessOne

https://letsencrypt.org
https://letsencrypt.org/docs/rate-limits
https://github.com/processone/docs.ejabberd.im/blob/7391ac375fd8253f74214cbffa2bafb140501981/content/admin/guide/configuration.md

ACLType: ACLValue can be one of the following:

Access Rights

- 60/450 - Copyright © 2008 - 2024 ProcessOne

all : Matches all JIDs. Example:

user: Username : Matches the user with the name Username on any of the local virtual host. Example:

user: {Username: Server} | Jid : Matches the user with the JID Username@Server and any resource. Example:

server: Server : Matches any JID from server Server . Example:

resource: Resource : Matches any JID with a resource Resource . Example:

shared_group: Groupname : Matches any member of a Shared Roster Group with name Groupname in the virtual host. Example:

shared_group: {Groupname: Server} : Matches any member of a Shared Roster Group with name Groupname in the virtual host

Server . Example:

ip: Network : Matches any IP address from the Network . Example:

user_regexp: Regexp : Matches any local user with a name that matches Regexp on local virtual hosts. Example:

user_regexp: {Regexp: Server} | JidRegexp : Matches any user with a name that matches Regexp at server Server . Example:

server_regexp: Regexp : Matches any JID from the server that matches Regexp . Example:

resource_regexp: Regexp : Matches any JID with a resource that matches Regexp . Example:

•

acl:
world: all

•

acl:
admin:
user: yozhik

•

acl:
admin:
- user:

yozhik@example.org
- user: peter@example.org

•

acl:
exampleorg:
server: example.org

•

acl:
mucklres:
resource: muckl

•

acl:
techgroupmembers:
shared_group: techteam

•

acl:
techgroupmembers:
shared_group:
techteam: example.org

•

acl:
loopback:
ip:
- 127.0.0.0/8
- "::1"

•

acl:
tests:
user_regexp: "^test[0-9]*$"

•

acl:
tests:
user_regexp:
- "^test1": example.org
- "^test2@example.org"

•

acl:
icq:
server_regexp: "^icq\\."

•

Access Rights

- 61/450 - Copyright © 2008 - 2024 ProcessOne

node_regexp: {UserRegexp: ServerRegexp} : Matches any user with a name that matches UserRegexp at any server that matches

ServerRegexp . Example:

user_glob: Glob :

user_glob: {Glob: Server} :

server_glob: Glob :

resource_glob: Glob :

node_glob: {UserGlob: ServerGlob} : This is the same as above. However, it uses shell glob patterns instead of regexp. These

patterns can have the following special characters:

* : matches any string including the null string.

? : matches any single character.

[...] : matches any of the enclosed characters. Character ranges are specified by a pair of characters separated by a - . If the

first character after [is a ! , any character not enclosed is matched.

The following ACLName are pre-defined:

all : Matches any JID.

none : Matches no JID.

Access Rules

The access_rules option is used to allow or deny access to different services. The syntax is:

Each definition may contain arbitrary number of - allow or - deny sections, and each section can contain any number of acl

rules (as defined in previous section, it recognizes one additional rule acl: RuleName that matches when acl rule named RuleName

matches). If no rule or definition is defined, the rule all is applied.

Definition's - allow and - deny sections are processed in top to bottom order, and first one for which all listed acl rules matches

is returned as result of access rule. If no rule matches deny is returned.

To simplify configuration two shortcut version are available: - allow: acl and - allow , example below shows equivalent

definitions where short or long version are used:

If you define specific Access rights in a virtual host, remember that the globally defined Access rights have precedence over

those. This means that, in case of conflict, the Access granted or denied in the global server is used and the Access of a virtual

host doesn't have effect.

acl:
icq:
resource_regexp: "^laptop\\."

•

acl:
yozhik:
node_regexp:
"^yozhik$": "^example.(com|org)$"

•

•

•

•

•

•

•

•

•

•

access_rules:
AccessName:
- allow|deny: ACLRule|ACLDefinition

access_rules:
a_short: admin
a_long:
- acl: admin

b_short:
- deny: banned
- allow

b_long:
- deny:
- acl: banned

- allow:
- all

Access Rights

- 62/450 - Copyright © 2008 - 2024 ProcessOne

Example:

The following AccessName are pre-defined:

all : Always returns the value ‘ allow ’.

none : Always returns the value ‘ deny ’.

Shaper Rules

The shaper_rules top-level option declares shapers to use for matching user/hosts. The syntax is:

Semantic is similar to that described in Access Rights section, only difference is that instead using - allow or - deny , name of

shaper or number should be used.

Examples:

Limiting Opened Sessions

The special access max_user_sessions specifies the maximum number of sessions (authenticated connections) per user. If a user

tries to open more sessions by using different resources, the first opened session will be disconnected. The error

session replaced will be sent to the disconnected session. The value for this option can be either a number, or infinity . The

default value is infinity .

The syntax is:

This example limits the number of sessions per user to 5 for all users, and to 10 for admins:

access_rules:
configure:
- allow: admin

something:
- deny: someone
- allow

s2s_banned:
- deny: problematic_hosts
- deny:
- acl: banned_forever

- deny:
- ip: 222.111.222.111/32

- deny:
- ip: 111.222.111.222/32

- allow
xmlrpc_access:
- allow:
- user: peter@example.com

- allow:
- user: ivone@example.com

- allow:
- user: bot@example.com
- ip: 10.0.0.0/24

•

•

shaper_rules:
ShaperRuleName:
- Number|ShaperName: ACLRule|ACLDefinition

shaper_rules:
connections_limit:
- 10:
- user: peter@example.com

- 100: admin
- 5

download_speed:
- fast: admin
- slow: anonymous_users
- normal

log_days: 30

shaper_rules:
max_user_sessions:
- Number: ACLRule|ACLDefinition

shaper_rules:
max_user_sessions:

Access Rights

- 63/450 - Copyright © 2008 - 2024 ProcessOne

Connections to Remote Server

The special access max_s2s_connections specifies how many simultaneous S2S connections can be established to a specific remote

XMPP server. The default value is 1 . There’s also available the access max_s2s_connections_per_node .

The syntax is:

For example, let's allow up to 3 connections with each remote server:

Shapers

The shaper top-level option defines limitations in the connection traffic. The basic syntax is:

where Rate stands for the maximum allowed incoming rate in bytes per second. When a connection exceeds this limit, ejabberd

stops reading from the socket until the average rate is again below the allowed maximum.

This example defines a shaper with name normal that limits traffic speed to 1,000bytes/second, and another shaper with name

fast that limits traffic speed to 50,000bytes/second:

You can use the full syntax to set the BurstSize too:

With BurstSize you can allow client to send more data, but its amount can be clamped reasonably. Each connection is allowed to

send BurstSize of data before processing is delayed, and that amount is replenished by Rate each second, but never more than

what BurstSize allows. This allows the client to send quite a bit of data at once, but still have limited amount of data to send on

constant basis.

In this example, the normal shaper has Rate set to 1000 and the BurstSize takes that same value. The not_normal shaper has the

same Rate that before, and sets a higher BurstSize :

- 10: admin
- 5

shaper_rules:
max_s2s_connections: MaxNumber

shaper_rules:
max_s2s_connections: 3

shaper:
ShaperName: Rate

shaper:
normal: 1000
fast: 50000

shaper:
ShaperName:
rate: Rate
burst_size: BurstSize

shaper:
normal: 1000
not_normal:
rate: 1000
burst_size: 20000

Shapers

- 64/450 - Copyright © 2008 - 2024 ProcessOne

Authentication

Supported Methods

The authentication methods supported by ejabberd are:

internal — See section Internal.

external — See section External Script.

ldap — See section LDAP.

sql — See section Relational Databases.

anonymous — See section Anonymous Login and SASL Anonymous.

pam — See section PAM Authentication.

jwt — See section JWT Authentication.

The top-level option auth_method defines the authentication methods that are used for user authentication. The option syntax is:

When the auth_method option is omitted, ejabberd relies on the default database which is configured in default_db option. If this

option is not set neither, then the default authentication method will be internal .

Account creation is only supported by internal , external and sql auth methods.

General Options

The top-level option auth_password_format allows to store the passwords in SCRAM format, see the SCRAM section.

Other top-level options that are relevant to the authentication configuration: disable_sasl_mechanisms, fqdn.

Authentication caching is enabled by default, and can be disabled in a specific vhost with the option auth_use_cache. The global

authentication cache can be configured for all the authentication methods with the global top-level options: auth_cache_missed,

auth_cache_size, auth_cache_life_time. For example:

Internal

ejabberd uses its internal Mnesia database as the default authentication method. The value internal will enable the internal

authentication method.

To store the passwords in SCRAM format instead of plaintext, see the SCRAM section.

•

•

•

•

•

•

•

auth_method: [Method1, Method2, ...]

auth_cache_size: 1500
auth_cache_life_time: 10 minutes

host_config:
example.org:
auth_method: [internal]

example.net:
auth_method: [ldap]
auth_use_cache: false

Authentication

- 65/450 - Copyright © 2008 - 2024 ProcessOne

Examples:

To use internal authentication on example.org and LDAP authentication on example.net :

To use internal authentication with hashed passwords on all virtual hosts:

External Script

In the external authentication method, ejabberd uses a custom script to perform authentication tasks. The server administrator

can write that external authentication script in any programming language.

Please check some example scripts, and the details on the interface between ejabberd and the script in the Developers >

Internals > External Authentication section.

Options:

extauth_pool_name

extauth_pool_size

extauth_program

Please note that caching interferes with the ability to maintain multiple passwords per account. So if your authentication

mechanism supports application-specific passwords, caching must be disabled in the host that uses this authentication method

with the option auth_use_cache.

This example sets external authentication, specifies the extauth script, disables caching, and starts three instances of the script

for each virtual host defined in ejabberd:

Anonymous Login and SASL Anonymous

The anonymous authentication method enables two modes for anonymous authentication:

Anonymous login : This is a standard login, that use the classical login and password mechanisms, but where password is accepted

or preconfigured for all anonymous users. This login is compliant with SASL authentication, password and digest non-SASL

authentication, so this option will work with almost all XMPP clients

SASL Anonymous : This is a special SASL authentication mechanism that allows to login without providing username or password

(see XEP-0175). The main advantage of SASL Anonymous is that the protocol was designed to give the user a login. This is useful

to avoid in some case, where the server has many users already logged or registered and when it is hard to find a free username.

The main disadvantage is that you need a client that specifically supports the SASL Anonymous protocol.

The anonymous authentication method can be configured with the following options. Remember that you can use the host_config

option to set virtual host specific options (see section Virtual Hosting):

allow_multiple_connections

anonymous_protocol

•

host_config:
example.org:
auth_method: [internal]

example.net:
auth_method: [ldap]

•

auth_method: internal
auth_password_format: scram

•

•

•

auth_method: [external]
extauth_program: /etc/ejabberd/JabberAuth.class.php
extauth_pool_size: 3
auth_use_cache: false

•

•

External Script

- 66/450 - Copyright © 2008 - 2024 ProcessOne

https://xmpp.org/extensions/xep-0175.html
https://xmpp.org/extensions/xep-0175.html

Examples:

To enable anonymous login on all virtual hosts:

Similar as previous example, but limited to public.example.org :

To enable anonymous login and internal authentication on a virtual host:

To enable SASL Anonymous on a virtual host:

To enable SASL Anonymous and anonymous login on a virtual host:

To enable SASL Anonymous, anonymous login, and internal authentication on a virtual host:

There are more configuration examples and XMPP client example stanzas in Anonymous users support .

PAM Authentication

ejabberd supports authentication via Pluggable Authentication Modules (PAM). PAM is currently supported in AIX, FreeBSD, HP-

UX, Linux, Mac OS X, NetBSD and Solaris.

If compiling ejabberd from source code, PAM support is disabled by default, so you have to enable PAM support when configuring

the ejabberd compilation: ./configure --enable-pam

Options:

pam_service

pam_userinfotype

Example:

•

auth_method: [anonymous]
anonymous_protocol: login_anon

•

host_config:
public.example.org:
auth_method: [anonymous]
anonymous_protoco: login_anon

•

host_config:
public.example.org:
auth_method:
- internal
- anonymous

anonymous_protocol: login_anon

•

host_config:
public.example.org:
auth_method: [anonymous]
anonymous_protocol: sasl_anon

•

host_config:
public.example.org:
auth_method: [anonymous]
anonymous_protocol: both

•

host_config:
public.example.org:
auth_method:
- internal
- anonymous

anonymous_protocol: both

•

•

auth_method: [pam]
pam_service: ejabberd

PAM Authentication

- 67/450 - Copyright © 2008 - 2024 ProcessOne

https://ejabberd.im/Anonymous-users-support
https://ejabberd.im/Anonymous-users-support

Though it is quite easy to set up PAM support in ejabberd , there are several problems that you may need to solve:

To perform PAM authentication ejabberd uses external C-program called epam . By default, it is located in /var/lib/ejabberd/

priv/bin/ directory. You have to set it root on execution in the case when your PAM module requires root privileges

(pam_unix.so for example). Also you have to grant access for ejabberd to this file and remove all other permissions from it.

Execute with root privileges:

Make sure you have the latest version of PAM installed on your system. Some old versions of PAM modules cause memory

leaks. If you are not able to use the latest version, you can kill(1) epam process periodically to reduce its memory

consumption: ejabberd will restart this process immediately.

ejabberd binary installers include epam pointing to module paths that may not work in your system. If authentication doesn't

work correctly, check if syslog (example: journalctl -t epam -f) reports errors like PAM unable to dlopen(/home/runner/... No

such file or directory . In that case, create a PAM configuration file (example: /etc/pam.d/ejabberd) and provide the real path

to that file in your machine:

epam program tries to turn off delays on authentication failures. However, some PAM modules ignore this behavior and rely on

their own configuration options. You can create a configuration file (in Debian it would be /etc/pam.d/ejabberd). This example

shows how to turn off delays in pam_unix.so module:

That is not a ready to use configuration file: you must use it as a hint when building your own PAM configuration instead. Note

that if you want to disable delays on authentication failures in the PAM configuration file, you have to restrict access to this

file, so a malicious user can’t use your configuration to perform brute-force attacks.

You may want to allow login access only for certain users. pam_listfile.so module provides such functionality.

If you use pam_winbind to authorize against a Windows Active Directory, then /etc/nsswitch.conf must be configured to use

winbind as well.

JWT Authentication

ejabberd supports authentication using JSON Web Token (JWT). When enabled, clients send signed tokens instead of passwords,

which are checked using a private key specified in the jwt_key option. JWT payload must look like this:

Options:

jwt_key

jwt_auth_only_rule

jwt_jid_field

Example:

In this example, admins can use both JWT and plain passwords, while the rest of users can use only JWT.

•

chown root:ejabberd /var/lib/ejabberd/priv/bin/epam
chmod 4750 /var/lib/ejabberd/priv/bin/epam

•

•

#%PAM-1.0
auth sufficient /usr/lib/x86_64-linux-gnu/security/pam_unix.so audit
account sufficient /usr/lib/x86_64-linux-gnu/security/pam_unix.so audit

•

#%PAM-1.0
auth sufficient pam_unix.so likeauth nullok nodelay
account sufficient pam_unix.so

•

•

{
"jid": "test@example.org",
"exp": 1564436511

}

•

•

•

auth_method: jwt
jwt_key: /path/to/jwt/key

the order is important here, don't use [sql, jwt]
auth_method: [jwt, sql]

JWT Authentication

- 68/450 - Copyright © 2008 - 2024 ProcessOne

Please notice that, when using JWT authentication, mod_offline will not work. With JWT authentication the accounts do not exist

in the database, and there is no way to know if a given account exists or not.

For more information about JWT authentication, you can check a brief tutorial in the ejabberd 19.08 release notes.

SCRAM

The top-level option auth_password_format defines in what format the users passwords are stored: SCRAM format or plaintext

format.

The top-level option auth_scram_hash defines the hash algorithm that will be used to scram the password.

ejabberd supports channel binding to the external channel, allowing the clients to use -PLUS authentication mechanisms.

In summary, depending on the configured options, ejabberd supports:

SCRAM_SHA-1(-PLUS)

SCRAM_SHA-256(-PLUS)

SCRAM_SHA-512(-PLUS)

For details about the client-server communication when using SCRAM, refer to SASL Authentication and SCRAM.

Internal storage

When ejabberd starts with internal auth method and SCRAM password format configured:

and detects that there are plaintext passwords stored, they are automatically converted to SCRAM format:

SQL Database

Please note that if you use SQL auth method and SCRAM password format, the plaintext passwords already stored in the

database are not automatically converted to SCRAM format.

To convert plaintext passwords to SCRAM format in your database, use the convert_to_scram command:

Foreign authentication

Note on SCRAM using and foreign authentication limitations: when using the SCRAM password format, it is not possible to use

foreign authentication method in ejabberd, as the real password is not known.

Foreign authentication are use to authenticate through various bridges ejabberd provide. Foreign authentication includes at the

moment SIP and TURN auth support and they will not be working with SCRAM.

access_rules:
jwt_only:
deny: admin
allow: all

jwt_auth_only_rule: jwt_only

•

•

•

auth_method: internal
auth_password_format: scram

[info] Passwords in Mnesia table 'passwd' will be SCRAM'ed
[info] Transforming table 'passwd', this may take a while

ejabberdctl convert_to_scram example.org

SCRAM

- 69/450 - Copyright © 2008 - 2024 ProcessOne

https://www.process-one.net/blog/ejabberd-19-08/
https://wiki.xmpp.org/web/SASL_Authentication_and_SCRAM

Database Configuration

ejabberd uses its internal Mnesia database by default. However, it is possible to use a relational database, key-value storage or

an LDAP server to store persistent, long-living data.

ejabberd is very flexible: you can configure different authentication methods for different virtual hosts, you can configure

different authentication mechanisms for the same virtual host (fallback), you can set different storage systems for modules, and

so forth.

Supported storages

The following databases are supported by ejabberd :

Mnesia . Used by default, nothing to setup to start using it

MySQL . Check the tutorial Using ejabberd with MySQL

PostgreSQL

MS SQL Server/SQL Azure . Check the Microsoft SQL Server section

SQLite

Any ODBC compatible database

Redis (only for transient data). Check the Redis section

LDAP is documented in the LDAP section

Virtual Hosting

If you define several host names in the ejabberd.yml configuration file, probably you want that each virtual host uses a different

configuration of database, authentication and storage, so that usernames do not conflict and mix between different virtual hosts.

For that purpose, the options described in the next sections must be set inside the host_config top-level option for each virtual

host).

For example:

Default database

You can simplify your configuration by setting the default database with the default_db top-level option:

it sets the default authentication method when the auth_method top-level option is not configured

it defines the database to use in ejabberd modules that support the db_type option, when that option is not configured.

Database Schema

updated in 24.06

•

•

•

•

•

•

•

•

host_config:
public.example.org:
sql_type: pgsql
sql_server: localhost
sql_database: database-public-example-org
sql_username: ejabberd
sql_password: password
auth_method: [sql]

•

•

Database Configuration

- 70/450 - Copyright © 2008 - 2024 ProcessOne

https://erlang.org/doc/apps/mnesia/
https://erlang.org/doc/apps/mnesia/
https://www.mysql.com/
https://www.mysql.com/
https://www.postgresql.org/
https://www.postgresql.org/
https://www.microsoft.com/sql-server
https://www.microsoft.com/sql-server
https://sqlite.org/
https://sqlite.org/
https://en.wikipedia.org/wiki/Open_Database_Connectivity
https://en.wikipedia.org/wiki/Open_Database_Connectivity
https://redis.io/
https://redis.io/

The update_sql_schema top-level option allows ejabberd to create and update the tables automatically in the SQL database when

using MySQL, PostgreSQL or SQLite. That option was added in ejabberd 23.10, and enabled by default in 24.06. If you can use

that feature:

Create the database in your SQL server

Create an account in the SQL server and grant it rights in the database

Configure in ejabberd the SQL Options that allow it to connect

Start ejabberd ...

and it will take care to create the tables (or update them if they exist from a previous ejabberd version)

If that option is disabled, or you are using a different SQL database, or an older ejabberd release, then you must create the tables

in the database manually before starting ejabberd. The SQL database schema files are available:

If installing ejabberd from sources, sql files are in the installation directory. By default: /usr/local/lib/ejabberd/priv/sql

If installing ejabberd from Process-One installer, sql files are in the ejabberd's installation path under <base>/lib/ejabberd*/

priv/sql

See ejabberd SQL Database Schema for details on database schemas.

Default and New Schemas

If using MySQL, PostgreSQL, Microsoft SQL or SQLite, you can choose between two database schemas:

the default schema is preferable when serving one massive domain,

the new schema is preferable when serving many small domains.

The default schema stores only one XMPP domain in the database. The XMPP domain is not stored as this is the same for all the

accounts, and this saves space in massive deployments. However, to handle several domains, you have to setup one database per

domain and configure each one independently using host_config, so in that case you may prefer the new schema.

The new schema stores the XMPP domain in a new column server_host in the database entries, so it allows to handle several

XMPP domains in a single ejabberd database. Using this schema is preferable when serving several XMPP domains and changing

domains from time to time. However, if you have only one massive domain, you may prefer to use the default schema.

To use the new schema, edit the ejabberd configuration file and enable new_sql_schema top-level option:

When creating the tables, if ejabberd can use the update_sql_schema top-level option as explained in the Database Schema

section, it will take care to create the tables with the correct schema.

On the other hand, if you are creating the tables manually, remember to use the proper SQL schema! For example, if you are

using MySQL and choose the default schema, use mysql.sql . If you are using PostgreSQL and need the new schema, use

pg.new.sql .

If you already have a MySQL or PostgreSQL database with the default schema and contents, you can upgrade it to the new

schema:

MySQL: Edit the file sql/mysql.old-to.new.sql which is included with ejabberd, fill DEFAULT_HOST in the first line, and import

that SQL file in your database. Then enable the new_sql_schema option in the ejabberd configuration, and restart ejabberd.

PostgreSQL: First enable new_sql_schema and mod_admin_update_sql in your ejabberd configuration:

then restart ejabberd, and finally execute the update_sql command:

1.

2.

3.

4.

5.

•

•

•

•

new_sql_schema: true

•

•

new_sql_schema: true
modules:
mod_admin_update_sql: {}

ejabberdctl update_sql

Default and New Schemas

- 71/450 - Copyright © 2008 - 2024 ProcessOne

SQL Options

The actual database access is defined in the options with sql_ prefix. The values are used to define if we want to use ODBC, or

one of the two native interface available, PostgreSQL or MySQL.

To configure SQL there are several top-level options:

sql_type

sql_server

sql_port

sql_database

sql_username

sql_password

sql_ssl, see section SQL with SSL connection

sql_ssl_verify

sql_ssl_cafile

sql_ssl_certfile

sql_pool_size

sql_keepalive_interval

sql_odbc_driver

sql_start_interval

sql_prepared_statements

update_sql_schema, see section Database Schema

new_sql_schema, see section Default and New Schemas

Example of plain ODBC connection:

Example of MySQL connection:

SQL with SSL Connection

The sql_ssl top-level option allows SSL encrypted connections to MySQL, PostgreSQL, and Microsoft SQL servers.

Please notice that ejabberd verifies the certificate presented by the SQL server against the CA certificate list. For that reason, if

your SQL server uses a self-signed certificate, you need to setup sql_ssl_verify and sql_ssl_cafile, for example:

This tells ejabberd to ignore problems from not matching any CA certificate from default list, and instead try to verify using the

specified CA certificate.

SQL Authentication

You can authenticate users against an SQL database, see the option auth_method in the Authentication section.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

sql_server: "DSN=database;UID=ejabberd;PWD=password"

sql_type: mysql
sql_server: server.company.com
sql_port: 3306 # the default
sql_database: mydb
sql_username: user1
sql_password: "**********"
sql_pool_size: 5

sql_ssl: true
sql_ssl_verify: false
sql_ssl_cafile: "/path/to/sql_server_cacert.pem"

SQL Options

- 72/450 - Copyright © 2008 - 2024 ProcessOne

To store the passwords in SCRAM format instead of plaintext, see the SCRAM section.

SQL Storage

Several ejabberd modules have options called db_type , and can store their tables in an SQL database instead of internal.

In this sense, if you defined your database access using the SQL Options, you can configure a module to use your database by

adding the option db_type: sql to that module.

Alternatively, if you want all modules to use your SQL database when possible, you may prefer to set SQL as your default

database.

Microsoft SQL Server

For now, MS SQL is only supported in Unix-like OS'es. You need to have unixODBC installed on your machine, and your Erlang/

OTP must be compiled with ODBC support. Also, in some cases you need to add machine name to sql_username , especially when

you have sql_server defined as an IP address, e.g.:

By default, ejabberd will use the FreeTDS driver. You need to have the driver file libtdsodbc.so installed in your library PATH on

your system.

If the FreeTDS driver is not installed in a standard location, or if you want to use another ODBC driver, you can specify the path

to the driver using the sql_odbc_driver option, available in ejabberd 20.12 or later. For example, if you want to use Microsoft

ODBC Driver 17 for SQL Server:

Note that if you use a Microsoft driver, you may have to use an IP address instead of a host name for the sql_server option.

If hostname (or IP address) is specified in sql_server option, ejabberd will connect using a an ODBC DSN connection string

constructed with:

SERVER=sql_server

DATABASE=sql_database

UID=sql_username

PWD=sql_password

PORT=sql_port

ENCRYPTION=required (only if sql_ssl is true)

CLIENT_CHARSET=UTF-8

Since ejabberd 23.04, t is possible to use different connection options by putting a full ODBC connection string in sql_server

(e.g. DSN=database;UID=ejabberd;PWD=password). The DSN must be configured in existing system or user odbc.ini file, where it can

be configured as desired, using a driver from system odbcinst.ini. The sql_odbc_driver option will have no effect in this case.

If specifying an ODBC connection string, an ODBC connection string must also be specified for any other hosts using MS SQL

DB, otherwise the auto-generated ODBC configuration will interfere.

Redis

Redis is an advanced key-value cache and store. You can use it to store transient data, such as records for C2S (client) sessions.

sql_type: mssql
sql_server: 1.2.3.4
sql_username: user1@host

sql_odbc_driver: "/opt/microsoft/msodbcsql17/lib64/libmsodbcsql-17.3.so.1.1"

•

•

•

•

•

•

•

SQL Storage

- 73/450 - Copyright © 2008 - 2024 ProcessOne

http://www.unixodbc.org/
http://www.unixodbc.org/
https://www.freetds.org/
https://www.freetds.org/
https://redis.io/
https://redis.io/

The available top-level options are:

redis_server

redis_port

redis_password

redis_db

redis_connect_timeout

Example configuration:

•

•

•

•

•

redis_server: redis.server.com
redis_db: 1

Redis

- 74/450 - Copyright © 2008 - 2024 ProcessOne

LDAP Configuration

Supported storages

The following LDAP servers are tested with ejabberd :

Active Directory (see section Active Directory)

OpenLDAP

CommuniGate Pro

Normally any LDAP compatible server should work; inform us about your success with a not-listed server so that we can list it

here.

LDAP

ejabberd has built-in LDAP support. You can authenticate users against LDAP server and use LDAP directory as vCard storage.

Usually ejabberd treats LDAP as a read-only storage: it is possible to consult data, but not possible to create accounts or edit

vCard that is stored in LDAP. However, it is possible to change passwords if mod_register module is enabled and LDAP server

supports RFC 3062 .

LDAP Connection

Two connections are established to the LDAP server per vhost, one for authentication and other for regular calls.

To configure the LDAP connection there are these top-level options:

ldap_servers

ldap_backups

ldap_encrypt

ldap_tls_verify

ldap_tls_certfile

ldap_tls_cacertfile

ldap_tls_depth

ldap_port

ldap_rootdn

ldap_password

ldap_deref_aliases

Example:

When there are several LDAP servers available as backup, set one in ldap_servers and the others in ldap_backups . At server

start, ejabberd connects to all the servers listed in ldap_servers . If a connection is lost, ejabberd connects to the next server in

ldap_backups . If the connection is lost, the next server in the list is connected, and this repeats infinitely with all the servers in

ldap_servers and ldap_backups until one is successfully connected:

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

auth_method: [ldap]
ldap_servers:
- ldap1.example.org

ldap_port: 389
ldap_rootdn: "cn=Manager,dc=domain,dc=org"
ldap_password: "**********"

ldap_servers:
- ldap1.example.org

LDAP Configuration

- 75/450 - Copyright © 2008 - 2024 ProcessOne

https://openldap.org/
https://openldap.org/
https://communigate.com/
https://communigate.com/
https://tools.ietf.org/html/rfc3062
https://tools.ietf.org/html/rfc3062

LDAP Authentication

You can authenticate users against an LDAP directory. Note that current LDAP implementation does not support SASL

authentication.

To configure LDAP authentication there are these top-level options:

ldap_base

ldap_uids

ldap_filter

ldap_dn_filter

LDAP Examples

Common example

Let’s say ldap.example.org is the name of our LDAP server. We have users with their passwords in ou=Users,dc=example,dc=org

directory. Also we have addressbook, which contains users emails and their additional infos in ou=AddressBook,dc=example,dc=org

directory. The connection to the LDAP server is encrypted using TLS, and using the custom port 6123. Corresponding

authentication section should looks like this:

Now we want to use users LDAP-info as their vCards. We have four attributes defined in our LDAP schema: mail — email

address, givenName — first name, sn — second name, birthDay — birthday. Also we want users to search each other. Let’s see

how we can set it up:

ldap_backups:
- ldap2.example.org
- ldap3.example.org

•

•

•

•

Authentication method
auth_method: [ldap]
DNS name of our LDAP server
ldap_servers: [ldap.example.org]
Bind to LDAP server as "cn=Manager,dc=example,dc=org" with password "secret"
ldap_rootdn: "cn=Manager,dc=example,dc=org"
ldap_password: secret
ldap_encrypt: tls
ldap_port: 6123
Define the user's base
ldap_base: "ou=Users,dc=example,dc=org"
We want to authorize users from 'shadowAccount' object class only
ldap_filter: "(objectClass=shadowAccount)"

modules:
mod_vcard:
db_type: ldap
We use the same server and port, but want to bind anonymously because
our LDAP server accepts anonymous requests to
"ou=AddressBook,dc=example,dc=org" subtree.
ldap_rootdn: ""
ldap_password: ""
define the addressbook's base
ldap_base: "ou=AddressBook,dc=example,dc=org"
uidattr: user's part of JID is located in the "mail" attribute
uidattr_format: common format for our emails
ldap_uids:
mail: "%u@mail.example.org"

We have to define empty filter here, because entries in addressbook does not
belong to shadowAccount object class
ldap_filter: ""
Now we want to define vCard pattern
ldap_vcard_map:
NICKNAME: {"%u": []} # just use user's part of JID as their nickname
GIVEN: {"%s": [givenName]}
FAMILY: {"%s": [sn]}
FN: {"%s, %s": [sn, givenName]} # example: "Smith, John"
EMAIL: {"%s": [mail]}
BDAY: {"%s": [birthDay]}
Search form
ldap_search_fields:
User: "%u"
Name: givenName
"Family Name": sn
Email: mail
Birthday: birthDay

LDAP Authentication

- 76/450 - Copyright © 2008 - 2024 ProcessOne

Note that mod_vcard with LDAP backend checks for the existence of the user before searching their information in LDAP.

Active Directory

Active Directory is just an LDAP-server with predefined attributes. A sample configuration is shown below:

Shared Roster in LDAP

Since mod_shared_roster_ldap has a few complex options, some of them are documented with more detail here:

Filters

ldap_ufilter : “User Filter” – used for retrieving the human-readable name of roster entries (usually full names of people in the

roster). See also the parameters ldap_userdesc and ldap_useruid . If unspecified, defaults to the top-level parameter of the same

name. If that one also is unspecified, then the filter is assembled from values of other parameters as follows ([ldap_SOMETHING] is

used to mean “the value of the configuration parameter ldap_SOMETHING ”):

Subsequently %u and %g are replaced with a *. This means that given the defaults, the filter sent to the LDAP server would be

(&(memberUid=*)(cn=*)) . If however the ldap_memberattr_format is something like uid=%u,ou=People,o=org , then the filter will be

(&(memberUid=uid=*,ou=People,o=org)(cn=*)) .

ldap_filter : Additional filter which is AND-ed together with User Filter and Group Filter. If unspecified, defaults to the top-level

parameter of the same name. If that one is also unspecified, then no additional filter is merged with the other filters.

vCard fields to be reported
Note that JID is always returned with search results
ldap_search_reported:
"Full Name": FN
Nickname: NICKNAME
Birthday: BDAY

auth_method: [ldap]
ldap_servers: [office.org] # List of LDAP servers
ldap_base: "DC=office,DC=org" # Search base of LDAP directory
ldap_rootdn: "CN=Administrator,CN=Users,DC=office,DC=org" # LDAP manager
ldap_password: "*******" # Password to LDAP manager
ldap_uids: [sAMAccountName]
ldap_filter: "(memberOf=*)"

modules:
mod_vcard:
db_type: ldap
ldap_vcard_map:
NICKNAME: {"%u": []}
GIVEN: {"%s": [givenName]}
MIDDLE: {"%s": [initials]}
FAMILY: {"%s": [sn]}
FN: {"%s": [displayName]}
EMAIL: {"%s": [mail]}
ORGNAME: {"%s": [company]}
ORGUNIT: {"%s": [department]}
CTRY: {"%s": [c]}
LOCALITY: {"%s": [l]}
STREET: {"%s": [streetAddress]}
REGION: {"%s": [st]}
PCODE: {"%s": [postalCode]}
TITLE: {"%s": [title]}
URL: {"%s": [wWWHomePage]}
DESC: {"%s": [description]}
TEL: {"%s": [telephoneNumber]}

ldap_search_fields:
User: "%u"
Name: givenName
"Family Name": sn
Email: mail
Company: company
Department: department
Role: title
Description: description
Phone: telephoneNumber

ldap_search_reported:
"Full Name": FN
Nickname: NICKNAME
Email: EMAIL

(&(&([ldap_memberattr]=[ldap_memberattr_format])([ldap_groupattr]=%g))[ldap_filter])

Shared Roster in LDAP

- 77/450 - Copyright © 2008 - 2024 ProcessOne

Note that you will probably need to manually define the User and Group Filter (since the auto-assembled ones will not work) if:

your ldap_memberattr_format is anything other than a simple %u ,

and the attribute specified with ldap_memberattr does not support substring matches.

An example where it is the case is OpenLDAP and (unique)MemberName attribute from the groupOf(Unique)Names objectClass.

A symptom of this problem is that you will see messages such as the following in your slapd.log :

Control parameters

These parameters control the behaviour of the module.

ldap_memberattr_format_re : A regex for extracting user ID from the value of the attribute named by ldap_memberattr .

An example value “CN=(\\w*),(OU=.*,)*DC=company,DC=com” works for user IDs such as the following:

CN=Romeo,OU=Montague,DC=company,DC=com

CN=Abram,OU=Servants,OU=Montague,DC=company,DC=com

CN=Juliet,OU=Capulet,DC=company,DC=com

CN=Peter,OU=Servants,OU=Capulet,DC=company,DC=com

In case:

the option is unset,

or the re module in unavailable in the current Erlang environment,

or the regular expression does not compile,

then instead of a regular expression, a simple format specified by ldap_memberattr_format is used. Also, in the last two cases an

error message is logged during the module initialization.

Also, note that in all cases ldap_memberattr_format (and *not* the regex version) is used for constructing the default “User/Group

Filter” — see section Filters.

•

•

get_filter: unknown filter type=130
filter="(&(?=undefined)(?=undefined)(something=else))"

•

•

•

•

•

•

•

Shared Roster in LDAP

- 78/450 - Copyright © 2008 - 2024 ProcessOne

Retrieving the roster

When the module is called to retrieve the shared roster for a user, the following algorithm is used:

[step:rfilter] A list of names of groups to display is created: the Roster Filter is run against the base DN, retrieving the values of the

attribute named by ldap_groupattr .

Unless the group cache is fresh (see the ldap_group_cache_validity option), it is refreshed:

Information for all groups is retrieved using a single query: the Group Filter is run against the Base DN, retrieving the values of

attributes named by ldap_groupattr (group ID), ldap_groupdesc (group “Display Name”) and ldap_memberattr (IDs of group

members).

group “Display Name”, read from the attribute named by ldap_groupdesc , is stored in the cache for the given group

the following processing takes place for each retrieved value of attribute named by ldap_memberattr :

the user ID part of it is extracted using ldap_memberattr_format(_re) ,

then (unless ldap_auth_check is set to off) for each found user ID, the module checks (using the ejabberd authentication

subsystem) whether such user exists in the given virtual host. It is skipped if the check is enabled and fails. This step is here for

historical reasons. If you have a tidy DIT and properly defined “Roster Filter” and “Group Filter”, it is safe to disable it by setting

ldap_auth_check to off — it will speed up the roster retrieval.

the user ID is stored in the list of members in the cache for the given group.

For each item (group name) in the list of groups retrieved in step [step:rfilter]:

the display name of a shared roster group is retrieved from the group cache

for each IDs of users which belong to the group, retrieved from the group cache:

the ID is skipped if it’s the same as the one for which we are retrieving the roster. This is so that the user does not have himself in

the roster.

the display name of a shared roster user is retrieved:

first, unless the user name cache is fresh (see the ldap_user_cache_validity option), it is refreshed by running the User Filter,

against the Base DN, retrieving the values of attributes named by ldap_useruid and ldap_userdesc .

then, the display name for the given user ID is retrieved from the user name cache.

Multi-Domain

By default, the module option ldap_userjidattr is set to the empty string, in that case the JID of the user's contact is formed by

compounding UID of the contact @ Host of the user owning the roster.

When the option ldap_userjidattr is set to something like "mail" , then it uses that field to determine the JID of the contact. This

is useful if the ldap mail attribute contains the JID of the accounts.

Basically, it allows us to define a groupOfNames (e.g. xmppRosterGroup) and list any users, anywhere in the ldap directory by

specifying the attribute defining the JID of the members.

This allows hosts/domains other than that of the roster owner. It is also more flexible, since the LDAP manager can specify the

JID of the users without any assumptions being made. The only down side is that there must be an LDAP attribute (field) filled in

for all Jabber/XMPP users.

Below is a sample, a relevant LDAP entry, and ejabberd's module configuration:

1.

2.

a.

b.

c.

i.

ii.

iii.

3.

a.

b.

i.

ii.

A.

B.

cn=Example Org Roster,ou=groups,o=Example Organisation,dc=acme,dc=com
objectClass: groupOfNames
objectClass: xmppRosterGroup
objectClass: top
xmppRosterStatus: active
member:
description: Roster group for Example Org
cn: Example Org Roster
uniqueMember: uid=john,ou=people,o=Example Organisation,dc=acme,dc=com

Shared Roster in LDAP

- 79/450 - Copyright © 2008 - 2024 ProcessOne

Below is the sample ejabberd.yml module configuration to match:

Configuration examples

Since there are many possible DIT layouts, it will probably be easiest to understand how to configure the module by looking at

an example for a given DIT (or one resembling it).

FLAT DIT

This seems to be the kind of DIT for which this module was initially designed. Basically there are just user objects, and group

membership is stored in an attribute individually for each user. For example in a layout like this, it's stored in the ou attribute:

uniqueMember: uid=pierre,ou=people,o=Example Organisation,dc=acme,dc=com
uniqueMember: uid=jane,ou=people,o=Example Organisation,dc=acme,dc=com

uid=john,ou=people,o=Example Organisation,dc=acme,dc=com
objectClass: top
objectClass: person
objectClass: organizationalPerson
objectClass: inetOrgPerson
objectClass: mailUser
objectClass: sipRoutingObject
uid: john
givenName: John
sn: Doe
cn: John Doe
displayName: John Doe
accountStatus: active
userPassword: secretpass
IMAPURL: imap://imap.example.net:143
mailHost: smtp.example.net
mail: john@example.net
sipLocalAddress: john@example.net

mod_shared_roster_ldap:
ldap_servers:
- "ldap.acme.com"

ldap_encrypt: tls
ldap_port: 636
ldap_rootdn: "cn=Manager,dc=acme,dc=com"
ldap_password: "supersecretpass"
ldap_base: "dc=acme,dc=com"
ldap_filter: "(objectClass=*)"
ldap_rfilter: "(&(objectClass=xmppRosterGroup)(xmppRosterStatus=active))"
ldap_gfilter: "(&(objectClass=xmppRosterGroup)(xmppRosterStatus=active)(cn=%g))"
ldap_groupattr: "cn"
ldap_groupdesc: "cn"
ldap_memberattr: "uniqueMember"
ldap_memberattr_format_re: "uid=([a-z.]*),(ou=.*,)*(o=.*,)*dc=acme,dc=com"
ldap_useruid: "uid"
ldap_userdesc: "cn"
ldap_userjidattr: "mail"
ldap_auth_check: false
ldap_user_cache_validity: 86400
ldap_group_cache_validity: 86400

Shared Roster in LDAP

- 80/450 - Copyright © 2008 - 2024 ProcessOne

https://en.wikipedia.org/wiki/Directory_Information_Tree
https://en.wikipedia.org/wiki/Directory_Information_Tree

Such layout has a few downsides, including:

information duplication – the group name is repeated in every member object

difficult group management – information about group members is not centralized, but distributed between member objects

inefficiency – the list of unique group names has to be computed by iterating over all users

This however seems to be a common DIT layout, so the module keeps supporting it. You can use the following configuration…

…to be provided with a roster upon connecting as user czesio , as shown in this figure:

•

•

•

modules:
mod_shared_roster_ldap:
ldap_base: "ou=flat,dc=nodomain"
ldap_rfilter: "(objectClass=inetOrgPerson)"
ldap_groupattr: ou
ldap_memberattr: cn
ldap_filter: "(objectClass=inetOrgPerson)"
ldap_userdesc: displayName

Shared Roster in LDAP

- 81/450 - Copyright © 2008 - 2024 ProcessOne

DEEP DIT

This type of DIT contains distinctly typed objects for users and groups – see the next figure. They are shown separated into

different subtrees, but it’s not a requirement.

Shared Roster in LDAP

- 82/450 - Copyright © 2008 - 2024 ProcessOne

If you use the following example module configuration with it:

…and connect as user czesio , then ejabberd will provide you with the roster shown in this figure:

vCard in LDAP

Since LDAP may be complex to configure in mod_vcard, this section provides more details.

ejabberd can map LDAP attributes to vCard fields. This feature is enabled when the mod_vcard module is configured with

db_type:

ldap . Notice that it does not depend on the authentication method (see LDAP Authentication).

Usually ejabberd treats LDAP as a read-only storage: it is possible to consult data, but not possible to create accounts or edit

vCard that is stored in LDAP. However, it is possible to change passwords if mod_register module is enabled and LDAP server

supports RFC 3062 .

This feature has its own optional parameters. The first group of parameters has the same meaning as the top-level LDAP

parameters to set the authentication method: ldap_servers , ldap_port , ldap_rootdn , ldap_password , ldap_base , ldap_uids ,

ldap_deref_aliases and ldap_filter . See section LDAP Authentication for detailed information about these options. If one of

these options is not set, ejabberd will look for the top-level option with the same name.

modules:
mod_shared_roster_ldap:
ldap_base: "ou=deep,dc=nodomain"
ldap_rfilter: "(objectClass=groupOfUniqueNames)"
ldap_filter: ""
ldap_gfilter: "(&(objectClass=groupOfUniqueNames)(cn=%g))"
ldap_groupdesc: description
ldap_memberattr: uniqueMember
ldap_memberattr_format: "cn=%u,ou=people,ou=deep,dc=nodomain"
ldap_ufilter: "(&(objectClass=inetOrgPerson)(cn=%u))"
ldap_userdesc: displayName

vCard in LDAP

- 83/450 - Copyright © 2008 - 2024 ProcessOne

https://tools.ietf.org/html/rfc3062
https://tools.ietf.org/html/rfc3062

Examples:

Let’s say ldap.example.org is the name of our LDAP server. We have users with their passwords in ou=Users,dc=example,dc=org

directory. Also we have addressbook, which contains users emails and their additional infos in

ou=AddressBook,dc=example,dc=org directory. Corresponding authentication section should looks like this:

Now we want to use users LDAP-info as their vCards. We have four attributes defined in our LDAP schema: mail — email

address, givenName — first name, sn — second name, birthDay — birthday. Also we want users to search each other. Let’s see

how we can set it up:

Note that mod_vcard with LDAP backend checks an existence of the user before searching their info in LDAP.

ldap_vcard_map example:

ldap_search_fields example:

ldap_search_reported example:

•

authentication method
auth_method: ldap
DNS name of our LDAP server
ldap_servers:
- ldap.example.org

We want to authorize users from 'shadowAccount' object class only
ldap_filter: "(objectClass=shadowAccount)"

•

modules:
mod_vcard:
db_type: ldap
We use the same server and port, but want to bind anonymously because
our LDAP server accepts anonymous requests to
"ou=AddressBook,dc=example,dc=org" subtree.
ldap_rootdn: ""
ldap_password: ""
define the addressbook's base
ldap_base: "ou=AddressBook,dc=example,dc=org"
uidattr: user's part of JID is located in the "mail" attribute
uidattr_format: common format for our emails
ldap_uids: {"mail": "%u@mail.example.org"}
Now we want to define vCard pattern
ldap_vcard_map:
NICKNAME: {"%u": []} # just use user's part of JID as their nickname
FIRST: {"%s": [givenName]}
LAST: {"%s": [sn]}
FN: {"%s, %s": [sn, givenName]} # example: "Smith, John"
EMAIL: {"%s": [mail]}
BDAY: {"%s": [birthDay]}

Search form
ldap_search_fields:
User: "%u"
Name: givenName
"Family Name": sn
Email: mail
Birthday: birthDay

vCard fields to be reported
Note that JID is always returned with search results
ldap_search_reported:
"Full Name": FN
Nickname: NICKNAME
Birthday: BDAY

•

ldap_vcard_map:
NICKNAME: {"%u": []} # just use user's part of JID as their nickname
FN: {"%s": [displayName]}
CTRY: {Russia: []}
EMAIL: {"%u@%d": []}
DESC: {"%s\n%s": [title, description]}

•

ldap_search_fields:
User: uid
"Full Name": displayName
Email: mail

•

ldap_search_reported:
"Full Name": FN
Email: EMAIL
Birthday: BDAY
Nickname: NICKNAME

vCard in LDAP

- 84/450 - Copyright © 2008 - 2024 ProcessOne

Listen Modules

This section describes the most recent ejabberd version. If you are using an old ejabberd release, please refer to the

corresponding archived version of this page in the Archive.

Listen Options

The listen option defines for which ports, addresses and network protocols ejabberd will listen and what services will be run on

them.

Each element of the list is an associative array with the following elements:

port: Number

Defines which port number to listen for incoming connections: it can be a Jabber/XMPP standard port or any other valid port

number.

Alternatively, set the option to a string in form "unix:/path/to/socket" to create and listen on a unix domain socket /path/to/

socket .

ip: IpAddress

The socket will listen only in that network interface. Depending on the type of the IP address, IPv4 or IPv6 will be used.

It is possible to specify a generic address ("0.0.0.0" for IPv4 or "::" for IPv6), so ejabberd will listen in all addresses. Note

that on some operating systems and/or OS configurations, listening on "::" will mean listening for IPv4 traffic as well as IPv6

traffic.

Some example values for IP address:

"0.0.0.0" to listen in all IPv4 network interfaces. This is the default value when the option is not specified.

"::" to listen in all IPv6 network interfaces

"10.11.12.13" is the IPv4 address 10.11.12.13

"::FFFF:127.0.0.1" is the IPv6 address ::FFFF:127.0.0.1/128

transport: tcp|udp

Defines the transport protocol. Default is tcp .

module: ModuleName

Listening module that serves this port

Any other options for the socket and for the listening module, described later.

For example:

ejabberd_c2s

Handles c2s connections.

General listen options supported: access, allow_unencrypted_sasl2, cafile, ciphers, dhfile, max_fsm_queue, max_stanza_size,

protocol_options, send_timeout, shaper, starttls, starttls_required, tls, tls_compression, tls_verify, zlib.

•

•

•

•

•

•

•

•

•

listen:
-
port: 5222
ip: 127.0.0.1
module: ejabberd_c2s
starttls: true

-
port: 5269
transport: tcp
module: ejabberd_s2s_in

Listen Modules

- 85/450 - Copyright © 2008 - 2024 ProcessOne

ejabberd_s2s_in

Handles incoming s2s connections.

General listen options supported: cafile, ciphers, dhfile, max_fsm_queue, max_stanza_size, protocol_options, send_timeout,

shaper, tls, tls_compression.

ejabberd_service

Interacts with an external component as defined in XEP-0114: Jabber Component Protocol.

General listen options supported: access, cafile, certfile, check_from, ciphers, dhfile, global_routes, hosts, max_fsm_queue,

max_stanza_size, password, protocol_options, send_timeout, shaper, shaper_rule, tls, tls_compression.

mod_mqtt

Support for MQTT requires configuring mod_mqtt both in the listen and the modules sections. Check the mod_mqtt module

options, and the MQTT Support section.

General listen options supported: backlog, max_fsm_queue, max_payload_size, send_timeout, tls, tls_verify.

ejabberd_stun

ejabberd can act as a stand-alone STUN/TURN server, and this module handles STUN/TURN requests as defined in (RFC 5389 /

RFC 5766 . In that role ejabberd helps clients with ICE (RFC 5245 or Jingle ICE (XEP-0176 support to discover their external

addresses and ports and to relay media traffic when it is impossible to establish direct peer-to-peer connection.

General listen options supported: certfile, send_timeout, shaper, tls,

ejabberd_s2s_in

- 86/450 - Copyright © 2008 - 2024 ProcessOne

https://ejabberd.im/tutorials-transports
https://ejabberd.im/tutorials-transports
https://xmpp.org/extensions/xep-0114.html
https://tools.ietf.org/html/rfc5389
https://tools.ietf.org/html/rfc5389
https://tools.ietf.org/html/rfc5766
https://tools.ietf.org/html/rfc5766
https://tools.ietf.org/html/rfc5245
https://tools.ietf.org/html/rfc5245
https://xmpp.org/extensions/xep-0176.html
https://xmpp.org/extensions/xep-0176.html

The specific ejabberd_stun configurable options are:

auth_realm: String

When auth_type is set to user and you have several virtual hosts configured you should set this option explicitly to the virtual

host you want to serve on this particular listening port. Implies use_turn .

auth_type: user|anonymous

Which authentication type to use for TURN allocation requests. When type user is set, ejabberd authentication backend is

used. For anonymous type no authentication is performed (not recommended for public services). The default is user . Implies

use_turn .

shaper: Atom

For tcp transports defines shaper to use. The default is none .

server_name: String

Defines software version to return with every response. The default is the STUN library version.

turn_blacklist: String | [String,...]

Specify one or more IP addresses and/or subnet addresses/masks. The TURN server will refuse to relay traffic from/to

blacklisted IP addresses. By default, loopback addresses (127.0.0.0/8 and ::1/128) are blacklisted.

turn_ipv4_address: String

The IPv4 address advertised by your TURN server. The address should not be NAT’ed or firewalled. There is not default, so you

should set this option explicitly. Implies use_turn .

turn_ipv6_address: String

The IPv6 address advertised by your TURN server. The address should not be NAT’ed or firewalled. There is not default, so you

should set this option explicitly. Implies use_turn .

turn_max_allocations: Integer|infinity

Maximum number of TURN allocations available from the particular IP address. The default value is 10. Implies use_turn .

turn_max_permissions: Integer|infinity

Maximum number of TURN permissions available from the particular IP address. The default value is 10. Implies use_turn .

turn_max_port: Integer

Together with turn_min_port forms port range to allocate from. The default is 65535. Implies use_turn .

turn_min_port: Integer

Together with turn_max_port forms port range to allocate from. The default is 49152. Implies use_turn .

use_turn: true|false

Enables/disables TURN (media relay) functionality. The default is false .

Example configuration with disabled TURN functionality (STUN only):

Example configuration with TURN functionality. Note that STUN is always enabled if TURN is enabled. Here, only UDP section is

shown:

•

•

•

•

•

•

•

•

•

•

•

•

listen:
-
port: 3478
transport: udp
module: ejabberd_stun

-
port: 3478
module: ejabberd_stun

-
port: 5349
module: ejabberd_stun
certfile: /etc/ejabberd/server.pem

listen:
-
port: 3478
transport: udp
use_turn: true

ejabberd_stun

- 87/450 - Copyright © 2008 - 2024 ProcessOne

You also need to configure DNS SRV records properly so clients can easily discover a STUN/TURN server serving your XMPP

domain. Refer to section DNS Discovery of a Server of RFC 5389 and section Creating an Allocation of RFC 5766 for details.

Example DNS SRV configuration for STUN only:

And you should also add these in the case if TURN is enabled:

ejabberd_sip

ejabberd has built-in support to handle SIP requests as defined in RFC 3261 .

To activate this feature, add the ejabberd_sip listen module, enable mod_sip module for the desired virtual host, and configure

DNS properly.

To add a listener you should configure ejabberd_sip listening module as described in Listen section. If option tls is specified,

option certfile must be specified as well, otherwise incoming TLS connections would fail.

General listen options supported: certfile, send_timeout, tls.

Example configuration with standard ports (as per RFC 3261):

Note that there is no StartTLS support in SIP and SNI support is somewhat tricky, so for TLS you have to configure different

virtual hosts on different ports if you have different certificate files for them.

Next you need to configure DNS SIP records for your virtual domains. Refer to RFC 3263 for the detailed explanation. Simply put,

you should add NAPTR and SRV records for your domains. Skip NAPTR configuration if your DNS provider doesn't support this

type of records. It’s not fatal, however, highly recommended.

Example configuration of NAPTR records:

Example configuration of SRV records with standard ports (as per RFC 3261 :

turn_ipv4_address: 10.20.30.1
module: ejabberd_stun

_stun._udp IN SRV 0 0 3478 stun.example.com.
_stun._tcp IN SRV 0 0 3478 stun.example.com.
_stuns._tcp IN SRV 0 0 5349 stun.example.com.

_turn._udp IN SRV 0 0 3478 turn.example.com.
_turn._tcp IN SRV 0 0 3478 turn.example.com.
_turns._tcp IN SRV 0 0 5349 turn.example.com.

listen:
-
port: 5060
transport: udp
module: ejabberd_sip

-
port: 5060
module: ejabberd_sip

-
port: 5061
module: ejabberd_sip
tls: true
certfile: /etc/ejabberd/server.pem

example.com IN NAPTR 10 0 "s" "SIPS+D2T" "" _sips._tcp.example.com.
example.com IN NAPTR 20 0 "s" "SIP+D2T" "" _sip._tcp.example.com.
example.com IN NAPTR 30 0 "s" "SIP+D2U" "" _sip._udp.example.com.

_sip._udp IN SRV 0 0 5060 sip.example.com.
_sip._tcp IN SRV 0 0 5060 sip.example.com.
_sips._tcp IN SRV 0 0 5061 sip.example.com.

ejabberd_sip

- 88/450 - Copyright © 2008 - 2024 ProcessOne

https://tools.ietf.org/html/rfc5389#section-9
https://tools.ietf.org/html/rfc5389#section-9
https://tools.ietf.org/html/rfc5389
https://tools.ietf.org/html/rfc5389
https://tools.ietf.org/html/rfc5766#section-6
https://tools.ietf.org/html/rfc5766#section-6
https://tools.ietf.org/html/rfc5766
https://tools.ietf.org/html/rfc5766
https://tools.ietf.org/html/rfc3261
https://tools.ietf.org/html/rfc3261
https://tools.ietf.org/html/rfc3261
https://tools.ietf.org/html/rfc3261
https://en.wikipedia.org/wiki/Server_Name_Indication
https://en.wikipedia.org/wiki/Server_Name_Indication
https://tools.ietf.org/html/rfc3263
https://tools.ietf.org/html/rfc3263
https://tools.ietf.org/html/rfc3261
https://tools.ietf.org/html/rfc3261

SIP authentication does not support SCRAM. As such, it is not possible to use mod_sip to authenticate when ejabberd has been set to

encrypt password with SCRAM.

ejabberd_http

Handles incoming HTTP connections.

With the proper request handlers configured, this serves HTTP services like ACME, API, BOSH, CAPTCHA, Fileserver, OAuth,

RegisterWeb, Upload, WebAdmin, WebSocket, XML-RPC.

Options: cafile, ciphers, custom_headers, default_host, dhfile, protocol_options, request_handlers, send_timeout, tag, tls,

tls_compression, and the trusted_proxies top-level option.

ejabberd_http_ws

This module enables XMPP communication over WebSocket connection as described in RFC 7395 .

WEBSOCKET CONFIG

To enable WebSocket, simply add a handler to the request_handlers section of an ejabberd_http listener:

This module can be configured using those top-level options:

websocket_origin

websocket_ping_interval

websocket_timeout

WEBSOCKET DISCOVERY

With the example configuration previously mentioned, the WebSocket URL would be: ws://localhost:5280/xmpp

You may want to provide a host-meta file so clients can easily discover WebSocket service for your XMPP domain (see XEP-0156).

One easy way to provide that file is using mod_host_meta .

TESTING WEBSOCKET

A test client can be found on Github: WebSocket test client

There is an example configuration for WebSocket and Converse.js in the ejabberd 21.12 release notes.

ejabberd_xmlrpc

Handles XML-RPC requests to execute ejabberd commands. It is configured as a request handler in ejabberd_http.

This is the minimum configuration required to enable the feature:

Warning

listen:
-
port: 5280
module: ejabberd_http
request_handlers:
/xmpp: ejabberd_http_ws

•

•

•

listen:
-
port: 5280
module: ejabberd_http
request_handlers:
/xmlrpc: ejabberd_xmlrpc

api_permissions:
"public commands":
who:

ejabberd_http

- 89/450 - Copyright © 2008 - 2024 ProcessOne

https://tools.ietf.org/html/rfc7395
https://tools.ietf.org/html/rfc7395
https://xmpp.org/extensions/xep-0156.html#http
https://github.com/processone/xmpp-websocket-client

Example Python3 script:

By default there is no restriction to who can execute what commands, so it is strongly recommended that you configure

restrictions using API Permissions.

This example configuration adds some restrictions (only requests from localhost are accepted, the XML-RPC query must include

authentication credentials of a specific account registered in ejabberd, and only two commands are accepted):

Example Python3 script for that restricted configuration:

Please notice, when using the old Python2, replace the two first lines with:

It's possible to use OAuth for authentication instead of plain password, see OAuth Support.

In ejabberd 20.03 and older, it was possible to configure ejabberd_xmlrpc as a listener.

Just for reference, there's also the old ejabberd_xmlrpc documentation with example clients in other languages.

ip: 127.0.0.1/8
what:
- connected_users_number

import xmlrpc.client
server = xmlrpc.client.ServerProxy("http://127.0.0.1:5280/xmlrpc/");
print(server.connected_users_number())

listen:
-
port: 5280
ip: "::"
module: ejabberd_http
request_handlers:
/xmlrpc: ejabberd_xmlrpc

api_permissions:
"some XMLRPC commands":
from: ejabberd_xmlrpc
who:
- ip: 127.0.0.1
- user: user1@localhost

what:
- registered_users
- connected_users_number

import xmlrpc.client
server = xmlrpc.client.ServerProxy("http://127.0.0.1:5280/xmlrpc/");

params = {}
params['host'] = 'localhost'

auth = {'user': 'user1',
'server': 'localhost',
'password': 'mypass11',
'admin': True}

def calling(command, data):
fn = getattr(server, command)
return fn(auth, data)

print(calling('registered_users', params))

import xmlrpclib
server = xmlrpclib.Server("http://127.0.0.1:5280/xmlrpc/");

ejabberd_http

- 90/450 - Copyright © 2008 - 2024 ProcessOne

https://ejabberd.im/ejabberd_xmlrpc
https://ejabberd.im/ejabberd_xmlrpc

Examples

For example, the following simple configuration defines:

There are three domains. The default certificate file is server.pem . However, the c2s and s2s connections to the domain

example.com use the file example_com.pem .

Port 5222 listens for c2s connections with STARTTLS, and also allows plain connections for old clients.

Port 5223 listens for c2s connections with the old SSL.

Port 5269 listens for s2s connections with STARTTLS. The socket is set for IPv6 instead of IPv4.

Port 3478 listens for STUN requests over UDP.

Port 5280 listens for HTTP requests, and serves the HTTP-Bind (BOSH) service.

Port 5281 listens for HTTP requests, using HTTPS to serve HTTP-Bind (BOSH) and the Web Admin as explained in Managing:

Web Admin. The socket only listens connections to the IP address 127.0.0.1.

•

•

•

•

•

•

•

hosts:
- example.com
- example.org
- example.net

certfiles:
- /etc/ejabberd/server.pem
- /etc/ejabberd/example_com.pem

listen:
-
port: 5222
module: ejabberd_c2s
access: c2s
shaper: c2s_shaper
starttls: true
max_stanza_size: 65536

-
port: 5223
module: ejabberd_c2s
access: c2s
shaper: c2s_shaper
tls: true
max_stanza_size: 65536

-
port: 5269
ip: "::"
module: ejabberd_s2s_in
shaper: s2s_shaper
max_stanza_size: 131072

-
port: 3478
transport: udp
module: ejabberd_stun

-
port: 5280
module: ejabberd_http
request_handlers:
/bosh: mod_bosh

-
port: 5281
ip: 127.0.0.1
module: ejabberd_http
tls: true
request_handlers:
/admin: ejabberd_web_admin
/bosh: mod_bosh

s2s_use_starttls: optional
outgoing_s2s_families:
- ipv4
- ipv6

outgoing_s2s_timeout: 10000
trusted_proxies: [127.0.0.1, 192.168.1.11]

Examples

- 91/450 - Copyright © 2008 - 2024 ProcessOne

In this example, the following configuration defines that:

c2s connections are listened for on port 5222 (all IPv4 addresses) and on port 5223 (SSL, IP 192.168.0.1 and fdca:

8ab6:a243:75ef::1) and denied for the user called ‘ bad ’.

s2s connections are listened for on port 5269 (all IPv4 addresses) with STARTTLS for secured traffic strictly required, and the

certificates are verified. Incoming and outgoing connections of remote XMPP servers are denied, only two servers can connect:

“jabber.example.org” and “example.com”.

Port 5280 is serving the Web Admin and the HTTP-Bind (BOSH) service in all the IPv4 addresses. Note that it is also possible

to serve them on different ports. The second example in section Managing: Web Admin shows how exactly this can be done. A

request handler to serve MQTT over WebSocket is also defined.

All users except for the administrators have a traffic of limit 1,000Bytes/second

The AIM transport aim.example.org is connected to port 5233 on localhost IP addresses (127.0.0.1 and ::1) with password

‘ aimsecret ’.

The ICQ transport JIT (icq.example.org and sms.example.org) is connected to port 5234 with password ‘ jitsecret ’.

The MSN transport msn.example.org is connected to port 5235 with password ‘ msnsecret ’.

The Yahoo! transport yahoo.example.org is connected to port 5236 with password ‘ yahoosecret ’.

The Gadu-Gadu transport gg.example.org is connected to port 5237 with password ‘ ggsecret ’.

The Jabber Mail Component jmc.example.org is connected to port 5238 with password ‘ jmcsecret ’.

The service custom has enabled the special option to avoiding checking the from attribute in the packets send by this

component. The component can send packets in behalf of any users from the server, or even on behalf of any server.

•

•

•

•

•

•

•

•

•

•

•

acl:
blocked:
user: bad

trusted_servers:
server:
- example.com
- jabber.example.org

xmlrpc_bot:
user:
- xmlrpc-robot@example.org

shaper:
normal: 1000

shaper_rules:
c2s_shaper:
- none: admin
- normal

access_rules:
c2s:
- deny: blocked
- allow

xmlrpc_access:
- allow: xmlrpc_bot

s2s:
- allow: trusted_servers

certfiles:
- /path/to/ssl.pem

s2s_access: s2s
s2s_use_starttls: required_trusted
listen:
-
port: 5222
module: ejabberd_c2s
shaper: c2s_shaper
access: c2s

-
ip: 192.168.0.1
port: 5223
module: ejabberd_c2s
tls: true
access: c2s

-
ip: "FDCA:8AB6:A243:75EF::1"
port: 5223
module: ejabberd_c2s
tls: true
access: c2s

-
port: 5269
module: ejabberd_s2s_in

-
port: 5280
module: ejabberd_http
request_handlers:

Examples

- 92/450 - Copyright © 2008 - 2024 ProcessOne

https://ejabberd.im/pyaimt
https://ejabberd.im/pyaimt
https://ejabberd.im/pymsnt
https://ejabberd.im/pymsnt
https://ejabberd.im/yahoo-transport-2
https://ejabberd.im/yahoo-transport-2
https://ejabberd.im/jabber-gg-transport
https://ejabberd.im/jabber-gg-transport
https://ejabberd.im/jmc
https://ejabberd.im/jmc

Note, that for services based in jabberd14 or WPJabber you have to make the transports log and do XDB by themselves:

/admin: ejabberd_web_admin
/bosh: mod_bosh
/mqtt: mod_mqtt

-
port: 4560
module: ejabberd_xmlrpc
access_commands: {}

-
ip: 127.0.0.1
port: 5233
module: ejabberd_service
hosts:
aim.example.org:
password: aimsecret

-
ip: "::1"
port: 5233
module: ejabberd_service
hosts:
aim.example.org:
password: aimsecret

-
port: 5234
module: ejabberd_service
hosts:
icq.example.org:
password: jitsecret

sms.example.org:
password: jitsecret

-
port: 5235
module: ejabberd_service
hosts:
msn.example.org:
password: msnsecret

-
port: 5236
module: ejabberd_service
password: yahoosecret

-
port: 5237
module: ejabberd_service
hosts:
gg.example.org:
password: ggsecret

-
port: 5238
module: ejabberd_service
hosts:
jmc.example.org:
password: jmcsecret

-
port: 5239
module: ejabberd_service
check_from: false
hosts:
custom.example.org:
password: customsecret

<!--
 You have to add elogger and rlogger entries here when using ejabberd.
 In this case the transport will do the logging.
-->

<log id='logger'>
<host/>
<logtype/>
<format>%d: [%t] (%h): %s</format>
<file>/var/log/jabber/service.log</file>

</log>

<!--
 Some XMPP server implementations do not provide
 XDB services (for example, jabberd2 and ejabberd).
 xdb_file.so is loaded in to handle all XDB requests.
-->

<xdb id="xdb">
<host/>
<load>
<!-- this is a lib of wpjabber or jabberd14 -->
<xdb_file>/usr/lib/jabber/xdb_file.so</xdb_file>
</load>

<xdb_file xmlns="jabber:config:xdb_file">
<spool><jabberd:cmdline flag='s'>/var/spool/jabber</jabberd:cmdline></spool>

</xdb_file>
</xdb>

Examples

- 93/450 - Copyright © 2008 - 2024 ProcessOne

Listen Options

This section describes the most recent ejabberd version. If you are using an old ejabberd release, please refer to the

corresponding archived version of this page in the Archive.

This is a detailed description of each option allowed by the listening modules:

access

AccessName

This option defines access to the port. The default value is all .

allow_unencrypted_sasl2

true | false

As per XEP-0388 , ejabberd rejects SASL2 negotiations over non-TLS connections by default. Setting this option to true allows

SASL2 over plaintext connections, which may be useful in case TLS is terminated by some proxy in front of ejabberd.

backlog

Value

The backlog value defines the maximum length that the queue of pending connections may grow to. This should be increased if

the server is going to handle lots of new incoming connections as they may be dropped if there is no space in the queue (and

ejabberd was not able to accept them immediately). Default value is 5.

cafile

Path

Path to a file of CA root certificates. The default is to use system defined file if possible.

This option is useful to define the file for a specific port listener. To set a file for all client listeners or for specific vhosts, you can

use the c2s_cafile top-level option. To set a file for all server connections, you can use the s2s_cafile top-level option or the

ca_file top-level option.

Please note: if this option is set in ejabberd_c2s or ejabberd_s2s_in and the corresponding top-level option is also set (c2s_cafile ,

s2s_cafile), then the top-level option is used, not this one.

certfile

Path

Path to the certificate file. Only makes sense when the tls options is set. If this option is not set, you should set the certfiles

top-level option or configure ACME.

check_from

true | false

This option can be used with ejabberd_service only. XEP-0114 requires that the domain must match the hostname of the

component. If this option is set to false , ejabberd will allow the component to send stanzas with any arbitrary domain in the

Listen Options

- 94/450 - Copyright © 2008 - 2024 ProcessOne

https://xmpp.org/extensions/xep-0388.html#security
https://xmpp.org/extensions/xep-0388.html#security
https://xmpp.org/extensions/xep-0114.html
https://xmpp.org/extensions/xep-0114.html

’from’ attribute. Only use this option if you are completely sure about it. The default value is true , to be compliant with

XEP-0114 .

ciphers

Ciphers

OpenSSL ciphers list in the same format accepted by ‘ openssl ciphers ’ command.

Please note: if this option is set in ejabberd_c2s or ejabberd_s2s_in and the corresponding top-level option is also set

(c2s_ciphers , s2s_ciphers), then the top-level option is used, not this one.

custom_headers

{Name: Value}

Specify additional HTTP headers to be included in all HTTP responses. Default value is: []

default_host

undefined | HostName

If the HTTP request received by ejabberd contains the HTTP header Host with an ambiguous virtual host that doesn’t match any

one defined in ejabberd (see Host Names), then this configured HostName is set as the request Host. The default value of this

option is: undefined .

dhfile

Path

Full path to a file containing custom parameters for Diffie-Hellman key exchange. Such a file could be created with the command

openssl dhparam -out dh.pem 2048 . If this option is not specified, default parameters will be used, which might not provide the

same level of security as using custom parameters.

Please note: if this option is set in ejabberd_c2s or ejabberd_s2s_in and the corresponding top-level option is also set (c2s_dhfile ,

s2s_dhfile), then the top-level option is used, not this one.

global_routes

true | false

This option emulates legacy behaviour which registers all routes defined in hosts on a component connected. This behaviour is

considered harmful in the case when it's desired to multiplex different components on the same port, so, to disable it, set

global_routes to false .

The default value is true , e.g. legacy behaviour is emulated: the only reason for this is to maintain backward compatibility with

existing deployments.

hosts

{Hostname: [HostOption, ...]}

The external Jabber component that connects to this ejabberd_service can serve one or more hostnames. As HostOption you can

define options for the component; currently the only allowed option is the password required to the component when attempt to

connect to ejabberd: password: Secret . Note that you cannot define in a single ejabberd_service components of different services:

add an ejabberd_service for each service, as seen in an example below. This option may not be necessary if the component

ciphers

- 95/450 - Copyright © 2008 - 2024 ProcessOne

https://xmpp.org/extensions/xep-0114.html
https://xmpp.org/extensions/xep-0114.html

already provides the host in its packets; in that case, you can simply provide the password option that will be used for all the

hosts (see port 5236 definition in the example below).

max_fsm_queue

Size

This option specifies the maximum number of elements in the queue of the FSM (Finite State Machine). Roughly speaking, each

message in such queues represents one XML stanza queued to be sent into its relevant outgoing stream. If queue size reaches

the limit (because, for example, the receiver of stanzas is too slow), the FSM and the corresponding connection (if any) will be

terminated and error message will be logged. The reasonable value for this option depends on your hardware configuration. This

option can be specified for ejabberd_service and ejabberd_c2s listeners, or also globally for ejabberd_s2s_out . If the option is not

specified for ejabberd_service or ejabberd_c2s listeners, the globally configured value is used. The allowed values are integers

and ’undefined’. Default value: ’10000’.

max_payload_size

Size

Specify the maximum payload size in bytes. It can be either an integer or the word infinity . The default value is infinity .

max_stanza_size

Size

This option specifies an approximate maximum size in bytes of XML stanzas. Approximate, because it is calculated with the

precision of one block of read data. For example {max_stanza_size, 65536} . The default value is infinity . Recommended values

are 65536 for c2s connections and 131072 for s2s connections. s2s max stanza size must always much higher than c2s limit.

Change this value with extreme care as it can cause unwanted disconnect if set too low.

password

Secret

Specify the password to verify an external component that connects to the port.

port

Port number, or unix domain socket path

improved in 20.07

Declares at which port/unix domain socket should be listening.

Can be set to number between 1 and 65535 to listen on TCP or UDP socket, or can be set to string in form "unix:/path/to/

socket" to create and listen on unix domain socket /path/to/socket .

protocol_options

ProtocolOpts

List of general options relating to SSL/TLS. These map to OpenSSL’s set_options() . The default entry is: "no_sslv3|

cipher_server_preference|no_compression"

max_fsm_queue

- 96/450 - Copyright © 2008 - 2024 ProcessOne

https://www.openssl.org/docs/manmaster/man3/SSL_CTX_set_options.html
https://www.openssl.org/docs/manmaster/man3/SSL_CTX_set_options.html

Please note: if this option is set in ejabberd_c2s or ejabberd_s2s_in and the corresponding top-level option is also set

(c2s_protocol_options , s2s_protocol_options), then the top-level option is used, not this one.

request_handlers

{Path: Module}

To define one or several handlers that will serve HTTP requests in ejabberd_http . The Path is a string; so the URIs that start with

that Path will be served by Module. For example, if you want mod_foo to serve the URIs that start with /a/b/ , and you also want

mod_bosh to serve the URIs /bosh/ , use this option:

send_timeout

Integer | infinity

new in 21.07

Sets the longest time that data can wait to be accepted to sent by OS socket. Triggering this timeout will cause the server to

close it. By default it's set to 15 seconds, expressed in milliseconds: 15000

shaper

none | ShaperName

This option defines a shaper for the port (see section Shapers). The default value is none .

shaper_rule

none | ShaperRule

This option defines a shaper rule for ejabberd_service (see section Shapers). The recommended value is fast .

starttls

true | false

This option specifies that STARTTLS encryption is available on connections to the port. You should also set the certfiles top-

level option or configure ACME.

This option gets implicitly enabled when enabling starttls_required or tls_verify .

starttls_required

true | false

This option specifies that STARTTLS encryption is required on connections to the port. No unencrypted connections will be

allowed. You should also set the certfiles top-level option or configure ACME.

Enabling this option implicitly enables also the starttls option.

request_handlers:
/a/b: mod_foo
/bosh: mod_bosh
/mqtt: mod_mqtt

request_handlers

- 97/450 - Copyright © 2008 - 2024 ProcessOne

tag

String

Allow specifying a tag in a listen section and later use it to have a special api_permissions just for it.

For example:

The default value is the empty string: "" .

timeout

Integer

Timeout of the connections, expressed in milliseconds. Default: 5000

tls

true | false

This option specifies that traffic on the port will be encrypted using SSL immediately after connecting. This was the traditional

encryption method in the early Jabber software, commonly on port 5223 for client-to-server communications. But this method is

nowadays deprecated and not recommended. The preferable encryption method is STARTTLS on port 5222, as defined

RFC 6120: XMPP Core , which can be enabled in ejabberd with the option starttls .

If this option is set, you should also set the certfiles top-level option or configure ACME.

The option tls can also be used in ejabberd_http to support HTTPS.

Enabling this option implicitly disables the starttls option.

tls_compression

true | false

Whether to enable or disable TLS compression. The default value is false .

Please note: if this option is set in ejabberd_c2s or ejabberd_s2s_in and the corresponding top-level option is also set

(c2s_tls_compression , s2s_tls_compression), then the top-level option is used, not this one.

tls_verify

false | true

This option specifies whether to verify the certificate or not when TLS is enabled.

The default value is false , which means no checks are performed.

The certificate will be checked against trusted CA roots, either defined at the operation system level or defined in the listener

cafile . If trusted, it will accept the jid that is embedded in the certificate in the subjectAltName field of that certificate.

listen:
-
port: 4000
module: ejabberd_http
tag: "magic_listener"

api_permissions:
"magic_access":
from:
- tag: "magic_listener"

who: all
what: "*"

tag

- 98/450 - Copyright © 2008 - 2024 ProcessOne

https://xmpp.org/rfcs/rfc6120.html#tls
https://xmpp.org/rfcs/rfc6120.html#tls

Enabling this option implicitly enables also the starttls option.

use_proxy_protocol

true | false

Is this listener accessed by proxy service that is using proxy protocol for supplying real IP addresses to ejabberd server. You can

read about this protocol in Proxy protocol specification. The default value of this option is false .

zlib

true | false

This option specifies that Zlib stream compression (as defined in XEP-0138) is available on connections to the port.

use_proxy_protocol

- 99/450 - Copyright © 2008 - 2024 ProcessOne

https://www.haproxy.org/download/1.8/doc/proxy-protocol.txt
https://xmpp.org/extensions/xep-0138.html
https://xmpp.org/extensions/xep-0138.html

Top-Level Options

This section describes top level options of ejabberd 24.10. If you are using an old ejabberd release, please refer to the

corresponding archived version of this page in the Archive. The options that changed in this version are marked with 🟤.

access_rules

{AccessName: {allow|deny: ACLRules|ACLName}}

This option defines Access Rules. Each access rule is assigned a name that can be referenced from other parts of the

configuration file (mostly from access options of ejabberd modules). Each rule definition may contain arbitrary number of allow

or deny sections, and each section may contain any number of ACL rules (see acl option). There are no access rules defined by

default.

Example:

acl

{ACLName: {ACLType: ACLValue}}

This option defines access control lists: named sets of rules which are used to match against different targets (such as a JID or an

IP address). Every set of rules has name ACLName: it can be any string except all or none (those are predefined names for the

rules that match all or nothing respectively). The name ACLName can be referenced from other parts of the configuration file, for

access_rules:
configure:
allow: admin

something:
deny: someone
allow: all

s2s_banned:
deny: problematic_hosts
deny: banned_forever
deny:
ip: 222.111.222.111/32

deny:
ip: 111.222.111.222/32

allow: all
xmlrpc_access:
allow:
user: peter@example.com

allow:
user: ivone@example.com

allow:
user: bot@example.com
ip: 10.0.0.0/24

Top-Level Options

- 100/450 - Copyright © 2008 - 2024 ProcessOne

example in access_rules option. The rules of ACLName are represented by mapping {ACLType: ACLValue}. These can be one of

the following:

ip: Network

The rule matches any IP address from the Network.

node_glob: Pattern

Same as node_regexp, but matching is performed on a specified Pattern according to the rules used by the Unix shell.

node_regexp: user_regexp@server_regexp

The rule matches any JID with node part matching regular expression user_regexp and server part matching regular

expression server_regexp.

resource: Resource

The rule matches any JID with a resource Resource.

resource_glob: Pattern

Same as resource_regexp, but matching is performed on a specified Pattern according to the rules used by the Unix shell.

resource_regexp: Regexp

The rule matches any JID with a resource that matches regular expression Regexp.

server: Server

The rule matches any JID from server Server. The value of Server must be a valid hostname or an IP address.

server_glob: Pattern

Same as server_regexp, but matching is performed on a specified Pattern according to the rules used by the Unix shell.

server_regexp: Regexp

The rule matches any JID from the server that matches regular expression Regexp.

user: Username

If Username is in the form of "user@server", the rule matches a JID against this value. Otherwise, if Username is in the form of

"user", the rule matches any JID that has Username in the node part as long as the server part of this JID is any virtual host

served by ejabberd.

user_glob: Pattern

Same as user_regexp, but matching is performed on a specified Pattern according to the rules used by the Unix shell.

user_regexp: Regexp

If Regexp is in the form of "regexp@server", the rule matches any JID with node part matching regular expression "regexp" as

long as the server part of this JID is equal to "server". If Regexp is in the form of "regexp", the rule matches any JID with node

part matching regular expression "regexp" as long as the server part of this JID is any virtual host served by ejabberd.

acme

Options

•

•

•

•

•

•

•

•

•

•

•

•

acme

- 101/450 - Copyright © 2008 - 2024 ProcessOne

ACME configuration, to automatically obtain SSL certificates for the domains served by ejabberd, which means that certificate

requests and renewals are performed to some CA server (aka "ACME server") in a fully automated mode. The Options are:

auto: true | false

Whether to automatically request certificates for all configured domains (that yet have no a certificate) on server start or

configuration reload. The default is true.

ca_url: URL

The ACME directory URL used as an entry point for the ACME server. The default value is https://acme-

v02.api.letsencrypt.org/directory - the directory URL of Let’s Encrypt authority.

cert_type: rsa | ec

A type of a certificate key. Available values are ec and rsa for EC and RSA certificates respectively. It’s better to have RSA

certificates for the purpose of backward compatibility with legacy clients and servers, thus the default is rsa.

contact: [Contact, ...]

A list of contact addresses (typically emails) where an ACME server will send notifications when problems occur. The value of

Contact must be in the form of "scheme:address" (e.g. "mailto:user@domain.tld"). The default is an empty list which means an

ACME server will send no notices.

Example:

allow_contrib_modules

true | false

Whether to allow installation of third-party modules or not. See ejabberd-contrib documentation section. The default value is

true.

allow_multiple_connections

true | false

This option is only used when the anonymous mode is enabled. Setting it to true means that the same username can be taken

multiple times in anonymous login mode if different resource are used to connect. This option is only useful in very special

occasions. The default value is false.

anonymous_protocol

login_anon | sasl_anon | both

Define what anonymous protocol will be used:

login_anon means that the anonymous login method will be used.

sasl_anon means that the SASL Anonymous method will be used.

both means that SASL Anonymous and login anonymous are both enabled.

The default value is sasl_anon.

•

•

•

•

acme:
ca_url: https://acme-v02.api.letsencrypt.org/directory
contact:
- mailto:admin@domain.tld
- mailto:bot@domain.tld

auto: true
cert_type: rsa

•

•

•

allow_contrib_modules

- 102/450 - Copyright © 2008 - 2024 ProcessOne

https://acme-v02.api.letsencrypt.org/directory
https://acme-v02.api.letsencrypt.org/directory

api_permissions

[Permission, ...]

Define the permissions for API access. Please consult the ejabberd Docs web → For Developers → ejabberd ReST API → API

Permissions.

append_host_config

{Host: Options}

Add a few specific options to a certain virtual host.

auth_cache_life_time

timeout()

Same as cache_life_time, but applied to authentication cache only. If not set, the value from cache_life_time will be used.

auth_cache_missed

true | false

Same as cache_missed, but applied to authentication cache only. If not set, the value from cache_missed will be used.

auth_cache_size

pos_integer() | infinity

Same as cache_size, but applied to authentication cache only. If not set, the value from cache_size will be used.

auth_external_user_exists_check

true | false

added in 23.10

Supplement check for user existence based on mod_last data, for authentication methods that don’t have a way to reliably tell if a

user exists (like is the case for jwt and certificate based authentication). This helps with processing offline message for those

users. The default value is true.

auth_method

[mnesia | sql | anonymous | external | jwt | ldap | pam, ...]

A list of authentication methods to use. If several methods are defined, authentication is considered successful as long as

authentication of at least one of the methods succeeds. The default value is [mnesia].

auth_opts

[Option, ...]

api_permissions

- 103/450 - Copyright © 2008 - 2024 ProcessOne

This is used by the contributed module ejabberd_auth_http that can be installed from the ejabberd-contrib Git repository. Please

refer to that module’s README file for details.

auth_password_format

plain | scram

improved in 20.01

The option defines in what format the users passwords are stored, plain text or in SCRAM format:

plain: The password is stored as plain text in the database. This is risky because the passwords can be read if your database

gets compromised. This is the default value. This format allows clients to authenticate using: the old Jabber Non-SASL

(XEP-0078), SASL PLAIN, SASL DIGEST-MD5, and SASL SCRAM-SHA-1/256/512(-PLUS).

scram: The password is not stored, only some information required to verify the hash provided by the client. It is impossible to

obtain the original plain password from the stored information; for this reason, when this value is configured it cannot be

changed to plain anymore. This format allows clients to authenticate using: SASL PLAIN and SASL SCRAM-SHA-1/256/512(-

PLUS). The SCRAM variant depends on the auth_scram_hash option.

The default value is plain.

auth_scram_hash

sha | sha256 | sha512

Hash algorithm that should be used to store password in SCRAM format. You shouldn’t change this if you already have

passwords generated with a different algorithm - users that have such passwords will not be able to authenticate. The default

value is sha.

auth_use_cache

true | false

Same as use_cache, but applied to authentication cache only. If not set, the value from use_cache will be used.

c2s_cafile

Path

Full path to a file containing one or more CA certificates in PEM format. All client certificates should be signed by one of these

root CA certificates and should contain the corresponding JID(s) in subjectAltName field. There is no default value.

You can use host_config to specify this option per-vhost.

To set a specific file per listener, use the listener’s cafile option. Please notice that c2s_cafile overrides the listener’s cafile option.

c2s_ciphers

[Cipher, ...]

A list of OpenSSL ciphers to use for c2s connections. The default value is shown in the example below:

Example:

•

•

c2s_ciphers:
- HIGH

auth_password_format

- 104/450 - Copyright © 2008 - 2024 ProcessOne

https://github.com/processone/ejabberd-contrib

c2s_dhfile

Path

Full path to a file containing custom DH parameters to use for c2s connections. Such a file could be created with the command

"openssl dhparam -out dh.pem 2048". If this option is not specified, 2048-bit MODP Group with 256-bit Prime Order Subgroup

will be used as defined in RFC5114 Section 2.3.

c2s_protocol_options

[Option, ...]

List of general SSL options to use for c2s connections. These map to OpenSSL’s set_options(). The default value is shown in the

example below:

Example:

c2s_tls_compression

true | false

Whether to enable or disable TLS compression for c2s connections. The default value is false.

ca_file

Path

Path to a file of CA root certificates. The default is to use system defined file if possible.

For server connections, this ca_file option is overridden by the s2s_cafile option.

cache_life_time

timeout()

The time of a cached item to keep in cache. Once it’s expired, the corresponding item is erased from cache. The default value is 1

hour. Several modules have a similar option; and some core ejabberd parts support similar options too, see auth_cache_life_time,

oauth_cache_life_time, router_cache_life_time, and sm_cache_life_time.

cache_missed

true | false

Whether or not to cache missed lookups. When there is an attempt to lookup for a value in a database and this value is not found

and the option is set to true, this attempt will be cached and no attempts will be performed until the cache expires (see

cache_life_time). Usually you don’t want to change it. Default is true. Several modules have a similar option; and some core

- "!aNULL"
- "!eNULL"
- "!3DES"
- "@STRENGTH"

c2s_protocol_options:
- no_sslv3
- cipher_server_preference
- no_compression

c2s_dhfile

- 105/450 - Copyright © 2008 - 2024 ProcessOne

ejabberd parts support similar options too, see auth_cache_missed, oauth_cache_missed, router_cache_missed, and

sm_cache_missed.

cache_size

pos_integer() | infinity

A maximum number of items (not memory!) in cache. The rule of thumb, for all tables except rosters, you should set it to the

number of maximum online users you expect. For roster multiply this number by 20 or so. If the cache size reaches this

threshold, it’s fully cleared, i.e. all items are deleted, and the corresponding warning is logged. You should avoid frequent cache

clearance, because this degrades performance. The default value is 1000. Several modules have a similar option; and some core

ejabberd parts support similar options too, see auth_cache_size, oauth_cache_size, router_cache_size, and sm_cache_size.

captcha_cmd

Path | ModuleName

improved in 23.01

Full path to a script that generates CAPTCHA images. @VERSION@ is replaced with ejabberd version number in XX.YY format.

@SEMVER@ is replaced with ejabberd version number in semver format when compiled with Elixir’s mix, or XX.YY format

otherwise. Alternatively, it can be the name of a module that implements ejabberd CAPTCHA support. There is no default value:

when this option is not set, CAPTCHA functionality is completely disabled.

Examples:

When using the ejabberd installers or container image, the example captcha scripts can be used like this:

captcha_host

String

Deprecated. Use captcha_url instead.

captcha_limit

pos_integer() | infinity

Maximum number of CAPTCHA generated images per minute for any given JID. The option is intended to protect the server from

CAPTCHA DoS. The default value is infinity.

captcha_url

URL | auto | undefined

improved in 23.04

An URL where CAPTCHA requests should be sent. NOTE: you need to configure request_handlers for ejabberd_http listener as

well. If set to auto, it builds the URL using a request_handler already enabled, with encryption if available. If set to undefined, it

builds the URL using the deprecated captcha_host + /captcha. The default value is auto.

captcha_cmd: /opt/ejabberd-@VERSION@/lib/ejabberd-@SEMVER@/priv/bin/captcha.sh

cache_size

- 106/450 - Copyright © 2008 - 2024 ProcessOne

certfiles

[Path, ...]

The option accepts a list of file paths (optionally with wildcards) containing either PEM certificates or PEM private keys. At

startup or configuration reload, ejabberd reads all certificates from these files, sorts them, removes duplicates, finds matching

private keys and then rebuilds full certificate chains for the use in TLS connections. Use this option when TLS is enabled in

either of ejabberd listeners: ejabberd_c2s, ejabberd_http and so on. NOTE: if you modify the certificate files or change the value

of the option, run ejabberdctl reload-config in order to rebuild and reload the certificate chains.

Examples:

If you use Let’s Encrypt certificates for your domain "domain.tld", the configuration will look like this:

cluster_backend

Backend

A database backend to use for storing information about cluster. The only available value so far is mnesia.

cluster_nodes

[Node, ...]

A list of Erlang nodes to connect on ejabberd startup. This option is mostly intended for ejabberd customization and sophisticated

setups. The default value is an empty list.

default_db

mnesia | sql

Default database to store persistent data in ejabberd. Modules and other components (e.g. authentication) may have its own

value. The default value is mnesia.

default_ram_db

mnesia | redis | sql

Default volatile (in-memory) storage for ejabberd. Modules and other components (e.g. session management) may have its own

value. The default value is mnesia.

define_macro

{MacroName: MacroValue}

Defines a macro. The value can be any valid arbitrary YAML value. For convenience, it’s recommended to define a MacroName in

capital letters. Duplicated macros are not allowed. Macros are processed after additional configuration files have been included,

so it is possible to use macros that are defined in configuration files included before the usage. It is possible to use a MacroValue

in the definition of another macro.

Example:

certfiles:
- /etc/letsencrypt/live/domain.tld/fullchain.pem
- /etc/letsencrypt/live/domain.tld/privkey.pem

certfiles

- 107/450 - Copyright © 2008 - 2024 ProcessOne

https://letsencrypt.org

disable_sasl_mechanisms

[Mechanism, ...]

Specify a list of SASL mechanisms (such as DIGEST-MD5 or SCRAM-SHA1) that should not be offered to the client. For

convenience, the value of Mechanism is case-insensitive. The default value is an empty list, i.e. no mechanisms are disabled by

default.

disable_sasl_scram_downgrade_protection

true | false

Allows to disable sending data required by XEP-0474: SASL SCRAM Downgrade Protection. There are known buggy clients (like

those that use strophejs 1.6.2) which will not be able to authenticatate when servers sends data from that specification. This

options allows server to disable it to allow even buggy clients connects, but in exchange decrease MITM protection. The default

value of this option is false which enables this extension.

domain_balancing

{Domain: Options}

An algorithm to load-balance the components that are plugged on an ejabberd cluster. It means that you can plug one or several

instances of the same component on each ejabberd node and that the traffic will be automatically distributed. The algorithm to

deliver messages to the component(s) can be specified by this option. For any component connected as Domain, available Options

are:

component_number: 2..1000

The number of components to balance.

type: random | source | destination | bare_source | bare_destination How to deliver stanzas to connected components: random

- an instance is chosen at random; destination - an instance is chosen by the full JID of the packet’s to attribute; source - by the

full JID of the packet’s from attribute; bare_destination - by the bare JID (without resource) of the packet’s to attribute;

bare_source - by the bare JID (without resource) of the packet’s from attribute is used. The default value is random.

Example:

ext_api_headers

Headers

String of headers (separated with commas ,) that will be provided by ejabberd when sending ReST requests. The default value is

an empty string of headers: "".

define_macro:
DEBUG: debug
LOG_LEVEL: DEBUG
USERBOB:
user: bob@localhost

loglevel: LOG_LEVEL

acl:
admin: USERBOB

•

•

domain_balancing:
component.domain.tld:
type: destination
component_number: 5

transport.example.org:
type: bare_source

disable_sasl_mechanisms

- 108/450 - Copyright © 2008 - 2024 ProcessOne

ext_api_http_pool_size

pos_integer()

Define the size of the HTTP pool, that is, the maximum number of sessions that the ejabberd ReST service will handle

simultaneously. The default value is: 100.

ext_api_path_oauth

Path

Define the base URI path when performing OAUTH ReST requests. The default value is: "/oauth".

ext_api_url

URL

Define the base URI when performing ReST requests. The default value is: "http://localhost/api".

extauth_pool_name

Name

Define the pool name appendix in external auth, so the full pool name will be extauth_pool_Name. The default value is the

hostname.

extauth_pool_size

Size

The option defines the number of instances of the same external auth program to start for better load balancing. The default is

the number of available CPU cores.

extauth_program

Path

Indicate in this option the full path to the external authentication script. The script must be executable by ejabberd.

fqdn

Domain

A fully qualified domain name that will be used in SASL DIGEST-MD5 authentication. The default is detected automatically.

hide_sensitive_log_data

true | false

A privacy option to not log sensitive data (mostly IP addresses). The default value is false for backward compatibility.

ext_api_http_pool_size

- 109/450 - Copyright © 2008 - 2024 ProcessOne

host_config

{Host: Options}

The option is used to redefine Options for virtual host Host. In the example below LDAP authentication method will be used on

virtual host domain.tld and SQL method will be used on virtual host example.org.

Example:

hosts

[Domain1, Domain2, ...]

List of one or more host names (or domains) that ejabberd will serve. This is a mandatory option.

include_config_file

[Filename, ...] | {Filename: Options}

Read and include additional file from Filename. If the value is provided in {Filename: Options} format, the Options must be one

of the following:

allow_only: [OptionName, ...]

Allows only the usage of those options in the included file Filename. The options that do not match this criteria are not

accepted. The default value is to include all options.

disallow: [OptionName, ...]

Disallows the usage of those options in the included file Filename. The options that match this criteria are not accepted. The

default value is an empty list.

install_contrib_modules

[Module, ...]

added in 23.10

Modules to install from ejabberd-contrib at start time. The default value is an empty list of modules: [].

jwt_auth_only_rule

AccessName

This ACL rule defines accounts that can use only the JWT auth method, even if others are also defined in the ejabberd

configuration file. In other words: if there are several auth methods enabled for this host (JWT, SQL, …), users that match this

rule can only use JWT. The default value is none.

hosts:
- domain.tld
- example.org

auth_method:
- sql

host_config:
domain.tld:
auth_method:
- ldap

•

•

host_config

- 110/450 - Copyright © 2008 - 2024 ProcessOne

jwt_jid_field

FieldName

By default, the JID is defined in the "jid" JWT field. In this option you can specify other JWT field name where the JID is defined.

jwt_key

FilePath

Path to the file that contains the JWT key. The default value is undefined.

language

Language

Define the default language of server strings that can be seen by XMPP clients. If an XMPP client does not possess xml:lang

attribute, the specified language is used. The default value is "en".

ldap_backups

[Host, ...]

A list of IP addresses or DNS names of LDAP backup servers (see LDAP connection). When no servers listed in ldap_servers

option are reachable, ejabberd connects to these backup servers. The default is an empty list, i.e. no backup servers specified.

Please notice that ejabberd only connects to the next server when the existing connection is lost; it doesn’t detect when a

previously-attempted server becomes available again.

ldap_base

Base

LDAP base directory which stores users accounts. There is no default value: you must set the option in order for LDAP

connections to work properly.

ldap_deref_aliases

never | always | finding | searching

Whether to dereference aliases or not. The default value is never.

ldap_dn_filter

{Filter: FilterAttrs}

This filter is applied on the results returned by the main filter. The filter performs an additional LDAP lookup to make the

complete result. This is useful when you are unable to define all filter rules in ldap_filter. You can define "%u", "%d", "%s" and

"%D" pattern variables in Filter: "%u" is replaced by a user’s part of the JID, "%d" is replaced by the corresponding domain

(virtual host), all "%s" variables are consecutively replaced by values from the attributes in FilterAttrs and "%D" is replaced by

Distinguished Name from the result set. There is no default value, which means the result is not filtered. WARNING: Since this

filter makes additional LDAP lookups, use it only as the last resort: try to define all filter rules in ldap_filter option if possible.

Example:

jwt_jid_field

- 111/450 - Copyright © 2008 - 2024 ProcessOne

ldap_encrypt

tls | none

Whether to encrypt LDAP connection using TLS or not. The default value is none. NOTE: STARTTLS encryption is not supported.

ldap_filter

Filter

An LDAP filter as defined in RFC4515. There is no default value. Example: "(&(objectClass=shadowAccount)(memberOf=XMPP

Users))". NOTE: don’t forget to close brackets and don’t use superfluous whitespaces. Also you must not use "uid" attribute in

the filter because this attribute will be appended to the filter automatically.

ldap_password

Password

Bind password. The default value is an empty string.

ldap_port

1..65535

Port to connect to your LDAP server. The default port is 389 if encryption is disabled and 636 if encryption is enabled.

ldap_rootdn

RootDN

Bind Distinguished Name. The default value is an empty string, which means "anonymous connection".

ldap_servers

[Host, ...]

A list of IP addresses or DNS names of your LDAP servers (see LDAP connection). ejabberd connects immediately to all of them,

and reconnects infinitely if connection is lost. The default value is [localhost].

ldap_tls_cacertfile

Path

A path to a file containing PEM encoded CA certificates. This option is required when TLS verification is enabled.

ldap_tls_certfile

Path

ldap_dn_filter:
"(&(name=%s)(owner=%D)(user=%u@%d))": [sn]

ldap_encrypt

- 112/450 - Copyright © 2008 - 2024 ProcessOne

https://tools.ietf.org/html/rfc4515

A path to a file containing PEM encoded certificate along with PEM encoded private key. This certificate will be provided by

ejabberd when TLS enabled for LDAP connections. There is no default value, which means no client certificate will be sent.

ldap_tls_depth

Number

Specifies the maximum verification depth when TLS verification is enabled, i.e. how far in a chain of certificates the verification

process can proceed before the verification is considered to be failed. Peer certificate = 0, CA certificate = 1, higher level CA

certificate = 2, etc. The value 2 thus means that a chain can at most contain peer cert, CA cert, next CA cert, and an additional

CA cert. The default value is 1.

ldap_tls_verify

false | soft | hard

This option specifies whether to verify LDAP server certificate or not when TLS is enabled. When hard is set, ejabberd doesn’t

proceed if the certificate is invalid. When soft is set, ejabberd proceeds even if the check has failed. The default is false, which

means no checks are performed.

ldap_uids

[Attr] | {Attr: AttrFormat}

LDAP attributes which hold a list of attributes to use as alternatives for getting the JID, where Attr is an LDAP attribute which

holds the user’s part of the JID and AttrFormat must contain one and only one pattern variable "%u" which will be replaced by

the user’s part of the JID. For example, "%u@example.org". If the value is in the form of [Attr] then AttrFormat is assumed to be

"%u".

listen

[Options, ...]

The option for listeners configuration. See the Listen Modules section for details.

log_burst_limit_count

Number

added in 22.10

The number of messages to accept in log_burst_limit_window_time period before starting to drop them. Default 500

log_burst_limit_window_time

Number

added in 22.10

The time period to rate-limit log messages by. Defaults to 1 second.

ldap_tls_depth

- 113/450 - Copyright © 2008 - 2024 ProcessOne

mailto:u@example

log_modules_fully

[Module, ...]

added in 23.01

List of modules that will log everything independently from the general loglevel option.

log_rotate_count

Number

The number of rotated log files to keep. The default value is 1, which means that only keeps ejabberd.log.0 , error.log.0 and

crash.log.0 .

log_rotate_size

pos_integer() | infinity

The size (in bytes) of a log file to trigger rotation. If set to infinity, log rotation is disabled. The default value is 10485760 (that is,

10 Mb).

loglevel

none | emergency | alert | critical | error | warning | notice | info | debug

Verbosity of ejabberd logging. The default value is info. NOTE: previous versions of ejabberd had log levels defined in numeric

format (0..5). The numeric values are still accepted for backward compatibility, but are not recommended.

max_fsm_queue

Size

This option specifies the maximum number of elements in the queue of the FSM (Finite State Machine). Roughly speaking, each

message in such queues represents one XML stanza queued to be sent into its relevant outgoing stream. If queue size reaches

the limit (because, for example, the receiver of stanzas is too slow), the FSM and the corresponding connection (if any) will be

terminated and error message will be logged. The reasonable value for this option depends on your hardware configuration. The

allowed values are positive integers. The default value is 10000.

modules

{Module: Options}

Set all the modules configuration options.

negotiation_timeout

timeout()

Time to wait for an XMPP stream negotiation to complete. When timeout occurs, the corresponding XMPP stream is closed. The

default value is 120 seconds.

log_modules_fully

- 114/450 - Copyright © 2008 - 2024 ProcessOne

net_ticktime

timeout()

This option can be used to tune tick time parameter of net_kernel. It tells Erlang VM how often nodes should check if intra-node

communication was not interrupted. This option must have identical value on all nodes, or it will lead to subtle bugs. Usually

leaving default value of this is option is best, tweak it only if you know what you are doing. The default value is 1 minute.

new_sql_schema

true | false

Whether to use the new SQL schema. All schemas are located at https://github.com/processone/ejabberd/tree/24.10/sql. There

are two schemas available. The default legacy schema stores one XMPP domain into one ejabberd database. The new schema can

handle several XMPP domains in a single ejabberd database. Using this new schema is best when serving several XMPP domains

and/or changing domains from time to time. This avoid need to manage several databases and handle complex configuration

changes. The default depends on configuration flag --enable-new-sql-schema which is set at compile time.

oauth_access

AccessName

By default creating OAuth tokens is not allowed. To define which users can create OAuth tokens, you can refer to an ejabberd

access rule in the oauth_access option. Use all to allow everyone to create tokens.

oauth_cache_life_time

timeout()

Same as cache_life_time, but applied to OAuth cache only. If not set, the value from cache_life_time will be used.

oauth_cache_missed

true | false

Same as cache_missed, but applied to OAuth cache only. If not set, the value from cache_missed will be used.

oauth_cache_rest_failure_life_time

timeout()

added in 21.01

The time that a failure in OAuth ReST is cached. The default value is infinity.

oauth_cache_size

pos_integer() | infinity

Same as cache_size, but applied to OAuth cache only. If not set, the value from cache_size will be used.

net_ticktime

- 115/450 - Copyright © 2008 - 2024 ProcessOne

https://github.com/processone/ejabberd/tree/24.10/sql

oauth_client_id_check

allow | db | deny

Define whether the client authentication is always allowed, denied, or it will depend if the client ID is present in the database.

The default value is allow.

oauth_db_type

mnesia | sql

Database backend to use for OAuth authentication. The default value is picked from default_db option, or if it’s not set, mnesia

will be used.

oauth_expire

timeout()

Time during which the OAuth token is valid, in seconds. After that amount of time, the token expires and the delegated credential

cannot be used and is removed from the database. The default is 4294967 seconds.

oauth_use_cache

true | false

Same as use_cache, but applied to OAuth cache only. If not set, the value from use_cache will be used.

oom_killer

true | false

Enable or disable OOM (out-of-memory) killer. When system memory raises above the limit defined in oom_watermark option,

ejabberd triggers OOM killer to terminate most memory consuming Erlang processes. Note that in order to maintain

functionality, ejabberd only attempts to kill transient processes, such as those managing client sessions, s2s or database

connections. The default value is true.

oom_queue

Size

Trigger OOM killer when some of the running Erlang processes have messages queue above this Size. Note that such processes

won’t be killed if oom_killer option is set to false or if oom_watermark is not reached yet.

oom_watermark

Percent

A percent of total system memory consumed at which OOM killer should be activated with some of the processes possibly be

killed (see oom_killer option). Later, when memory drops below this Percent, OOM killer is deactivated. The default value is 80

percents.

oauth_client_id_check

- 116/450 - Copyright © 2008 - 2024 ProcessOne

outgoing_s2s_families

[ipv6 | ipv4, ...]

changed in 23.01

Specify which address families to try, in what order. The default is [ipv6, ipv4] which means it first tries connecting with IPv6, if

that fails it tries using IPv4. This option is obsolete and irrelevant when using ejabberd 23.01 and Erlang/OTP 22, or newer

versions of them.

outgoing_s2s_ipv4_address

Address

added in 20.12

Specify the IPv4 address that will be used when establishing an outgoing S2S IPv4 connection, for example "127.0.0.1". The

default value is undefined.

outgoing_s2s_ipv6_address

Address

added in 20.12

Specify the IPv6 address that will be used when establishing an outgoing S2S IPv6 connection, for example "::FFFF:127.0.0.1".

The default value is undefined.

outgoing_s2s_port

1..65535

A port number to use for outgoing s2s connections when the target server doesn’t have an SRV record. The default value is 5269.

outgoing_s2s_timeout

timeout()

The timeout in seconds for outgoing S2S connection attempts. The default value is 10 seconds.

pam_service

Name

This option defines the PAM service name. Refer to the PAM documentation of your operation system for more information. The

default value is ejabberd.

pam_userinfotype

username | jid

This option defines what type of information about the user ejabberd provides to the PAM service: only the username, or the

user’s JID. Default is username.

outgoing_s2s_families

- 117/450 - Copyright © 2008 - 2024 ProcessOne

pgsql_users_number_estimate

true | false

Whether to use PostgreSQL estimation when counting registered users. The default value is false.

queue_dir

Directory

If queue_type option is set to file, use this Directory to store file queues. The default is to keep queues inside Mnesia directory.

queue_type

ram | file

Default type of queues in ejabberd. Modules may have its own value of the option. The value of ram means that queues will be

kept in memory. If value file is set, you may also specify directory in queue_dir option where file queues will be placed. The

default value is ram.

redis_connect_timeout

timeout()

A timeout to wait for the connection to be re-established to the Redis server. The default is 1 second.

redis_db

Number

Redis database number. The default is 0.

redis_password

Password

The password to the Redis server. The default is an empty string, i.e. no password.

redis_pool_size

Number

The number of simultaneous connections to the Redis server. The default value is 10.

redis_port

1..65535

The port where the Redis server is accepting connections. The default is 6379.

pgsql_users_number_estimate

- 118/450 - Copyright © 2008 - 2024 ProcessOne

redis_queue_type

ram | file

The type of request queue for the Redis server. See description of queue_type option for the explanation. The default value is the

value defined in queue_type or ram if the latter is not set.

redis_server

Hostname

A hostname or an IP address of the Redis server.The default is localhost.

registration_timeout

timeout()

This is a global option for module mod_register. It limits the frequency of registrations from a given IP or username. So, a user

that tries to register a new account from the same IP address or JID during this time after their previous registration will receive

an error with the corresponding explanation. To disable this limitation, set the value to infinity. The default value is 600 seconds.

resource_conflict

setresource | closeold | closenew

NOTE: this option is deprecated and may be removed anytime in the future versions. The possible values match exactly the three

possibilities described in XMPP Core: section 7.7.2.2. The default value is closeold. If the client uses old Jabber Non-SASL

authentication (XEP-0078), then this option is not respected, and the action performed is closeold.

router_cache_life_time

timeout()

Same as cache_life_time, but applied to routing table cache only. If not set, the value from cache_life_time will be used.

router_cache_missed

true | false

Same as cache_missed, but applied to routing table cache only. If not set, the value from cache_missed will be used.

router_cache_size

pos_integer() | infinity

Same as cache_size, but applied to routing table cache only. If not set, the value from cache_size will be used.

router_db_type

mnesia | redis | sql

Database backend to use for routing information. The default value is picked from default_ram_db option, or if it’s not set,

mnesia will be used.

redis_queue_type

- 119/450 - Copyright © 2008 - 2024 ProcessOne

https://tools.ietf.org/html/rfc6120#section-7.7.2.2

router_use_cache

true | false

Same as use_cache, but applied to routing table cache only. If not set, the value from use_cache will be used.

rpc_timeout

timeout()

A timeout for remote function calls between nodes in an ejabberd cluster. You should probably never change this value since

those calls are used for internal needs only. The default value is 5 seconds.

s2s_access

Access

This Access Rule defines to what remote servers can s2s connections be established. The default value is all; no restrictions are

applied, it is allowed to connect s2s to/from all remote servers.

s2s_cafile

Path

A path to a file with CA root certificates that will be used to authenticate s2s connections. If not set, the value of ca_file will be

used.

You can use host_config to specify this option per-vhost.

s2s_ciphers

[Cipher, ...]

A list of OpenSSL ciphers to use for s2s connections. The default value is shown in the example below:

Example:

s2s_dhfile

Path

Full path to a file containing custom DH parameters to use for s2s connections. Such a file could be created with the command

"openssl dhparam -out dh.pem 2048". If this option is not specified, 2048-bit MODP Group with 256-bit Prime Order Subgroup

will be used as defined in RFC5114 Section 2.3.

s2s_dns_retries

Number

s2s_ciphers:
- HIGH
- "!aNULL"
- "!eNULL"
- "!3DES"
- "@STRENGTH"

router_use_cache

- 120/450 - Copyright © 2008 - 2024 ProcessOne

DNS resolving retries. The default value is 2.

s2s_dns_timeout

timeout()

The timeout for DNS resolving. The default value is 10 seconds.

s2s_max_retry_delay

timeout()

The maximum allowed delay for s2s connection retry to connect after a failed connection attempt. The default value is 300

seconds (5 minutes).

s2s_protocol_options

[Option, ...]

List of general SSL options to use for s2s connections. These map to OpenSSL’s set_options(). The default value is shown in the

example below:

Example:

s2s_queue_type

ram | file

The type of a queue for s2s packets. See description of queue_type option for the explanation. The default value is the value

defined in queue_type or ram if the latter is not set.

s2s_timeout

timeout()

A time to wait before closing an idle s2s connection. The default value is 1 hour.

s2s_tls_compression

true | false

Whether to enable or disable TLS compression for s2s connections. The default value is false.

s2s_use_starttls

true | false | optional | required

s2s_protocol_options:
- no_sslv3
- cipher_server_preference
- no_compression

s2s_dns_timeout

- 121/450 - Copyright © 2008 - 2024 ProcessOne

Whether to use STARTTLS for s2s connections. The value of false means STARTTLS is prohibited. The value of true or optional

means STARTTLS is enabled but plain connections are still allowed. And the value of required means that only STARTTLS

connections are allowed. The default value is false (for historical reasons).

s2s_zlib

true | false

Whether to use zlib compression (as defined in XEP-0138) or not. The default value is false. WARNING: this type of compression

is nowadays considered insecure.

shaper

{ShaperName: Rate}

The option defines a set of shapers. Every shaper is assigned a name ShaperName that can be used in other parts of the

configuration file, such as shaper_rules option. The shaper itself is defined by its Rate, where Rate stands for the maximum

allowed incoming rate in bytes per second. When a connection exceeds this limit, ejabberd stops reading from the socket until

the average rate is again below the allowed maximum. In the example below shaper normal limits the traffic speed to 1,000

bytes/sec and shaper fast limits the traffic speed to 50,000 bytes/sec:

Example:

shaper_rules

{ShaperRuleName: {Number|ShaperName: ACLRule|ACLName}}

This option defines shaper rules to use for matching user/hosts. Semantics is similar to access_rules option, the only difference is

that instead using allow or deny, a name of a shaper (defined in shaper option) or a positive number should be used.

Example:

sm_cache_life_time

timeout()

Same as cache_life_time, but applied to client sessions table cache only. If not set, the value from cache_life_time will be used.

sm_cache_missed

true | false

Same as cache_missed, but applied to client sessions table cache only. If not set, the value from cache_missed will be used.

shaper:
normal: 1000
fast: 50000

shaper_rules:
connections_limit:
10:
user: peter@example.com

100: admin
5: all

download_speed:
fast: admin
slow: anonymous_users
normal: all

log_days: 30

s2s_zlib

- 122/450 - Copyright © 2008 - 2024 ProcessOne

https://xmpp.org/extensions/xep-0138.html

sm_cache_size

pos_integer() | infinity

Same as cache_size, but applied to client sessions table cache only. If not set, the value from cache_size will be used.

sm_db_type

mnesia | redis | sql

Database backend to use for client sessions information. The default value is picked from default_ram_db option, or if it’s not set,

mnesia will be used.

sm_use_cache

true | false

Same as use_cache, but applied to client sessions table cache only. If not set, the value from use_cache will be used.

sql_connect_timeout

timeout()

A time to wait for connection to an SQL server to be established. The default value is 5 seconds.

sql_database

Database

An SQL database name. For SQLite this must be a full path to a database file. The default value is ejabberd.

sql_flags

[mysql_alternative_upsert]

added in 24.02

This option accepts a list of SQL flags, and is empty by default. mysql_alternative_upsert forces the alternative upsert

implementation in MySQL.

sql_keepalive_interval

timeout()

An interval to make a dummy SQL request to keep alive the connections to the database. There is no default value, so no

keepalive requests are made.

sql_odbc_driver

Path

added in 20.12

sm_cache_size

- 123/450 - Copyright © 2008 - 2024 ProcessOne

Path to the ODBC driver to use to connect to a Microsoft SQL Server database. This option only applies if the sql_type option is

set to mssql and sql_server is not an ODBC connection string. The default value is: libtdsodbc.so

sql_password

Password

The password for SQL authentication. The default is empty string.

sql_pool_size

Size

Number of connections to the SQL server that ejabberd will open for each virtual host. The default value is 10. WARNING: for

SQLite this value is 1 by default and it’s not recommended to change it due to potential race conditions.

sql_port

1..65535

The port where the SQL server is accepting connections. The default is 3306 for MySQL, 5432 for PostgreSQL and 1433 for MS

SQL. The option has no effect for SQLite.

sql_prepared_statements

true | false

added in 20.01

This option is true by default, and is useful to disable prepared statements. The option is valid for PostgreSQL and MySQL.

sql_query_timeout

timeout()

A time to wait for an SQL query response. The default value is 60 seconds.

sql_queue_type

ram | file

The type of a request queue for the SQL server. See description of queue_type option for the explanation. The default value is the

value defined in queue_type or ram if the latter is not set.

sql_server

Host | IP Address | ODBC Connection String | Unix Socket Path

improved in 24.06

The hostname or IP address of the SQL server. For sql_type mssql or odbc this can also be an ODBC connection string. When

sql_type is mysql or pgsql, this can be the path to a unix domain socket expressed like: "unix:/path/to/socket".The default value is

localhost.

sql_password

- 124/450 - Copyright © 2008 - 2024 ProcessOne

sql_ssl

true | false

improved in 20.03

Whether to use SSL encrypted connections to the SQL server. The option is only available for MySQL, MS SQL and PostgreSQL.

The default value is false.

sql_ssl_cafile

Path

A path to a file with CA root certificates that will be used to verify SQL connections. Implies sql_ssl and sql_ssl_verify options are

set to true. There is no default which means certificate verification is disabled. This option has no effect for MS SQL.

sql_ssl_certfile

Path

A path to a certificate file that will be used for SSL connections to the SQL server. Implies sql_ssl option is set to true. There is no

default which means ejabberd won’t provide a client certificate to the SQL server. This option has no effect for MS SQL.

sql_ssl_verify

true | false

Whether to verify SSL connection to the SQL server against CA root certificates defined in sql_ssl_cafile option. Implies sql_ssl

option is set to true. This option has no effect for MS SQL. The default value is false.

sql_start_interval

timeout()

A time to wait before retrying to restore failed SQL connection. The default value is 30 seconds.

sql_type

mssql | mysql | odbc | pgsql | sqlite

The type of an SQL connection. The default is odbc.

sql_username

Username

A user name for SQL authentication. The default value is ejabberd.

trusted_proxies

all | [Network1, Network2, ...]

sql_ssl

- 125/450 - Copyright © 2008 - 2024 ProcessOne

Specify what proxies are trusted when an HTTP request contains the header X-Forwarded-For. You can specify all to allow all

proxies, or specify a list of IPs, possibly with masks. The default value is an empty list. Using this option you can know the real IP

of the request, for admin purpose, or security configuration (for example using mod_fail2ban). IMPORTANT: The proxy MUST be

configured to set the X-Forwarded-For header if you enable this option as, otherwise, the client can set it itself and as a result the

IP value cannot be trusted for security rules in ejabberd.

update_sql_schema

true | false

updated in 24.06

Allow ejabberd to update SQL schema in MySQL, PostgreSQL and SQLite databases. This option was added in ejabberd 23.10,

and enabled by default since 24.06. The default value is true.

update_sql_schema_timeout

timeout()

added in 24.07

Time allocated to SQL schema update queries. The default value is set to 5 minutes.

use_cache

true | false

Enable or disable cache. The default is true. Several modules have a similar option; and some core ejabberd parts support similar

options too, see auth_use_cache, oauth_use_cache, router_use_cache, and sm_use_cache.

validate_stream

true | false

Whether to validate any incoming XML packet according to the schemas of supported XMPP extensions. WARNING: the

validation is only intended for the use by client developers - don’t enable it in production environment. The default value is false.

version

string()

The option can be used to set custom ejabberd version, that will be used by different parts of ejabberd, for example by

mod_version module. The default value is obtained at compile time from the underlying version control system.

websocket_origin

ignore | URL

This option enables validation for Origin header to protect against connections from other domains than given in the

configuration file. In this way, the lower layer load balancer can be chosen for a specific ejabberd implementation while still

providing a secure WebSocket connection. The default value is ignore. An example value of the URL is "https://test.example.org:

8081".

update_sql_schema

- 126/450 - Copyright © 2008 - 2024 ProcessOne

https://github.com/processone/xmpp#supported-xmpp-elements

websocket_ping_interval

timeout()

Defines time between pings sent by the server to a client (WebSocket level protocol pings are used for this) to keep a connection

active. If the client doesn’t respond to two consecutive pings, the connection will be assumed as closed. The value of 0 can be

used to disable the feature. This option makes the server sending pings only for connections using the RFC compliant protocol.

For older style connections the server expects that whitespace pings would be used for this purpose. The default value is 60

seconds.

websocket_timeout

timeout()

Amount of time without any communication after which the connection would be closed. The default value is 300 seconds.

websocket_ping_interval

- 127/450 - Copyright © 2008 - 2024 ProcessOne

Modules Options

This section describes modules options of ejabberd 24.10. If you are using an old ejabberd release, please refer to the

corresponding archived version of this page in the Archive. The modules that changed in this version are marked with 🟤.

mod_adhoc

This module implements XEP-0050: Ad-Hoc Commands. It’s an auxiliary module and is only needed by some of the other

modules.

Available options:

report_commands_node: true | false

Provide the Commands item in the Service Discovery. Default value: false.

mod_admin_extra

This module provides additional administrative commands.

Details for some commands:

ban_account: This command kicks all the connected sessions of the account from the server. It also changes their password to

a randomly generated one, so they can’t login anymore unless a server administrator changes their password again. It is

possible to define the reason of the ban. The new password also includes the reason and the date and time of the ban. See an

example below.

pushroster: (and pushroster-all) The roster file must be placed, if using Windows, on the directory where you installed

ejabberd: C:/Program Files/ejabberd or similar. If you use other Operating System, place the file on the same directory where

the .beam files are installed. See below an example roster file.

srg_create: If you want to put a group Name with blank spaces, use the characters "' and '" to define when the Name starts and

ends. See an example below.

The module has no options.

Examples:

With this configuration, vCards can only be modified with mod_admin_extra commands:

Content of roster file for pushroster command:

With this call, the sessions of the local account which JID is boby@example.org will be kicked, and its password will be set to

something like BANNED_ACCOUNT—20080425T21:45:07—2176635—Spammed_rooms

•

•

•

•

acl:
adminextraresource:
- resource: "modadminextraf8x,31ad"

access_rules:
vcard_set:
- allow: adminextraresource

modules:
mod_admin_extra: {}
mod_vcard:
access_set: vcard_set

[{<<"bob">>, <<"example.org">>, <<"workers">>, <<"Bob">>},
{<<"mart">>, <<"example.org">>, <<"workers">>, <<"Mart">>},
{<<"Rich">>, <<"example.org">>, <<"bosses">>, <<"Rich">>}].

ejabberdctl vhost example.org ban_account boby "Spammed rooms"

Modules Options

- 128/450 - Copyright © 2008 - 2024 ProcessOne

https://xmpp.org/extensions/xep-0050.html
mailto:boby@example.org

Call to srg_create using double-quotes and single-quotes:

mod_admin_update_sql

This module can be used to update existing SQL database from the default to the new schema. Check the section Default and

New Schemas for details. Please note that only MS SQL, MySQL, and PostgreSQL are supported. When the module is loaded use

update_sql API.

The module has no options.

mod_announce

This module enables configured users to broadcast announcements and to set the message of the day (MOTD). Configured users

can perform these actions with an XMPP client either using Ad-hoc Commands or sending messages to specific JIDs.

Note that this module can be resource intensive on large deployments as it may broadcast a lot of messages. This module should

be disabled for instances of ejabberd with hundreds of thousands users.

The Ad-hoc Commands are listed in the Server Discovery. For this feature to work, mod_adhoc must be enabled.

The specific JIDs where messages can be sent are listed below. The first JID in each entry will apply only to the specified virtual

host example.org, while the JID between brackets will apply to all virtual hosts in ejabberd:

example.org/announce/all (example.org/announce/all-hosts/all):: The message is sent to all registered users. If the user is

online and connected to several resources, only the resource with the highest priority will receive the message. If the

registered user is not connected, the message will be stored offline in assumption that offline storage (see mod_offline) is

enabled.

example.org/announce/online (example.org/announce/all-hosts/online):: The message is sent to all connected users. If the user

is online and connected to several resources, all resources will receive the message.

example.org/announce/motd (example.org/announce/all-hosts/motd):: The message is set as the message of the day (MOTD)

and is sent to users when they login. In addition the message is sent to all connected users (similar to announce/online).

example.org/announce/motd/update (example.org/announce/all-hosts/motd/update):: The message is set as message of the day

(MOTD) and is sent to users when they login. The message is not sent to any currently connected user.

example.org/announce/motd/delete (example.org/announce/all-hosts/motd/delete):: Any message sent to this JID removes the

existing message of the day (MOTD).

Available options:

access: AccessName

This option specifies who is allowed to send announcements and to set the message of the day. The default value is none (i.e.

nobody is able to send such messages).

cache_life_time: timeout()

Same as top-level cache_life_time option, but applied to this module only.

cache_missed: true | false

Same as top-level cache_missed option, but applied to this module only.

cache_size: pos_integer() | infinity

Same as top-level cache_size option, but applied to this module only.

db_type: mnesia | sql

Same as top-level default_db option, but applied to this module only.

use_cache: true | false

Same as top-level use_cache option, but applied to this module only.

ejabberdctl srg_create g1 example.org "'Group number 1'" this_is_g1 g1

•

•

•

•

•

•

•

•

•

•

•

mod_admin_update_sql

- 129/450 - Copyright © 2008 - 2024 ProcessOne

mod_avatar

The purpose of the module is to cope with legacy and modern XMPP clients posting avatars. The process is described in

XEP-0398: User Avatar to vCard-Based Avatars Conversion.

Also, the module supports conversion between avatar image formats on the fly.

The module depends on mod_vcard, mod_vcard_xupdate and mod_pubsub.

Available options:

convert: {From: To}

Defines image conversion rules: the format in From will be converted to format in To. The value of From can also be default,

which is match-all rule. NOTE: the list of supported formats is detected at compile time depending on the image libraries

installed in the system.

Example:

rate_limit: Number

Limit any given JID by the number of avatars it is able to convert per minute. This is to protect the server from image

conversion DoS. The default value is 10.

mod_block_strangers

This module blocks and logs any messages coming from an unknown entity. If a writing entity is not in your roster, you can let

this module drop and/or log the message. By default you’ll just not receive message from that entity. Enable this module if you

want to drop SPAM messages.

Available options:

access: AccessName

The option is supposed to be used when allow_local_users and allow_transports are not enough. It’s an ACL where deny means

the message will be rejected (or a CAPTCHA would be generated for a presence, if configured), and allow means the sender is

whitelisted and the stanza will pass through. The default value is none, which means nothing is whitelisted.

allow_local_users: true | false

This option specifies if strangers from the same local host should be accepted or not. The default value is true.

allow_transports: true | false

If set to true and some server’s JID is in user’s roster, then messages from any user of this server are accepted even if no

subscription present. The default value is true.

captcha: true | false

Whether to generate CAPTCHA or not in response to messages from strangers. See also section CAPTCHA of the Configuration

Guide. The default value is false.

drop: true | false

This option specifies if strangers messages should be dropped or not. The default value is true.

log: true | false

This option specifies if strangers' messages should be logged (as info message) in ejabberd.log. The default value is false.

mod_blocking

The module implements XEP-0191: Blocking Command.

•

convert:
webp: jpg
default: png

•

•

•

•

•

•

•

mod_avatar

- 130/450 - Copyright © 2008 - 2024 ProcessOne

https://xmpp.org/extensions/xep-0398.html
https://xmpp.org/extensions/xep-0191.html

This module depends on mod_privacy where all the configuration is performed.

The module has no options.

mod_bosh

This module implements XMPP over BOSH as defined in XEP-0124 and XEP-0206. BOSH stands for Bidirectional-streams Over

Synchronous HTTP. It makes it possible to simulate long lived connections required by XMPP over the HTTP protocol. In practice,

this module makes it possible to use XMPP in a browser without WebSocket support and more generally to have a way to use

XMPP while having to get through an HTTP proxy.

Available options:

cache_life_time: timeout()

Same as top-level cache_life_time option, but applied to this module only.

cache_missed: true | false

Same as top-level cache_missed option, but applied to this module only.

cache_size: pos_integer() | infinity

Same as top-level cache_size option, but applied to this module only.

json: true | false

This option has no effect.

max_concat: pos_integer() | infinity

This option limits the number of stanzas that the server will send in a single bosh request. The default value is unlimited.

max_inactivity: timeout()

The option defines the maximum inactivity period. The default value is 30 seconds.

max_pause: pos_integer()

Indicate the maximum length of a temporary session pause (in seconds) that a client can request. The default value is 120.

prebind: true | false

If enabled, the client can create the session without going through authentication. Basically, it creates a new session with

anonymous authentication. The default value is false.

queue_type: ram | file

Same as top-level queue_type option, but applied to this module only.

ram_db_type: mnesia | sql | redis

Same as top-level default_ram_db option, but applied to this module only.

use_cache: true | false

Same as top-level use_cache option, but applied to this module only.

Example:

mod_caps

This module implements XEP-0115: Entity Capabilities. The main purpose of the module is to provide PEP functionality (see

mod_pubsub).

•

•

•

•

•

•

•

•

•

•

•

listen:
-
port: 5222
module: ejabberd_c2s

-
port: 5443
module: ejabberd_http
request_handlers:
/bosh: mod_bosh

modules:
mod_bosh: {}

mod_bosh

- 131/450 - Copyright © 2008 - 2024 ProcessOne

https://xmpp.org/extensions/xep-0124.html
https://xmpp.org/extensions/xep-0206.html
https://xmpp.org/extensions/xep-0115.html

Available options:

cache_life_time: timeout()

Same as top-level cache_life_time option, but applied to this module only.

cache_missed: true | false

Same as top-level cache_missed option, but applied to this module only.

cache_size: pos_integer() | infinity

Same as top-level cache_size option, but applied to this module only.

db_type: mnesia | sql

Same as top-level default_db option, but applied to this module only.

use_cache: true | false

Same as top-level use_cache option, but applied to this module only.

mod_carboncopy

The module implements XEP-0280: Message Carbons. The module broadcasts messages on all connected user resources

(devices).

The module has no options.

mod_client_state

This module allows for queueing certain types of stanzas when a client indicates that the user is not actively using the client

right now (see XEP-0352: Client State Indication). This can save bandwidth and resources.

A stanza is dropped from the queue if it’s effectively obsoleted by a new one (e.g., a new presence stanza would replace an old

one from the same client). The queue is flushed if a stanza arrives that won’t be queued, or if the queue size reaches a certain

limit (currently 100 stanzas), or if the client becomes active again.

Available options:

queue_chat_states: true | false

Queue "standalone" chat state notifications (as defined in XEP-0085: Chat State Notifications) while a client indicates

inactivity. The default value is true.

queue_pep: true | false

Queue PEP notifications while a client is inactive. When the queue is flushed, only the most recent notification of a given PEP

node is delivered. The default value is true.

queue_presence: true | false

While a client is inactive, queue presence stanzas that indicate (un)availability. The default value is true.

mod_configure

The module provides server configuration functionality via XEP-0050: Ad-Hoc Commands. Implements many commands as

defined in XEP-0133: Service Administration. This module requires mod_adhoc to be loaded.

The module has no options.

mod_conversejs

added in 21.12 and improved in 22.05

This module serves a simple page for the Converse XMPP web browser client.

•

•

•

•

•

•

•

•

mod_carboncopy

- 132/450 - Copyright © 2008 - 2024 ProcessOne

https://xmpp.org/extensions/xep-0280.html
https://xmpp.org/extensions/xep-0352.html
https://xmpp.org/extensions/xep-0085.html
https://xmpp.org/extensions/xep-0050.html
https://xmpp.org/extensions/xep-0133.html
https://conversejs.org/

To use this module, in addition to adding it to the modules section, you must also enable it in listen → ejabberd_http →

request_handlers.

Make sure either mod_bosh or ejabberd_http_ws request_handlers are enabled.

When conversejs_css and conversejs_script are auto, by default they point to the public Converse client.

Available options:

bosh_service_url: auto | BoshURL

BOSH service URL to which Converse can connect to. The keyword @HOST@ is replaced with the real virtual host name. If set

to auto, it will build the URL of the first configured BOSH request handler. The default value is auto.

conversejs_css: auto | URL

Converse CSS URL. The keyword @HOST@ is replaced with the hostname. The default value is auto.

conversejs_options: {Name: Value}

added in 22.05 Specify additional options to be passed to Converse. See Converse configuration. Only boolean, integer

and string values are supported; lists are not supported.

conversejs_resources: Path

added in 22.05 Local path to the Converse files. If not set, the public Converse client will be used instead.

conversejs_script: auto | URL

Converse main script URL. The keyword @HOST@ is replaced with the hostname. The default value is auto.

default_domain: Domain

Specify a domain to act as the default for user JIDs. The keyword @HOST@ is replaced with the hostname. The default value is

@HOST@.

websocket_url: auto | WebSocketURL

A WebSocket URL to which Converse can connect to. The keyword @HOST@ is replaced with the real virtual host name. If set

to auto, it will build the URL of the first configured WebSocket request handler. The default value is auto.

Examples:

Manually setup WebSocket url, and use the public Converse client:

Host Converse locally and let auto detection of WebSocket and Converse URLs:

Configure some additional options for Converse

•

•

•

•

•

•

•

listen:
-
port: 5280
module: ejabberd_http
request_handlers:
/bosh: mod_bosh
/websocket: ejabberd_http_ws
/conversejs: mod_conversejs

modules:
mod_bosh: {}
mod_conversejs:
websocket_url: "ws://@HOST@:5280/websocket"

listen:
-
port: 443
module: ejabberd_http
tls: true
request_handlers:
/websocket: ejabberd_http_ws
/conversejs: mod_conversejs

modules:
mod_conversejs:
conversejs_resources: "/home/ejabberd/conversejs-9.0.0/package/dist"

modules:
mod_conversejs:
websocket_url: auto
conversejs_options:
auto_away: 30

mod_conversejs

- 133/450 - Copyright © 2008 - 2024 ProcessOne

https://conversejs.org/docs/html/configuration.html

mod_delegation

This module is an implementation of XEP-0355: Namespace Delegation. Only admin mode has been implemented by now.

Namespace delegation allows external services to handle IQ using specific namespace. This may be applied for external PEP

service.

Warning

Security issue: Namespace delegation gives components access to sensitive data, so permission should be granted carefully, only

if you trust the component.

Note

This module is complementary to mod_privilege but can also be used separately.

Available options:

namespaces: {Namespace: Options}

If you want to delegate namespaces to a component, specify them in this option, and associate them to an access rule. The

Options are:

access: AccessName

The option defines which components are allowed for namespace delegation. The default value is none.

filtering: Attributes

The list of attributes. Currently not used.

Examples:

Make sure you do not delegate the same namespace to several services at the same time. As in the example provided later, to

have the sat-pubsub.example.org component perform correctly disable the mod_pubsub module.

mod_disco

This module adds support for XEP-0030: Service Discovery. With this module enabled, services on your server can be discovered

by XMPP clients.

clear_cache_on_logout: true
i18n: "pt"
locked_domain: "@HOST@"
message_archiving: always
theme: dracula

•

•

•

access_rules:
external_pubsub:
allow: external_component

external_mam:
allow: external_component

acl:
external_component:
server: sat-pubsub.example.org

modules:
mod_delegation:
namespaces:
urn:xmpp:mam:1:
access: external_mam

http://jabber.org/protocol/pubsub:
access: external_pubsub

mod_delegation

- 134/450 - Copyright © 2008 - 2024 ProcessOne

https://xmpp.org/extensions/xep-0355.html
https://xmpp.org/extensions/xep-0030.html

Available options:

extra_domains: [Domain, ...]

With this option, you can specify a list of extra domains that are added to the Service Discovery item list. The default value is

an empty list.

name: Name

A name of the server in the Service Discovery. This will only be displayed by special XMPP clients. The default value is

ejabberd.

server_info: [Info, ...]

Specify additional information about the server, as described in XEP-0157: Contact Addresses for XMPP Services. Every Info

element in the list is constructed from the following options:

modules: all | [Module, ...]

The value can be the keyword all, in which case the information is reported in all the services, or a list of ejabberd modules, in

which case the information is only specified for the services provided by those modules.

name: Name

The field var name that will be defined. See XEP-0157 for some standardized names.

urls: [URI, ...]

A list of contact URIs, such as HTTP URLs, XMPP URIs and so on.

Example:

mod_fail2ban

The module bans IPs that show the malicious signs. Currently only C2S authentication failures are detected.

Unlike the standalone program, mod_fail2ban clears the record of authentication failures after some time since the first failure or

on a successful authentication. It also does not simply block network traffic, but provides the client with a descriptive error

message.

Warning

You should not use this module behind a proxy or load balancer. ejabberd will see the failures as coming from the load balancer

and, when the threshold of auth failures is reached, will reject all connections coming from the load balancer. You can lock all

your user base out of ejabberd when using this module behind a proxy.

•

•

•

•

•

•

server_info:
-
modules: all
name: abuse-addresses
urls: ["mailto:abuse@shakespeare.lit"]

-
modules: [mod_muc]
name: "Web chatroom logs"
urls: ["http://www.example.org/muc-logs"]

-
modules: [mod_disco]
name: feedback-addresses
urls:
- http://shakespeare.lit/feedback.php
- mailto:feedback@shakespeare.lit
- xmpp:feedback@shakespeare.lit

-
modules:
- mod_disco
- mod_vcard

name: admin-addresses
urls:
- mailto:xmpp@shakespeare.lit
- xmpp:admins@shakespeare.lit

mod_fail2ban

- 135/450 - Copyright © 2008 - 2024 ProcessOne

https://xmpp.org/extensions/xep-0157.html

Available options:

access: AccessName

Specify an access rule for whitelisting IP addresses or networks. If the rule returns allow for a given IP address, that address

will never be banned. The AccessName should be of type ip. The default value is none.

c2s_auth_ban_lifetime: timeout()

The lifetime of the IP ban caused by too many C2S authentication failures. The default value is 1 hour.

c2s_max_auth_failures: Number

The number of C2S authentication failures to trigger the IP ban. The default value is 20.

mod_host_meta

added in 22.05

This module serves small host-meta files as described in XEP-0156: Discovering Alternative XMPP Connection Methods.

To use this module, in addition to adding it to the modules section, you must also enable it in listen → ejabberd_http →

request_handlers.

Notice it only works if ejabberd_http has tls enabled.

Available options:

bosh_service_url: undefined | auto | BoshURL

BOSH service URL to announce. The keyword @HOST@ is replaced with the real virtual host name. If set to auto, it will build

the URL of the first configured BOSH request handler. The default value is auto.

websocket_url: undefined | auto | WebSocketURL

WebSocket URL to announce. The keyword @HOST@ is replaced with the real virtual host name. If set to auto, it will build the

URL of the first configured WebSocket request handler. The default value is auto.

Example:

mod_http_api

This module provides a ReST interface to call ejabberd API commands using JSON data.

To use this module, in addition to adding it to the modules section, you must also enable it in listen → ejabberd_http →

request_handlers.

To use a specific API version N, when defining the URL path in the request_handlers, add a vN. For example: /api/v2:

mod_http_api

To run a command, send a POST request to the corresponding URL: http://localhost:5280/api/<command_name>

The module has no options.

•

•

•

•

•

listen:
-
port: 443
module: ejabberd_http
tls: true
request_handlers:
/bosh: mod_bosh
/ws: ejabberd_http_ws
/.well-known/host-meta: mod_host_meta
/.well-known/host-meta.json: mod_host_meta

modules:
mod_bosh: {}
mod_host_meta:
bosh_service_url: "https://@HOST@:5443/bosh"
websocket_url: "wss://@HOST@:5443/ws"

mod_host_meta

- 136/450 - Copyright © 2008 - 2024 ProcessOne

https://xmpp.org/extensions/xep-0156.html

Example:

mod_http_fileserver

This simple module serves files from the local disk over HTTP.

Available options:

accesslog: Path

File to log accesses using an Apache-like format. No log will be recorded if this option is not specified.

content_types: {Extension: Type}

Specify mappings of extension to content type. There are several content types already defined. With this option you can add

new definitions or modify existing ones. The default values are:

Example:

custom_headers: {Name: Value}

Indicate custom HTTP headers to be included in all responses. There are no custom headers by default.

default_content_type: Type

Specify the content type to use for unknown extensions. The default value is application/octet-stream.

directory_indices: [Index, ...]

Indicate one or more directory index files, similarly to Apache’s DirectoryIndex variable. When an HTTP request hits a

directory instead of a regular file, those directory indices are looked in order, and the first one found is returned. The default

value is an empty list.

docroot: Path

Directory to serve the files from. This is a mandatory option.

must_authenticate_with: [{Username, Hostname}, ...]

List of accounts that are allowed to use this service. Default value: [].

Examples:

This example configuration will serve the files from the local directory /var/www in the address http://example.org:5280/pub/

content/. In this example a new content type ogg is defined, png is redefined, and jpg definition is deleted:

listen:
-
port: 5280
module: ejabberd_http
request_handlers:
/api: mod_http_api

modules:
mod_http_api: {}

•

•

content_types:
.css: text/css
.gif: image/gif
.html: text/html
.jar: application/java-archive
.jpeg: image/jpeg
.jpg: image/jpeg
.js: text/javascript
.png: image/png
.svg: image/svg+xml
.txt: text/plain
.xml: application/xml
.xpi: application/x-xpinstall
.xul: application/vnd.mozilla.xul+xml

•

•

•

•

•

listen:
-
port: 5280
module: ejabberd_http
request_handlers:
/pub/content: mod_http_fileserver

modules:
mod_http_fileserver:
docroot: /var/www

mod_http_fileserver

- 137/450 - Copyright © 2008 - 2024 ProcessOne

mod_http_upload

This module allows for requesting permissions to upload a file via HTTP as described in XEP-0363: HTTP File Upload. If the

request is accepted, the client receives a URL for uploading the file and another URL from which that file can later be

downloaded.

In order to use this module, it must be enabled in listen → ejabberd_http → request_handlers.

accesslog: /var/log/ejabberd/access.log
directory_indices:
- index.html
- main.htm

custom_headers:
X-Powered-By: Erlang/OTP
X-Fry: "It's a widely-believed fact!"

content_types:
.ogg: audio/ogg
.png: image/png

default_content_type: text/html

mod_http_upload

- 138/450 - Copyright © 2008 - 2024 ProcessOne

https://xmpp.org/extensions/xep-0363.html

Available options:

mod_http_upload

- 139/450 - Copyright © 2008 - 2024 ProcessOne

access: AccessName

This option defines the access rule to limit who is permitted to use the HTTP upload service. The default value is local. If no

access rule of that name exists, no user will be allowed to use the service.

custom_headers: {Name: Value}

This option specifies additional header fields to be included in all HTTP responses. By default no custom headers are included.

dir_mode: Permission

This option defines the permission bits of the docroot directory and any directories created during file uploads. The bits are

specified as an octal number (see the chmod(1) manual page) within double quotes. For example: "0755". The default is

undefined, which means no explicit permissions will be set.

docroot: Path

Uploaded files are stored below the directory specified (as an absolute path) with this option. The keyword @HOME@ is

replaced with the home directory of the user running ejabberd, and the keyword @HOST@ with the virtual host name. The

default value is "@HOME@/upload".

external_secret: Text

This option makes it possible to offload all HTTP Upload processing to a separate HTTP server. Both ejabberd and the HTTP

server should share this secret and behave exactly as described at Prosody’s mod_http_upload_external in the Implementation

section. There is no default value.

file_mode: Permission

This option defines the permission bits of uploaded files. The bits are specified as an octal number (see the chmod(1) manual

page) within double quotes. For example: "0644". The default is undefined, which means no explicit permissions will be set.

get_url: URL

This option specifies the initial part of the GET URLs used for downloading the files. The default value is undefined. When this

option is undefined, this option is set to the same value as put_url. The keyword @HOST@ is replaced with the virtual host

name. NOTE: if GET requests are handled by mod_http_upload, the get_url must match the put_url. Setting it to a different

value only makes sense if an external web server or mod_http_fileserver is used to serve the uploaded files.

host

Deprecated. Use hosts instead.

hosts: [Host, ...]

This option defines the Jabber IDs of the service. If the hosts option is not specified, the only Jabber ID will be the hostname of

the virtual host with the prefix "upload.". The keyword @HOST@ is replaced with the real virtual host name.

jid_in_url: node | sha1

When this option is set to node, the node identifier of the user’s JID (i.e., the user name) is included in the GET and PUT URLs

generated by mod_http_upload. Otherwise, a SHA-1 hash of the user’s bare JID is included instead. The default value is sha1.

max_size: Size

This option limits the acceptable file size. Either a number of bytes (larger than zero) or infinity must be specified. The default

value is 104857600.

name: Name

A name of the service in the Service Discovery. This will only be displayed by special XMPP clients. The default value is "HTTP

File Upload".

put_url: URL

This option specifies the initial part of the PUT URLs used for file uploads. The keyword @HOST@ is replaced with the virtual

host name. NOTE: different virtual hosts cannot use the same PUT URL. The default value is "https://@HOST@:5443/upload".

rm_on_unregister: true | false

This option specifies whether files uploaded by a user should be removed when that user is unregistered. The default value is

true.

secret_length: Length

This option defines the length of the random string included in the GET and PUT URLs generated by mod_http_upload. The

minimum length is 8 characters, but it is recommended to choose a larger value. The default value is 40.

service_url

Deprecated.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

mod_http_upload

- 140/450 - Copyright © 2008 - 2024 ProcessOne

https://modules.prosody.im/mod_http_upload_external.html

thumbnail: true | false

This option specifies whether ejabberd should create thumbnails of uploaded images. If a thumbnail is created, a <thumbnail/

> element that contains the download <uri/> and some metadata is returned with the PUT response. The default value is false.

vcard: vCard

A custom vCard of the service that will be displayed by some XMPP clients in Service Discovery. The value of vCard is a YAML

map constructed from an XML representation of vCard. Since the representation has no attributes, the mapping is

straightforward.

Example:

Example:

mod_http_upload_quota

This module adds quota support for mod_http_upload.

This module depends on mod_http_upload.

Available options:

access_hard_quota: AccessName

This option defines which access rule is used to specify the "hard quota" for the matching JIDs. That rule must yield a positive

number for any JID that is supposed to have a quota limit. This is the number of megabytes a corresponding user may upload.

When this threshold is exceeded, ejabberd deletes the oldest files uploaded by that user until their disk usage equals or falls

below the specified soft quota (see access_soft_quota). The default value is hard_upload_quota.

access_soft_quota: AccessName

This option defines which access rule is used to specify the "soft quota" for the matching JIDs. That rule must yield a positive

number of megabytes for any JID that is supposed to have a quota limit. See the description of the access_hard_quota option

for details. The default value is soft_upload_quota.

max_days: Days

If a number larger than zero is specified, any files (and directories) older than this number of days are removed from the

subdirectories of the docroot directory, once per day. The default value is infinity.

Examples:

•

•

This XML representation of vCard:
<vCard xmlns='vcard-temp'>
<FN>Conferences</FN>
<ADR>
<WORK/>
<STREET>Elm Street</STREET>
</ADR>
</vCard>
#
is translated to:
vcard:
fn: Conferences
adr:
-
work: true
street: Elm Street

listen:
-
port: 5443
module: ejabberd_http
tls: true
request_handlers:
/upload: mod_http_upload

modules:
mod_http_upload:
docroot: /ejabberd/upload
put_url: "https://@HOST@:5443/upload"

•

•

•

mod_http_upload_quota

- 141/450 - Copyright © 2008 - 2024 ProcessOne

Please note that it’s not necessary to specify the access_hard_quota and access_soft_quota options in order to use the quota

feature. You can stick to the default names and just specify access rules such as those in this example:

mod_jidprep

This module allows XMPP clients to ask the server to normalize a JID as per the rules specified in RFC 6122: XMPP Address

Format. This might be useful for clients in certain constrained environments, or for testing purposes.

Available options:

access: AccessName

This option defines which access rule will be used to control who is allowed to use this service. The default value is local.

mod_last

This module adds support for XEP-0012: Last Activity. It can be used to discover when a disconnected user last accessed the

server, to know when a connected user was last active on the server, or to query the uptime of the ejabberd server.

Available options:

cache_life_time: timeout()

Same as top-level cache_life_time option, but applied to this module only.

cache_missed: true | false

Same as top-level cache_missed option, but applied to this module only.

cache_size: pos_integer() | infinity

Same as top-level cache_size option, but applied to this module only.

db_type: mnesia | sql

Same as top-level default_db option, but applied to this module only.

use_cache: true | false

Same as top-level use_cache option, but applied to this module only.

mod_legacy_auth

The module implements XEP-0078: Non-SASL Authentication.

Note

This type of authentication was obsoleted in 2008 and you unlikely need this module unless you have something like outdated

Jabber bots.

The module has no options.

mod_mam

This module implements XEP-0313: Message Archive Management and XEP-0441: Message Archive Management Preferences.

Compatible XMPP clients can use it to store their chat history on the server.

shaper_rules:
soft_upload_quota:
1000: all # MiB

hard_upload_quota:
1100: all # MiB

modules:
mod_http_upload: {}
mod_http_upload_quota:
max_days: 100

•

•

•

•

•

•

mod_jidprep

- 142/450 - Copyright © 2008 - 2024 ProcessOne

https://tools.ietf.org/html/rfc6122
https://tools.ietf.org/html/rfc6122
https://xmpp.org/extensions/xep-0012.html
https://xmpp.org/extensions/xep-0078.html
https://xmpp.org/extensions/xep-0313.html
https://xmpp.org/extensions/xep-0441.html

Available options:

access_preferences: AccessName

This access rule defines who is allowed to modify the MAM preferences. The default value is all.

assume_mam_usage: true | false

This option determines how ejabberd’s stream management code (see mod_stream_mgmt) handles unacknowledged messages

when the connection is lost. Usually, such messages are either bounced or resent. However, neither is done for messages that

were stored in the user’s MAM archive if this option is set to true. In this case, ejabberd assumes those messages will be

retrieved from the archive. The default value is false.

cache_life_time: timeout()

Same as top-level cache_life_time option, but applied to this module only.

cache_missed: true | false

Same as top-level cache_missed option, but applied to this module only.

cache_size: pos_integer() | infinity

Same as top-level cache_size option, but applied to this module only.

clear_archive_on_room_destroy: true | false

Whether to destroy message archive of a room (see mod_muc) when it gets destroyed. The default value is true.

compress_xml: true | false

When enabled, new messages added to archives are compressed using a custom compression algorithm. This feature works

only with SQL backends. The default value is false.

db_type: mnesia | sql

Same as top-level default_db option, but applied to this module only.

default: always | never | roster

The option defines default policy for chat history. When always is set every chat message is stored. With roster only chat

history with contacts from user’s roster is stored. And never fully disables chat history. Note that a client can change its policy

via protocol commands. The default value is never.

request_activates_archiving: true | false

If the value is true, no messages are stored for a user until their client issue a MAM request, regardless of the value of the

default option. Once the server received a request, that user’s messages are archived as usual. The default value is false.

use_cache: true | false

Same as top-level use_cache option, but applied to this module only.

user_mucsub_from_muc_archive: true | false

When this option is disabled, for each individual subscriber a separate mucsub message is stored. With this option enabled,

when a user fetches archive virtual mucsub, messages are generated from muc archives. The default value is false.

mod_matrix_gw

added in 24.02

Matrix gateway.

•

•

•

•

•

•

•

•

•

•

•

•

mod_matrix_gw

- 143/450 - Copyright © 2008 - 2024 ProcessOne

https://matrix.org/

Available options:

host: Host

This option defines the Jabber IDs of the service. If the host option is not specified, the Jabber ID will be the hostname of the

virtual host with the prefix "matrix.". The keyword @HOST@ is replaced with the real virtual host name.

key: string()

Value of the matrix signing key, in base64.

key_name: string()

Name of the matrix signing key.

matrix_domain: Domain

Specify a domain in the Matrix federation. The keyword @HOST@ is replaced with the hostname. The default value is

@HOST@.

matrix_id_as_jid: true | false

If set to true, all packets failing to be delivered via an XMPP server-to-server connection will then be routed to the Matrix

gateway by translating a Jabber ID user@matrixdomain.tld to a Matrix user identifier @user:matrixdomain.tld. When set to

false, messages must be explicitly sent to the matrix gateway service Jabber ID to be routed to a remote Matrix server. In this

case, to send a message to Matrix user @user:matrixdomain.tld, the client must send a message to the JID

user%matrixdomain.tld@matrix.myxmppdomain.tld, where matrix.myxmppdomain.tld is the JID of the gateway service as set

by the host option. The default is false.

Example:

mod_metrics

This module sends events to external backend (by now only grapherl is supported). Supported events are:

sm_register_connection

sm_remove_connection

user_send_packet

user_receive_packet

s2s_send_packet

s2s_receive_packet

register_user

remove_user

offline_message

When enabled, every call to these hooks triggers a counter event to be sent to the external backend.

•

•

•

•

•

listen:
-
port: 8448
module: ejabberd_http
tls: true
request_handlers:
"/_matrix": mod_matrix_gw

modules:
mod_matrix_gw:
key_name: "key1"
key: "XXX"
matrix_id_as_jid: true

•

•

•

•

•

•

•

•

•

mod_metrics

- 144/450 - Copyright © 2008 - 2024 ProcessOne

mailto:matrixdomain.tld@matrix.myxmppdomain
https://github.com/processone/grapherl

Available options:

ip: IPv4Address

IPv4 address where the backend is located. The default value is 127.0.0.1.

port: Port

An internet port number at which the backend is listening for incoming connections/packets. The default value is 11111.

mod_mix

added in 16.03 and improved in 19.02

This module is an experimental implementation of XEP-0369: Mediated Information eXchange (MIX). It’s asserted that the MIX

protocol is going to replace the MUC protocol in the future (see mod_muc).

To learn more about how to use that feature, you can refer to our tutorial: Getting started with MIX

The module depends on mod_mam.

Available options:

access_create: AccessName

An access rule to control MIX channels creations. The default value is all.

db_type: mnesia | sql

Same as top-level default_db option, but applied to this module only.

host

Deprecated. Use hosts instead.

hosts: [Host, ...]

This option defines the Jabber IDs of the service. If the hosts option is not specified, the only Jabber ID will be the hostname of

the virtual host with the prefix "mix.". The keyword @HOST@ is replaced with the real virtual host name.

name: Name

A name of the service in the Service Discovery. This will only be displayed by special XMPP clients. The default value is

Channels.

mod_mix_pam

This module implements XEP-0405: Mediated Information eXchange (MIX): Participant Server Requirements. The module is

needed if MIX compatible clients on your server are going to join MIX channels (either on your server or on any remote servers).

Note

mod_mix is not required for this module to work, however, without mod_mix_pam the MIX functionality of your local XMPP

clients will be impaired.

•

•

•

•

•

•

•

mod_mix

- 145/450 - Copyright © 2008 - 2024 ProcessOne

https://xmpp.org/extensions/xep-0369.html
https://xmpp.org/extensions/xep-0405.html

Available options:

cache_life_time: timeout()

Same as top-level cache_life_time option, but applied to this module only.

cache_missed: true | false

Same as top-level cache_missed option, but applied to this module only.

cache_size: pos_integer() | infinity

Same as top-level cache_size option, but applied to this module only.

db_type: mnesia | sql

Same as top-level default_db option, but applied to this module only.

use_cache: true | false

Same as top-level use_cache option, but applied to this module only.

mod_mqtt

This module adds support for the MQTT protocol version 3.1.1 and 5.0. Remember to configure mod_mqtt in modules and listen

sections.

Available options:

access_publish: {TopicFilter: AccessName}

Access rules to restrict access to topics for publishers. By default there are no restrictions.

access_subscribe: {TopicFilter: AccessName}

Access rules to restrict access to topics for subscribers. By default there are no restrictions.

cache_life_time: timeout()

Same as top-level cache_life_time option, but applied to this module only.

cache_missed: true | false

Same as top-level cache_missed option, but applied to this module only.

cache_size: pos_integer() | infinity

Same as top-level cache_size option, but applied to this module only.

db_type: mnesia | sql

Same as top-level default_db option, but applied to this module only.

match_retained_limit: pos_integer() | infinity

The option limits the number of retained messages returned to a client when it subscribes to some topic filter. The default

value is 1000.

max_queue: Size

Maximum queue size for outgoing packets. The default value is 5000.

max_topic_aliases: 0..65535

The maximum number of aliases a client is able to associate with the topics. The default value is 100.

max_topic_depth: Depth

The maximum topic depth, i.e. the number of slashes (/) in the topic. The default value is 8.

queue_type: ram | file

Same as top-level queue_type option, but applied to this module only.

ram_db_type: mnesia

Same as top-level default_ram_db option, but applied to this module only.

session_expiry: timeout()

The option specifies how long to wait for an MQTT session resumption. When 0 is set, the session gets destroyed when the

underlying client connection is closed. The default value is 5 minutes.

use_cache: true | false

Same as top-level use_cache option, but applied to this module only.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

mod_mqtt

- 146/450 - Copyright © 2008 - 2024 ProcessOne

mod_mqtt_bridge

This module adds ability to synchronize local MQTT topics with data on remote servers It can update topics on remote servers

when local user updates local topic, or can subscribe for changes on remote server, and update local copy when remote data is

updated. It is available since ejabberd 23.01.

Available options:

replication_user: JID

Identifier of a user that will be assigned as owner of local changes.

servers: {ServerUrl: {publish: [TopicPairs, subscribe: [TopicPairs], authentication: [AuthInfo]}}]

Declaration of data to share, must contain publish or subscribe or both, and authentication section with username/password

field or certfile pointing to client certificate. Accepted urls can use schema mqtt, mqtts (mqtt with tls), mqtt5, mqtt5s (both to

trigger v5 protocol), ws, wss, ws5, wss5. Certificate authentication can be only used with mqtts, mqtt5s, wss, wss5.

Example:

mod_muc

This module provides support for XEP-0045: Multi-User Chat. Users can discover existing rooms, join or create them. Occupants

of a room can chat in public or have private chats.

The MUC service allows any Jabber ID to register a nickname, so nobody else can use that nickname in any room in the MUC

service. To register a nickname, open the Service Discovery in your XMPP client and register in the MUC service.

It is also possible to register a nickname in a room, so nobody else can use that nickname in that room. If a nick is registered in

the MUC service, that nick cannot be registered in any room, and vice versa: a nick that is registered in a room cannot be

registered at the MUC service.

This module supports clustering and load balancing. One module can be started per cluster node. Rooms are distributed at

creation time on all available MUC module instances. The multi-user chat module is clustered but the rooms themselves are not

clustered nor fault-tolerant: if the node managing a set of rooms goes down, the rooms disappear and they will be recreated on

an available node on first connection attempt.

•

•

modules:
mod_mqtt_bridge:
servers:
"mqtt://server.com":
publish:
"localA": "remoteA" # local changes to 'localA' will be replicated on remote server as 'remoteA'
"topicB": "topicB"

subscribe:
"remoteB": "localB" # changes to 'remoteB' on remote server will be stored as 'localB' on local server

authentication:
certfile: "/etc/ejabberd/mqtt_server.pem"

replication_user: "mqtt@xmpp.server.com"

mod_mqtt_bridge

- 147/450 - Copyright © 2008 - 2024 ProcessOne

https://xmpp.org/extensions/xep-0045.html

Available options:

mod_muc

- 148/450 - Copyright © 2008 - 2024 ProcessOne

access: AccessName

You can specify who is allowed to use the Multi-User Chat service. By default everyone is allowed to use it.

access_admin: AccessName

This option specifies who is allowed to administrate the Multi-User Chat service. The default value is none, which means that

only the room creator can administer their room. The administrators can send a normal message to the service JID, and it will

be shown in all active rooms as a service message. The administrators can send a groupchat message to the JID of an active

room, and the message will be shown in the room as a service message.

access_create: AccessName

To configure who is allowed to create new rooms at the Multi-User Chat service, this option can be used. The default value is

all, which means everyone is allowed to create rooms.

access_mam: AccessName

To configure who is allowed to modify the mam room option. The default value is all, which means everyone is allowed to

modify that option.

access_persistent: AccessName

To configure who is allowed to modify the persistent room option. The default value is all, which means everyone is allowed to

modify that option.

access_register: AccessName

improved in 23.10 This option specifies who is allowed to register nickname within the Multi-User Chat service and rooms.

The default is all for backward compatibility, which means that any user is allowed to register any free nick in the MUC service

and in the rooms.

cleanup_affiliations_on_start: true | false

added in 22.05 Remove affiliations for non-existing local users on startup. The default value is false.

db_type: mnesia | sql

Same as top-level default_db option, but applied to this module only.

•

•

•

•

•

•

•

•

mod_muc

- 149/450 - Copyright © 2008 - 2024 ProcessOne

default_room_options: Options

Define the default room options. Note that the creator of a room can modify the options of his room at any time using an XMPP

client with MUC capability. The Options are:

•

mod_muc

- 150/450 - Copyright © 2008 - 2024 ProcessOne

allow_change_subj: true | false

Allow occupants to change the subject. The default value is true.

allow_private_messages_from_visitors: anyone | moderators | nobody Visitors can send private messages to other

occupants. The default value is anyone which means visitors can send private messages to any occupant.

allow_query_users: true | false

Occupants can send IQ queries to other occupants. The default value is true.

allow_subscription: true | false

Allow users to subscribe to room events as described in Multi-User Chat Subscriptions. The default value is false.

allow_user_invites: true | false

Allow occupants to send invitations. The default value is false.

allow_visitor_nickchange: true | false

Allow visitors to change nickname. The default value is true.

allow_visitor_status: true | false

Allow visitors to send status text in presence updates. If disallowed, the status text is stripped before broadcasting the

presence update to all the room occupants. The default value is true.

allow_voice_requests: true | false

Allow visitors in a moderated room to request voice. The default value is true.

allowpm: anyone | participants | moderators | none

Who can send private messages. The default value is anyone.

anonymous: true | false

The room is anonymous: occupants don’t see the real JIDs of other occupants. Note that the room moderators can always see

the real JIDs of the occupants. The default value is true.

captcha_protected: true | false

When a user tries to join a room where they have no affiliation (not owner, admin or member), the room requires them to fill a

CAPTCHA challenge (see section CAPTCHA in order to accept their join in the room. The default value is false.

description: Room Description

Short description of the room. The default value is an empty string.

enable_hats: true | false

Allow extended roles as defined in XEP-0317 Hats. The default value is false.

lang: Language

Preferred language for the discussions in the room. The language format should conform to RFC 5646. There is no value by

default.

logging: true | false

The public messages are logged using mod_muc_log. The default value is false.

mam: true | false

Enable message archiving. Implies mod_mam is enabled. The default value is false.

max_users: Number

Maximum number of occupants in the room. The default value is 200.

members_by_default: true | false

The occupants that enter the room are participants by default, so they have "voice". The default value is true.

members_only: true | false

Only members of the room can enter. The default value is false.

moderated: true | false

Only occupants with "voice" can send public messages. The default value is true.

password: Password

Password of the room. Implies option password_protected set to true. There is no default value.

password_protected: true | false

The password is required to enter the room. The default value is false.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

mod_muc

- 151/450 - Copyright © 2008 - 2024 ProcessOne

persistent: true | false

The room persists even if the last participant leaves. The default value is false.

presence_broadcast: [moderator | participant | visitor, ...] List of roles for which presence is broadcasted. The list can contain

one or several of: moderator, participant, visitor. The default value is shown in the example below:

Example:

public: true | false

The room is public in the list of the MUC service, so it can be discovered. MUC admins and room participants will see private

rooms in Service Discovery if their XMPP client supports this feature. The default value is true.

public_list: true | false

The list of participants is public, without requiring to enter the room. The default value is true.

pubsub: PubSub Node

XMPP URI of associated Publish/Subscribe node. The default value is an empty string.

title: Room Title

A human-readable title of the room. There is no default value

vcard: vCard

A custom vCard for the room. See the equivalent mod_muc option.The default value is an empty string.

voice_request_min_interval: Number

Minimum interval between voice requests, in seconds. The default value is 1800.

hibernation_timeout: infinity | Seconds

Timeout before hibernating the room process, expressed in seconds. The default value is infinity.

history_size: Size

A small history of the current discussion is sent to users when they enter the room. With this option you can define the number

of history messages to keep and send to users joining the room. The value is a non-negative integer. Setting the value to 0

disables the history feature and, as a result, nothing is kept in memory. The default value is 20. This value affects all rooms on

the service. NOTE: modern XMPP clients rely on Message Archives (XEP-0313), so feel free to disable the history feature if

you’re only using modern clients and have mod_mam module loaded.

host

Deprecated. Use hosts instead.

hosts: [Host, ...]

This option defines the Jabber IDs of the service. If the hosts option is not specified, the only Jabber ID will be the hostname of

the virtual host with the prefix "conference.". The keyword @HOST@ is replaced with the real virtual host name.

max_captcha_whitelist: Number

added in 21.01 This option defines the maximum number of characters that Captcha Whitelist can have when configuring

the room. The default value is infinity.

max_password: Number

added in 21.01 This option defines the maximum number of characters that Password can have when configuring the

room. The default value is infinity.

max_room_desc: Number

This option defines the maximum number of characters that Room Description can have when configuring the room. The

default value is infinity.

max_room_id: Number

This option defines the maximum number of characters that Room ID can have when creating a new room. The default value is

infinity.

max_room_name: Number

This option defines the maximum number of characters that Room Name can have when configuring the room. The default

value is infinity.

•

•

presence_broadcast:
- moderator
- participant
- visitor

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

mod_muc

- 152/450 - Copyright © 2008 - 2024 ProcessOne

max_rooms_discoitems: Number

When there are more rooms than this Number, only the non-empty ones are returned in a Service Discovery query. The default

value is 100.

max_user_conferences: Number

This option defines the maximum number of rooms that any given user can join. The default value is 100. This option is used to

prevent possible abuses. Note that this is a soft limit: some users can sometimes join more conferences in cluster

configurations.

max_users: Number

This option defines at the service level, the maximum number of users allowed per room. It can be lowered in each room

configuration but cannot be increased in individual room configuration. The default value is 200.

max_users_admin_threshold: Number

This option defines the number of service admins or room owners allowed to enter the room when the maximum number of

allowed occupants was reached. The default limit is 5.

max_users_presence: Number

This option defines after how many users in the room, it is considered overcrowded. When a MUC room is considered

overcrowded, presence broadcasts are limited to reduce load, traffic and excessive presence "storm" received by participants.

The default value is 1000.

min_message_interval: Number

This option defines the minimum interval between two messages send by an occupant in seconds. This option is global and

valid for all rooms. A decimal value can be used. When this option is not defined, message rate is not limited. This feature can

be used to protect a MUC service from occupant abuses and limit number of messages that will be broadcasted by the service.

A good value for this minimum message interval is 0.4 second. If an occupant tries to send messages faster, an error is send

back explaining that the message has been discarded and describing the reason why the message is not acceptable.

min_presence_interval: Number

This option defines the minimum of time between presence changes coming from a given occupant in seconds. This option is

global and valid for all rooms. A decimal value can be used. When this option is not defined, no restriction is applied. This

option can be used to protect a MUC service for occupants abuses. If an occupant tries to change its presence more often than

the specified interval, the presence is cached by ejabberd and only the last presence is broadcasted to all occupants in the

room after expiration of the interval delay. Intermediate presence packets are silently discarded. A good value for this option is

4 seconds.

name: string()

The value of the service name. This name is only visible in some clients that support XEP-0030: Service Discovery. The default

is Chatrooms.

preload_rooms: true | false

Whether to load all persistent rooms in memory on startup. If disabled, the room is only loaded on first participant join. The

default is true. It makes sense to disable room preloading when the number of rooms is high: this will improve server startup

time and memory consumption.

queue_type: ram | file

Same as top-level queue_type option, but applied to this module only.

ram_db_type: mnesia | sql

Same as top-level default_ram_db option, but applied to this module only.

regexp_room_id: string()

This option defines the regular expression that a Room ID must satisfy to allow the room creation. The default value is the

empty string.

room_shaper: none | ShaperName

This option defines shaper for the MUC rooms. The default value is none.

user_message_shaper: none | ShaperName

This option defines shaper for the users messages. The default value is none.

user_presence_shaper: none | ShaperName

This option defines shaper for the users presences. The default value is none.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

mod_muc

- 153/450 - Copyright © 2008 - 2024 ProcessOne

https://xmpp.org/extensions/xep-0030.html

vcard: vCard

A custom vCard of the service that will be displayed by some XMPP clients in Service Discovery. The value of vCard is a YAML

map constructed from an XML representation of vCard. Since the representation has no attributes, the mapping is

straightforward.

Example:

mod_muc_admin

This module provides commands to administer local MUC services and their MUC rooms. It also provides simple WebAdmin

pages to view the existing rooms.

This module depends on mod_muc.

Available options:

subscribe_room_many_max_users: Number

added in 22.05 How many users can be subscribed to a room at once using the subscribe_room_many command. The

default value is 50.

mod_muc_log

This module enables optional logging of Multi-User Chat (MUC) public conversations to HTML. Once you enable this module,

users can join a room using a MUC capable XMPP client, and if they have enough privileges, they can request the configuration

form in which they can set the option to enable room logging.

Features:

Room details are added on top of each page: room title, JID, author, subject and configuration.

The room JID in the generated HTML is a link to join the room (using XMPP URI).

Subject and room configuration changes are tracked and displayed.

Joins, leaves, nick changes, kicks, bans and /me are tracked and displayed, including the reason if available.

Generated HTML files are XHTML 1.0 Transitional and CSS compliant.

Timestamps are self-referencing links.

Links on top for quicker navigation: Previous day, Next day, Up.

CSS is used for style definition, and a custom CSS file can be used.

URLs on messages and subjects are converted to hyperlinks.

Timezone used on timestamps is shown on the log files.

A custom link can be added on top of each page.

The module depends on mod_muc.

•

This XML representation of vCard:
<vCard xmlns='vcard-temp'>
<FN>Conferences</FN>
<ADR>
<WORK/>
<STREET>Elm Street</STREET>
</ADR>
</vCard>
#
is translated to:
vcard:
fn: Conferences
adr:
-
work: true
street: Elm Street

•

•

•

•

•

•

•

•

•

•

•

•

mod_muc_admin

- 154/450 - Copyright © 2008 - 2024 ProcessOne

Available options:

access_log: AccessName

This option restricts which occupants are allowed to enable or disable room logging. The default value is muc_admin. NOTE:

for this default setting you need to have an access rule for muc_admin in order to take effect.

cssfile: Path | URL

With this option you can set whether the HTML files should have a custom CSS file or if they need to use the embedded CSS.

Allowed values are either Path to local file or an URL to a remote file. By default a predefined CSS will be embedded into the

HTML page.

dirname: room_jid | room_name

Configure the name of the room directory. If set to room_jid, the room directory name will be the full room JID. Otherwise, the

room directory name will be only the room name, not including the MUC service name. The default value is room_jid.

dirtype: subdirs | plain

The type of the created directories can be specified with this option. If set to subdirs, subdirectories are created for each year

and month. Otherwise, the names of the log files contain the full date, and there are no subdirectories. The default value is

subdirs.

file_format: html | plaintext

Define the format of the log files: html stores in HTML format, plaintext stores in plain text. The default value is html.

file_permissions: {mode: Mode, group: Group}

Define the permissions that must be used when creating the log files: the number of the mode, and the numeric id of the group

that will own the files. The default value is shown in the example below:

Example:

outdir: Path

This option sets the full path to the directory in which the HTML files should be stored. Make sure the ejabberd daemon user

has write access on that directory. The default value is www/muc.

spam_prevention: true | false

If set to true, a special attribute is added to links that prevent their indexation by search engines. The default value is true,

which mean that nofollow attributes will be added to user submitted links.

timezone: local | universal

The time zone for the logs is configurable with this option. If set to local, the local time, as reported to Erlang emulator by the

operating system, will be used. Otherwise, UTC time will be used. The default value is local.

top_link: {URL: Text}

With this option you can customize the link on the top right corner of each log file. The default value is shown in the example

below:

Example:

url: URL

A top level URL where a client can access logs of a particular conference. The conference name is appended to the URL if

dirname option is set to room_name or a conference JID is appended to the URL otherwise. There is no default value.

mod_muc_occupantid

added in 23.10

This module implements XEP-0421: Anonymous unique occupant identifiers for MUCs.

When the module is enabled, the feature is enabled in all semi-anonymous rooms.

•

•

•

•

•

•

file_permissions:
mode: 644
group: 33

•

•

•

•

top_link:
/: Home

•

mod_muc_occupantid

- 155/450 - Copyright © 2008 - 2024 ProcessOne

https://xmpp.org/extensions/xep-0421.html

The module has no options.

mod_muc_rtbl

added in 23.04

This module implement Real-time blocklists for MUC rooms.

It works by observing remote pubsub node conforming with specification described in https://xmppbl.org/.

Available options:

rtbl_node: PubsubNodeName

Name of pubsub node that should be used to track blocked users. The default value is muc_bans_sha256.

rtbl_server: Domain

Domain of xmpp server that serves block list. The default value is xmppbl.org

mod_multicast

This module implements a service for XEP-0033: Extended Stanza Addressing.

Available options:

access: Access

The access rule to restrict who can send packets to the multicast service. Default value: all.

host

Deprecated. Use hosts instead.

hosts: [Host, ...]

This option defines the Jabber IDs of the service. If the hosts option is not specified, the only Jabber ID will be the hostname of

the virtual host with the prefix "multicast.". The keyword @HOST@ is replaced with the real virtual host name. The default

value is multicast.@HOST@.

limits: Sender: Stanza: Number

Specify a list of custom limits which override the default ones defined in XEP-0033. Limits are defined per sender type and

stanza type, where:

sender can be: local or remote.

stanza can be: message or presence.

number can be a positive integer or infinite.

Example:

name

Service name to provide in the Info query to the Service Discovery. Default is "Multicast".

vcard

vCard element to return when queried. Default value is undefined.

Example:

•

•

•

•

•

•

•

•

•

Default values:
local:
message: 100
presence: 100

remote:
message: 20
presence: 20

•

•

Only admins can send packets to multicast service
access_rules:

mod_muc_rtbl

- 156/450 - Copyright © 2008 - 2024 ProcessOne

https://xmppbl.org/
https://xmpp.org/extensions/xep-0033.html

mod_offline

This module implements XEP-0160: Best Practices for Handling Offline Messages and XEP-0013: Flexible Offline Message

Retrieval. This means that all messages sent to an offline user will be stored on the server until that user comes online again.

Thus it is very similar to how email works. A user is considered offline if no session presence priority > 0 are currently open.

Note

ejabberdctl has a command to delete expired messages (see chapter Managing an ejabberd server in online documentation.

multicast:
- allow: admin

If you want to allow all your users:
access_rules:
multicast:
- allow

This allows both admins and remote users to send packets,
but does not allow local users
acl:
allservers:
server_glob: "*"

access_rules:
multicast:
- allow: admin
- deny: local
- allow: allservers

modules:
mod_multicast:

host: multicast.example.org
access: multicast
limits:
local:
message: 40
presence: infinite

remote:
message: 150

mod_offline

- 157/450 - Copyright © 2008 - 2024 ProcessOne

https://xmpp.org/extensions/xep-0160.html
https://xmpp.org/extensions/xep-0013.html
https://xmpp.org/extensions/xep-0013.html

Available options:

access_max_user_messages: AccessName

This option defines which access rule will be enforced to limit the maximum number of offline messages that a user can have

(quota). When a user has too many offline messages, any new messages that they receive are discarded, and a <resource-

constraint/> error is returned to the sender. The default value is max_user_offline_messages.

bounce_groupchat: true | false

This option is use the disable an optimization that avoids bouncing error messages when groupchat messages could not be

stored as offline. It will reduce chat room load, without any drawback in standard use cases. You may change default value

only if you have a custom module which uses offline hook after mod_offline. This option can be useful for both standard MUC

and MucSub, but the bounce is much more likely to happen in the context of MucSub, so it is even more important to have it

on large MucSub services. The default value is false, meaning the optimization is enabled.

cache_life_time: timeout()

Same as top-level cache_life_time option, but applied to this module only.

cache_size: pos_integer() | infinity

Same as top-level cache_size option, but applied to this module only.

db_type: mnesia | sql

Same as top-level default_db option, but applied to this module only.

store_empty_body: true | false | unless_chat_state

Whether or not to store messages that lack a <body/> element. The default value is unless_chat_state, which tells ejabberd to

store messages even if they lack the <body/> element, unless they only contain a chat state notification (as defined in

XEP-0085: Chat State Notifications.

store_groupchat: true | false

Whether or not to store groupchat messages. The default value is false.

use_cache: true | false

Same as top-level use_cache option, but applied to this module only.

use_mam_for_storage: true | false

This is an experimental option. Enabling this option, mod_offline uses the mod_mam archive table instead of its own spool table

to retrieve the messages received when the user was offline. This allows client developers to slowly drop XEP-0160 and rely on

XEP-0313 instead. It also further reduces the storage required when you enable MucSub. Enabling this option has a known

drawback for the moment: most of flexible message retrieval queries don’t work (those that allow retrieval/deletion of

messages by id), but this specification is not widely used. The default value is false to keep former behaviour as default.

Examples:

This example allows power users to have as much as 5000 offline messages, administrators up to 2000, and all the other users up

to 100:

•

•

•

•

•

•

•

•

•

acl:
admin:
user:
- admin1@localhost
- admin2@example.org

poweruser:
user:
- bob@example.org
- jane@example.org

shaper_rules:
max_user_offline_messages:
- 5000: poweruser
- 2000: admin
- 100

modules:
...
mod_offline:
access_max_user_messages: max_user_offline_messages

...

mod_offline

- 158/450 - Copyright © 2008 - 2024 ProcessOne

https://xmpp.org/extensions/xep-0085.html

mod_ping

This module implements support for XEP-0199: XMPP Ping and periodic keepalives. When this module is enabled ejabberd

responds correctly to ping requests, as defined by the protocol.

Available options:

ping_ack_timeout: timeout()

How long to wait before deeming that a client has not answered a given server ping request. NOTE: when mod_stream_mgmt

is loaded and stream management is enabled by a client, this value is ignored, and the ack_timeout applies instead. The default

value is undefined.

ping_interval: timeout()

How often to send pings to connected clients, if option send_pings is set to true. If a client connection does not send or receive

any stanza within this interval, a ping request is sent to the client. The default value is 1 minute.

send_pings: true | false

If this option is set to true, the server sends pings to connected clients that are not active in a given interval defined in

ping_interval option. This is useful to keep client connections alive or checking availability. The default value is false.

timeout_action: none | kill

What to do when a client does not answer to a server ping request in less than period defined in ping_ack_timeout option: kill

means destroying the underlying connection, none means to do nothing. NOTE: when mod_stream_mgmt is loaded and stream

management is enabled by a client, killing the client connection doesn’t mean killing the client session - the session will be

kept alive in order to give the client a chance to resume it. The default value is none.

Example:

mod_pres_counter

This module detects flood/spam in presence subscriptions traffic. If a user sends or receives more of those stanzas in a given time

interval, the exceeding stanzas are silently dropped, and a warning is logged.

Available options:

count: Number

The number of subscription presence stanzas (subscribe, unsubscribe, subscribed, unsubscribed) allowed for any direction

(input or output) per time defined in interval option. Please note that two users subscribing to each other usually generate 4

stanzas, so the recommended value is 4 or more. The default value is 5.

interval: timeout()

The time interval. The default value is 1 minute.

Example:

•

•

•

•

modules:
mod_ping:
send_pings: true
ping_interval: 4 min
timeout_action: kill

•

•

modules:
mod_pres_counter:
count: 5
interval: 30 secs

mod_ping

- 159/450 - Copyright © 2008 - 2024 ProcessOne

https://xmpp.org/extensions/xep-0199.html

mod_privacy

This module implements XEP-0016: Privacy Lists.

Note

Nowadays modern XMPP clients rely on XEP-0191: Blocking Command which is implemented by mod_blocking module. However,

you still need mod_privacy loaded in order for mod_blocking to work.

Available options:

cache_life_time: timeout()

Same as top-level cache_life_time option, but applied to this module only.

cache_missed: true | false

Same as top-level cache_missed option, but applied to this module only.

cache_size: pos_integer() | infinity

Same as top-level cache_size option, but applied to this module only.

db_type: mnesia | sql

Same as top-level default_db option, but applied to this module only.

use_cache: true | false

Same as top-level use_cache option, but applied to this module only.

mod_private

This module adds support for XEP-0049: Private XML Storage.

Using this method, XMPP entities can store private data on the server, retrieve it whenever necessary and share it between

multiple connected clients of the same user. The data stored might be anything, as long as it is a valid XML. One typical usage is

storing a bookmark of all user’s conferences (XEP-0048: Bookmarks).

It also implements the bookmark conversion described in XEP-0402: PEP Native Bookmarks, see the command

bookmarks_to_pep API.

Available options:

cache_life_time: timeout()

Same as top-level cache_life_time option, but applied to this module only.

cache_missed: true | false

Same as top-level cache_missed option, but applied to this module only.

cache_size: pos_integer() | infinity

Same as top-level cache_size option, but applied to this module only.

db_type: mnesia | sql

Same as top-level default_db option, but applied to this module only.

use_cache: true | false

Same as top-level use_cache option, but applied to this module only.

mod_privilege 🟤

improved in 24.10

This module is an implementation of XEP-0356: Privileged Entity. This extension allows components to have privileged access to

other entity data (send messages on behalf of the server or on behalf of a user, get/set user roster, access presence information,

etc.). This may be used to write powerful external components, for example implementing an external PEP or MAM service.

•

•

•

•

•

•

•

•

•

•

mod_privacy

- 160/450 - Copyright © 2008 - 2024 ProcessOne

https://xmpp.org/extensions/xep-0016.html
https://xmpp.org/extensions/xep-0191.html
https://xmpp.org/extensions/xep-0049.html
https://xmpp.org/extensions/xep-0048.html
https://xmpp.org/extensions/xep-0402.html
https://xmpp.org/extensions/xep-0356.html
https://xmpp.org/extensions/xep-0163.html
https://xmpp.org/extensions/xep-0313.html

By default a component does not have any privileged access. It is worth noting that the permissions grant access to the

component to a specific data type for all users of the virtual host on which mod_privilege is loaded.

Make sure you have a listener configured to connect your component. Check the section about listening ports for more

information.

Warning

Security issue: Privileged access gives components access to sensitive data, so permission should be granted carefully, only if you

trust a component.

Note

This module is complementary to mod_delegation, but can also be used separately.

Available options:

iq: {Namespace: Options}

This option defines namespaces and their IQ permissions. By default no permissions are given. The Options are:

both: AccessName

Allows sending IQ stanzas of type get and set. The default value is none.

get: AccessName

Allows sending IQ stanzas of type get. The default value is none.

set: AccessName

Allows sending IQ stanzas of type set. The default value is none.

message: Options

This option defines permissions for messages. By default no permissions are given. The Options are:

outgoing: AccessName

The option defines an access rule for sending outgoing messages by the component. The default value is none.

presence: Options

This option defines permissions for presences. By default no permissions are given. The Options are:

managed_entity: AccessName

An access rule that gives permissions to the component to receive server presences. The default value is none.

roster: AccessName

An access rule that gives permissions to the component to receive the presence of both the users and the contacts in their

roster. The default value is none.

roster: Options

This option defines roster permissions. By default no permissions are given. The Options are:

both: AccessName

Sets read/write access to a user’s roster. The default value is none.

get: AccessName

Sets read access to a user’s roster. The default value is none.

set: AccessName

Sets write access to a user’s roster. The default value is none.

Example:

•

•

•

•

•

•

•

•

•

•

•

•

•

modules:
mod_privilege:
iq:
http://jabber.org/protocol/pubsub:
get: all

roster:
get: all

presence:
managed_entity: all

mod_privilege 🟤

- 161/450 - Copyright © 2008 - 2024 ProcessOne

mod_proxy65

This module implements XEP-0065: SOCKS5 Bytestreams. It allows ejabberd to act as a file transfer proxy between two XMPP

clients.

Available options:

access: AccessName

Defines an access rule for file transfer initiators. The default value is all. You may want to restrict access to the users of your

server only, in order to avoid abusing your proxy by the users of remote servers.

auth_type: anonymous | plain

SOCKS5 authentication type. The default value is anonymous. If set to plain, ejabberd will use authentication backend as it

would for SASL PLAIN.

host

Deprecated. Use hosts instead.

hostname: Host

Defines a hostname offered by the proxy when establishing a session with clients. This is useful when you run the proxy behind

a NAT. The keyword @HOST@ is replaced with the virtual host name. The default is to use the value of ip option. Examples:

proxy.mydomain.org, 200.150.100.50.

hosts: [Host, ...]

This option defines the Jabber IDs of the service. If the hosts option is not specified, the only Jabber ID will be the hostname of

the virtual host with the prefix "proxy.". The keyword @HOST@ is replaced with the real virtual host name.

ip: IPAddress

This option specifies which network interface to listen for. The default value is an IP address of the service’s DNS name, or, if

fails, 127.0.0.1.

max_connections: pos_integer() | infinity

Maximum number of active connections per file transfer initiator. The default value is infinity.

name: Name

The value of the service name. This name is only visible in some clients that support XEP-0030: Service Discovery. The default

is "SOCKS5 Bytestreams".

port: 1..65535

A port number to listen for incoming connections. The default value is 7777.

ram_db_type: mnesia | redis | sql

Same as top-level default_ram_db option, but applied to this module only.

recbuf: Size

A size of the buffer for incoming packets. If you define a shaper, set the value of this option to the size of the shaper in order to

avoid traffic spikes in file transfers. The default value is 65536 bytes.

shaper: Shaper

This option defines a shaper for the file transfer peers. A shaper with the maximum bandwidth will be selected. The default is

none, i.e. no shaper.

sndbuf: Size

A size of the buffer for outgoing packets. If you define a shaper, set the value of this option to the size of the shaper in order to

avoid traffic spikes in file transfers. The default value is 65536 bytes.

vcard: vCard

A custom vCard of the service that will be displayed by some XMPP clients in Service Discovery. The value of vCard is a YAML

map constructed from an XML representation of vCard. Since the representation has no attributes, the mapping is

straightforward.

message:
outgoing: all

•

•

•

•

•

•

•

•

•

•

•

•

•

•

mod_proxy65

- 162/450 - Copyright © 2008 - 2024 ProcessOne

https://xmpp.org/extensions/xep-0065.html
https://xmpp.org/extensions/xep-0030.html

Example:

mod_pubsub

This module offers a service for XEP-0060: Publish-Subscribe. The functionality in mod_pubsub can be extended using plugins.

The plugin that implements PEP (XEP-0163: Personal Eventing via Pubsub) is enabled in the default ejabberd configuration file,

and it requires mod_caps.

acl:
admin:
user: admin@example.org

proxy_users:
server: example.org

access_rules:
proxy65_access:
allow: proxy_users

shaper_rules:
proxy65_shaper:
none: admin

proxyrate: proxy_users

shaper:
proxyrate: 10240

modules:
mod_proxy65:
host: proxy1.example.org
name: "File Transfer Proxy"
ip: 200.150.100.1
port: 7778
max_connections: 5
access: proxy65_access
shaper: proxy65_shaper
recbuf: 10240
sndbuf: 10240

mod_pubsub

- 163/450 - Copyright © 2008 - 2024 ProcessOne

https://xmpp.org/extensions/xep-0060.html
https://xmpp.org/extensions/xep-0163.html

Available options:

mod_pubsub

- 164/450 - Copyright © 2008 - 2024 ProcessOne

access_createnode: AccessName

This option restricts which users are allowed to create pubsub nodes using acl and access. By default any account in the local

ejabberd server is allowed to create pubsub nodes. The default value is: all.

db_type: mnesia | sql

Same as top-level default_db option, but applied to this module only.

default_node_config: List of Key:Value

To override default node configuration, regardless of node plugin. Value is a list of key-value definition. Node configuration still

uses default configuration defined by node plugin, and overrides any items by value defined in this configurable list.

force_node_config: List of Node and the list of its Key:Value

Define the configuration for given nodes. The default value is: [].

Example:

host

Deprecated. Use hosts instead.

hosts: [Host, ...]

This option defines the Jabber IDs of the service. If the hosts option is not specified, the only Jabber ID will be the hostname of

the virtual host with the prefix "pubsub.". The keyword @HOST@ is replaced with the real virtual host name.

ignore_pep_from_offline: false | true

To specify whether or not we should get last published PEP items from users in our roster which are offline when we connect.

Value is true or false. If not defined, pubsub assumes true so we only get last items of online contacts.

last_item_cache: false | true

To specify whether or not pubsub should cache last items. Value is true or false. If not defined, pubsub does not cache last

items. On systems with not so many nodes, caching last items speeds up pubsub and allows you to raise the user connection

rate. The cost is memory usage, as every item is stored in memory.

max_item_expire_node: timeout() | infinity

added in 21.12 Specify the maximum item epiry time. Default value is: infinity.

max_items_node: non_neg_integer() | infinity

Define the maximum number of items that can be stored in a node. Default value is: 1000.

max_nodes_discoitems: pos_integer() | infinity

The maximum number of nodes to return in a discoitem response. The default value is: 100.

max_subscriptions_node: MaxSubs

Define the maximum number of subscriptions managed by a node. Default value is no limitation: undefined.

name: Name

The value of the service name. This name is only visible in some clients that support XEP-0030: Service Discovery. The default

is vCard User Search.

nodetree: Nodetree

To specify which nodetree to use. If not defined, the default pubsub nodetree is used: tree. Only one nodetree can be used per

host, and is shared by all node plugins.

tree nodetree store node configuration and relations on the database. flat nodes are stored without any relationship, and

hometree nodes can have child nodes.

virtual nodetree does not store nodes on database. This saves resources on systems with tons of nodes. If using the virtual

nodetree, you can only enable those node plugins: [flat, pep] or [flat]; any other plugins configuration will not work. Also, all

nodes will have the default configuration, and this can not be changed. Using virtual nodetree requires to start from a clean

database, it will not work if you used the default tree nodetree before.

pep_mapping: List of Key:Value

In this option you can provide a list of key-value to choose defined node plugins on given PEP namespace. The following

example will use node_tune instead of node_pep for every PEP node with the tune namespace:

•

•

•

•

force_node_config:
Avoid buggy clients to make their bookmarks public
storage:bookmarks:
access_model: whitelist

•

•

•

•

•

•

•

•

•

•

•

•

•

mod_pubsub

- 165/450 - Copyright © 2008 - 2024 ProcessOne

https://xmpp.org/extensions/xep-0030.html

Example:

plugins: [Plugin, ...]

To specify which pubsub node plugins to use. The first one in the list is used by default. If this option is not defined, the default

plugins list is: [flat]. PubSub clients can define which plugin to use when creating a node: add type='plugin-name' attribute to

the create stanza element.

flat plugin handles the default behaviour and follows standard XEP-0060 implementation.

pep plugin adds extension to handle Personal Eventing Protocol (XEP-0163) to the PubSub engine. When enabled, PEP is

handled automatically.

vcard: vCard

A custom vCard of the server that will be displayed by some XMPP clients in Service Discovery. The value of vCard is a YAML

map constructed from an XML representation of vCard. Since the representation has no attributes, the mapping is

straightforward.

Example:

Examples:

Example of configuration that uses flat nodes as default, and allows use of flat, hometree and pep nodes:

Using relational database requires using mod_pubsub with db_type sql. Only flat, hometree and pep plugins supports SQL. The

following example shows previous configuration with SQL usage:

modules:
...
mod_pubsub:
pep_mapping:
http://jabber.org/protocol/tune: tune

...

•

•

•

•

This XML representation of vCard:
<vCard xmlns='vcard-temp'>
<FN>Conferences</FN>
<ADR>
<WORK/>
<STREET>Elm Street</STREET>
</ADR>
</vCard>
#
is translated to:
vcard:
fn: Conferences
adr:
-
work: true
street: Elm Street

modules:
mod_pubsub:
access_createnode: pubsub_createnode
max_subscriptions_node: 100
default_node_config:
notification_type: normal
notify_retract: false
max_items: 4

plugins:
- flat
- pep

modules:
mod_pubsub:
db_type: sql
access_createnode: pubsub_createnode
ignore_pep_from_offline: true
last_item_cache: false
plugins:
- flat
- pep

mod_pubsub

- 166/450 - Copyright © 2008 - 2024 ProcessOne

mod_push

This module implements the XMPP server’s part of the push notification solution specified in XEP-0357: Push Notifications. It

does not generate, for example, APNS or FCM notifications directly. Instead, it’s designed to work with so-called "app servers"

operated by third-party vendors of mobile apps. Those app servers will usually trigger notification delivery to the user’s mobile

device using platform-dependent backend services such as FCM or APNS.

Available options:

cache_life_time: timeout()

Same as top-level cache_life_time option, but applied to this module only.

cache_missed: true | false

Same as top-level cache_missed option, but applied to this module only.

cache_size: pos_integer() | infinity

Same as top-level cache_size option, but applied to this module only.

db_type: mnesia | sql

Same as top-level default_db option, but applied to this module only.

include_body: true | false | Text

If this option is set to true, the message text is included with push notifications generated for incoming messages with a body.

The option can instead be set to a static Text, in which case the specified text will be included in place of the actual message

body. This can be useful to signal the app server whether the notification was triggered by a message with body (as opposed to

other types of traffic) without leaking actual message contents. The default value is "New message".

include_sender: true | false

If this option is set to true, the sender’s JID is included with push notifications generated for incoming messages with a body.

The default value is false.

notify_on: messages | all

added in 23.10 If this option is set to messages, notifications are generated only for actual chat messages with a body text

(or some encrypted payload). If it’s set to all, any kind of XMPP stanza will trigger a notification. If unsure, it’s strongly

recommended to stick to all, which is the default value.

use_cache: true | false

Same as top-level use_cache option, but applied to this module only.

mod_push_keepalive

This module tries to keep the stream management session (see mod_stream_mgmt) of a disconnected mobile client alive if the

client enabled push notifications for that session. However, the normal session resumption timeout is restored once a push

notification is issued, so the session will be closed if the client doesn’t respond to push notifications.

The module depends on mod_push.

Available options:

resume_timeout: timeout()

This option specifies the period of time until the session of a disconnected push client times out. This timeout is only in effect

as long as no push notification is issued. Once that happened, the resumption timeout configured for mod_stream_mgmt is

restored. The default value is 72 hours.

wake_on_start: true | false

If this option is set to true, notifications are generated for all registered push clients during server startup. This option should

not be enabled on servers with many push clients as it can generate significant load on the involved push services and the

server itself. The default value is false.

wake_on_timeout: true | false

If this option is set to true, a notification is generated shortly before the session would time out as per the resume_timeout

option. The default value is true.

•

•

•

•

•

•

•

•

•

•

•

mod_push

- 167/450 - Copyright © 2008 - 2024 ProcessOne

https://xmpp.org/extensions/xep-0357.html

mod_register

This module adds support for XEP-0077: In-Band Registration. This protocol enables end users to use an XMPP client to:

Register a new account on the server.

Change the password from an existing account on the server.

Delete an existing account on the server.

This module reads also the top-level registration_timeout option defined globally for the server, so please check that option

documentation too.

Available options:

access: AccessName

Specify rules to restrict what usernames can be registered. If a rule returns deny on the requested username, registration of

that user name is denied. There are no restrictions by default. If AccessName is none, then registering new accounts using In-

Band Registration is disabled and the corresponding stream feature is not announced to clients.

access_from: AccessName

By default, ejabberd doesn’t allow the client to register new accounts from s2s or existing c2s sessions. You can change it by

defining access rule in this option. Use with care: allowing registration from s2s leads to uncontrolled massive accounts

creation by rogue users.

access_remove: AccessName

Specify rules to restrict access for user unregistration. By default any user is able to unregister their account.

allow_modules: all | [Module, ...]

added in 21.12 List of modules that can register accounts, or all. The default value is all, which is equivalent to something

like [mod_register, mod_register_web].

captcha_protected: true | false

Protect registrations with CAPTCHA. The default is false.

ip_access: AccessName

Define rules to allow or deny account registration depending on the IP address of the XMPP client. The AccessName should be

of type ip. The default value is all.

password_strength: Entropy

This option sets the minimum Shannon entropy for passwords. The value Entropy is a number of bits of entropy. The

recommended minimum is 32 bits. The default is 0, i.e. no checks are performed.

redirect_url: URL

This option enables registration redirection as described in XEP-0077: In-Band Registration: Redirection.

registration_watchers: [JID, ...]

This option defines a list of JIDs which will be notified each time a new account is registered.

welcome_message: {subject: Subject, body: Body}

Set a welcome message that is sent to each newly registered account. The message will have subject Subject and text Body.

Example:

•

•

•

•

•

•

•

•

•

•

•

•

•

modules:
mod_register:
welcome_message:
subject: "Welcome!"
body: |-
Hi!
Welcome to this XMPP server

mod_register

- 168/450 - Copyright © 2008 - 2024 ProcessOne

https://xmpp.org/extensions/xep-0077.html
https://en.wikipedia.org/wiki/Entropy_(information_theory)
https://xmpp.org/extensions/xep-0077.html#redirect

mod_register_web

This module provides a web page where users can:

Register a new account on the server.

Change the password from an existing account on the server.

Unregister an existing account on the server.

This module supports CAPTCHA to register a new account. To enable this feature, configure the top-level captcha_cmd and top-

level captcha_url options.

As an example usage, the users of the host localhost can visit the page: https://localhost:5280/register/ It is important to include

the last / character in the URL, otherwise the subpages URL will be incorrect.

This module is enabled in listen → ejabberd_http → request_handlers, no need to enable in modules. The module depends on

mod_register where all the configuration is performed.

The module has no options.

Example:

mod_roster

This module implements roster management as defined in RFC6121 Section 2. The module also adds support for XEP-0237:

Roster Versioning.

•

•

•

listen:
-
port: 5280
module: ejabberd_http
request_handlers:
/register: mod_register_web

modules:
mod_register: {}

mod_register_web

- 169/450 - Copyright © 2008 - 2024 ProcessOne

https://tools.ietf.org/html/rfc6121#section-2
https://xmpp.org/extensions/xep-0237.html
https://xmpp.org/extensions/xep-0237.html

Available options:

access: AccessName

This option can be configured to specify rules to restrict roster management. If the rule returns deny on the requested user

name, that user cannot modify their personal roster, i.e. they cannot add/remove/modify contacts or send presence

subscriptions. The default value is all, i.e. no restrictions.

cache_life_time: timeout()

Same as top-level cache_life_time option, but applied to this module only.

cache_missed: true | false

Same as top-level cache_missed option, but applied to this module only.

cache_size: pos_integer() | infinity

Same as top-level cache_size option, but applied to this module only.

db_type: mnesia | sql

Same as top-level default_db option, but applied to this module only.

store_current_id: true | false

If this option is set to true, the current roster version number is stored on the database. If set to false, the roster version

number is calculated on the fly each time. Enabling this option reduces the load for both ejabberd and the database. This

option does not affect the client in any way. This option is only useful if option versioning is set to true. The default value is

false. IMPORTANT: if you use mod_shared_roster or mod_shared_roster_ldap, you must set the value of the option to false.

use_cache: true | false

Same as top-level use_cache option, but applied to this module only.

versioning: true | false

Enables/disables Roster Versioning. The default value is false.

Example:

mod_s2s_bidi 🟤

added in 24.10

The module adds support for XEP-0288: Bidirectional Server-to-Server Connections that allows using single s2s connection to

communicate in both directions.

The module has no options.

Example:

mod_s2s_dialback

The module adds support for XEP-0220: Server Dialback to provide server identity verification based on DNS.

Warning

DNS-based verification is vulnerable to DNS cache poisoning, so modern servers rely on verification based on PKIX certificates.

Thus this module is only recommended for backward compatibility with servers running outdated software or non-TLS servers, or

those with invalid certificates (as long as you accept the risks, e.g. you assume that the remote server has an invalid certificate

due to poor administration and not because it’s compromised).

•

•

•

•

•

•

•

•

modules:
mod_roster:
versioning: true
store_current_id: false

modules:
mod_s2s_bidi: {}

mod_s2s_bidi 🟤

- 170/450 - Copyright © 2008 - 2024 ProcessOne

https://xmpp.org/extensions/xep-0288.html
https://xmpp.org/extensions/xep-0220.html
https://en.wikipedia.org/wiki/DNS_spoofing

Available options:

access: AccessName

An access rule that can be used to restrict dialback for some servers. The default value is all.

Example:

mod_scram_upgrade 🟤

added in 24.10

The module adds support for XEP-0480: SASL Upgrade Tasks that allows users to upgrade passwords to more secure

representation.

Available options:

offered_upgrades: list(sha256, sha512)

List with upgrade types that should be offered

Example:

mod_service_log

This module forwards copies of all stanzas to remote XMPP servers or components. Every stanza is encapsulated into

<forwarded/> element as described in XEP-0297: Stanza Forwarding.

Available options:

loggers: [Domain, ...]

A list of servers or connected components to which stanzas will be forwarded.

Example:

mod_shared_roster

This module enables you to create shared roster groups: groups of accounts that can see members from (other) groups in their

rosters.

The big advantages of this feature are that end users do not need to manually add all users to their rosters, and that they cannot

permanently delete users from the shared roster groups. A shared roster group can have members from any XMPP server, but

the presence will only be available from and to members of the same virtual host where the group is created. It still allows the

users to have / add their own contacts, as it does not replace the standard roster. Instead, the shared roster contacts are merged

to the relevant users at retrieval time. The standard user rosters thus stay unmodified.

•

modules:
mod_s2s_dialback:
access:
allow:
server: legacy.domain.tld
server: invalid-cert.example.org

deny: all

•

modules:
mod_scram_upgrade:
offered_upgrades:
- sha256
- sha512

•

modules:
mod_service_log:
loggers:
- xmpp-server.tld
- component.domain.tld

mod_scram_upgrade 🟤

- 171/450 - Copyright © 2008 - 2024 ProcessOne

https://xmpp.org/extensions/xep-0480.html
https://xmpp.org/extensions/xep-0297.html

Shared roster groups can be edited via the Web Admin, and some API commands called srg_*. Each group has a unique name

and those parameters:

Label: Used in the rosters where this group is displayed.

Description: of the group, which has no effect.

Members: A list of JIDs of group members, entered one per line in the Web Admin. The special member directive @all@

represents all the registered users in the virtual host; which is only recommended for a small server with just a few hundred

users. The special member directive @online@ represents the online users in the virtual host. With those two directives, the

actual list of members in those shared rosters is generated dynamically at retrieval time.

Displayed: A list of groups that will be in the rosters of this group’s members. A group of other vhost can be identified with

groupid@vhost.

This module depends on mod_roster. If not enabled, roster queries will return 503 errors.

Available options:

cache_life_time: timeout()

Same as top-level cache_life_time option, but applied to this module only.

cache_missed: true | false

Same as top-level cache_missed option, but applied to this module only.

cache_size: pos_integer() | infinity

Same as top-level cache_size option, but applied to this module only.

db_type: mnesia | sql

Same as top-level default_db option, but applied to this module only.

use_cache: true | false

Same as top-level use_cache option, but applied to this module only.

Examples:

Take the case of a computer club that wants all its members seeing each other in their rosters. To achieve this, they need to

create a shared roster group similar to this one:

In another case we have a company which has three divisions: Management, Marketing and Sales. All group members should see

all other members in their rosters. Additionally, all managers should have all marketing and sales people in their roster.

Simultaneously, all marketeers and the whole sales team should see all managers. This scenario can be achieved by creating

shared roster groups as shown in the following lists:

•

•

•

•

•

•

•

•

•

Name: club_members
Label: Club Members
Description: Members from the computer club
Members: member1@example.org, member2@example.org, member3@example.org
Displayed Groups: club_members

First list:
Name: management
Label: Management
Description: Management
Members: manager1@example.org, manager2@example.org
Displayed: management, marketing, sales

Second list:
Name: marketing
Label: Marketing
Description: Marketing
Members: marketeer1@example.org, marketeer2@example.org, marketeer3@example.org
Displayed: management, marketing

Third list:
Name: sales
Label: Sales
Description: Sales
Members: salesman1@example.org, salesman2@example.org, salesman3@example.org
Displayed: management, sales

mod_shared_roster

- 172/450 - Copyright © 2008 - 2024 ProcessOne

mod_shared_roster_ldap

This module lets the server administrator automatically populate users' rosters (contact lists) with entries based on users and

groups defined in an LDAP-based directory.

Note

mod_shared_roster_ldap depends on mod_roster being enabled. Roster queries will return 503 errors if mod_roster is not

enabled.

The module accepts many configuration options. Some of them, if unspecified, default to the values specified for the top level of

configuration. This lets you avoid specifying, for example, the bind password in multiple places.

Filters: ldap_rfilter, ldap_ufilter, ldap_gfilter, ldap_filter. These options specify LDAP filters used to query for shared roster

information. All of them are run against the ldap_base.

Attributes: ldap_groupattr, ldap_groupdesc, ldap_memberattr, ldap_userdesc, ldap_useruid. These options specify the names of

the attributes which hold interesting data in the entries returned by running filters specified with the filter options.

Control parameters: ldap_auth_check, ldap_group_cache_validity, ldap_memberattr_format, ldap_memberattr_format_re,

ldap_user_cache_validity. These parameters control the behaviour of the module.

Connection parameters: The module also accepts the connection parameters, all of which default to the top-level parameter of

the same name, if unspecified. See LDAP Connection section for more information about them.

Check also the Configuration examples section to get details about retrieving the roster, and configuration examples including

Flat DIT and Deep DIT.

•

•

•

•

mod_shared_roster_ldap

- 173/450 - Copyright © 2008 - 2024 ProcessOne

Available options:

mod_shared_roster_ldap

- 174/450 - Copyright © 2008 - 2024 ProcessOne

cache_life_time

Same as top-level cache_life_time option, but applied to this module only.

cache_missed

Same as top-level cache_missed option, but applied to this module only.

cache_size

Same as top-level cache_size option, but applied to this module only.

ldap_auth_check: true | false

Whether the module should check (via the ejabberd authentication subsystem) for existence of each user in the shared LDAP

roster. Set to false if you want to disable the check. Default value is true.

ldap_backups

Same as top-level ldap_backups option, but applied to this module only.

ldap_base

Same as top-level ldap_base option, but applied to this module only.

ldap_deref_aliases

Same as top-level ldap_deref_aliases option, but applied to this module only.

ldap_encrypt

Same as top-level ldap_encrypt option, but applied to this module only.

ldap_filter

Additional filter which is AND-ed together with "User Filter" and "Group Filter". For more information check the LDAP Filters

section.

ldap_gfilter

"Group Filter", used when retrieving human-readable name (a.k.a. "Display Name") and the members of a group. See also the

parameters ldap_groupattr, ldap_groupdesc and ldap_memberattr. If unspecified, defaults to the top-level parameter of the

same name. If that one also is unspecified, then the filter is constructed exactly like "User Filter".

ldap_groupattr

The name of the attribute that holds the group name, and that is used to differentiate between them. Retrieved from results of

the "Roster Filter" and "Group Filter". Defaults to cn.

ldap_groupdesc

The name of the attribute which holds the human-readable group name in the objects you use to represent groups. Retrieved

from results of the "Group Filter". Defaults to whatever ldap_groupattr is set.

ldap_memberattr

The name of the attribute which holds the IDs of the members of a group. Retrieved from results of the "Group Filter". Defaults

to memberUid. The name of the attribute differs depending on the objectClass you use for your group objects, for example:

posixGroup → memberUid; groupOfNames → member; groupOfUniqueNames → uniqueMember.

ldap_memberattr_format

A globbing format for extracting user ID from the value of the attribute named by ldap_memberattr. Defaults to %u, which

means that the whole value is the member ID. If you change it to something different, you may also need to specify the User

and Group Filters manually; see section Filters.

ldap_memberattr_format_re

A regex for extracting user ID from the value of the attribute named by ldap_memberattr. Check the LDAP Control Parameters

section.

ldap_password

Same as top-level ldap_password option, but applied to this module only.

ldap_port

Same as top-level ldap_port option, but applied to this module only.

ldap_rfilter

So called "Roster Filter". Used to find names of all "shared roster" groups. See also the ldap_groupattr parameter. If

unspecified, defaults to the top-level parameter of the same name. You must specify it in some place in the configuration, there

is no default.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

mod_shared_roster_ldap

- 175/450 - Copyright © 2008 - 2024 ProcessOne

ldap_rootdn

Same as top-level ldap_rootdn option, but applied to this module only.

ldap_servers

Same as top-level ldap_servers option, but applied to this module only.

ldap_tls_cacertfile

Same as top-level ldap_tls_cacertfile option, but applied to this module only.

ldap_tls_certfile

Same as top-level ldap_tls_certfile option, but applied to this module only.

ldap_tls_depth

Same as top-level ldap_tls_depth option, but applied to this module only.

ldap_tls_verify

Same as top-level ldap_tls_verify option, but applied to this module only.

ldap_ufilter

"User Filter", used for retrieving the human-readable name of roster entries (usually full names of people in the roster). See

also the parameters ldap_userdesc and ldap_useruid. For more information check the LDAP Filters section.

ldap_uids

Same as top-level ldap_uids option, but applied to this module only.

ldap_userdesc

The name of the attribute which holds the human-readable user name. Retrieved from results of the "User Filter". Defaults to

cn.

ldap_userjidattr

The name of the attribute which is used to map user id to XMPP jid. If not specified (and that is default value of this option),

user jid will be created from user id and this module host.

ldap_useruid

The name of the attribute which holds the ID of a roster item. Value of this attribute in the roster item objects needs to match

the ID retrieved from the ldap_memberattr attribute of a group object. Retrieved from results of the "User Filter". Defaults to

cn.

use_cache

Same as top-level use_cache option, but applied to this module only.

mod_sic

This module adds support for XEP-0279: Server IP Check. This protocol enables a client to discover its external IP address.

Warning

The protocol extension is deferred and seems like there are no clients supporting it, so using this module is not recommended

and, furthermore, the module might be removed in the future.

The module has no options.

mod_sip

This module adds SIP proxy/registrar support for the corresponding virtual host.

Note

It is not enough to just load this module. You should also configure listeners and DNS records properly. For details see the

section about the ejabberd_sip listen module in the ejabberd Documentation.

•

•

•

•

•

•

•

•

•

•

•

•

mod_sic

- 176/450 - Copyright © 2008 - 2024 ProcessOne

https://xmpp.org/extensions/xep-0279.html

Available options:

always_record_route: true | false

Always insert "Record-Route" header into SIP messages. With this approach it is possible to bypass NATs/firewalls a bit more

easily. The default value is true.

flow_timeout_tcp: timeout()

The option sets a keep-alive timer for SIP outbound TCP connections. The default value is 2 minutes.

flow_timeout_udp: timeout()

The options sets a keep-alive timer for SIP outbound UDP connections. The default value is 29 seconds.

record_route: URI

When the option always_record_route is set to true or when SIP outbound is utilized, ejabberd inserts "Record-Route" header

field with this URI into a SIP message. The default is a SIP URI constructed from the virtual host on which the module is

loaded.

routes: [URI, ...]

You can set a list of SIP URIs of routes pointing to this SIP proxy server. The default is a list containing a single SIP URI

constructed from the virtual host on which the module is loaded.

via: [URI, ...]

A list to construct "Via" headers for inserting them into outgoing SIP messages. This is useful if you’re running your SIP proxy

in a non-standard network topology. Every URI element in the list must be in the form of "scheme://host:port", where

"transport" must be tls, tcp, or udp, "host" must be a domain name or an IP address and "port" must be an internet port

number. Note that all parts of the URI are mandatory (e.g. you cannot omit "port" or "scheme").

Example:

mod_stats

This module adds support for XEP-0039: Statistics Gathering. This protocol allows you to retrieve the following statistics from

your ejabberd server:

Total number of registered users on the current virtual host (users/total).

Total number of registered users on all virtual hosts (users/all-hosts/total).

Total number of online users on the current virtual host (users/online).

Total number of online users on all virtual hosts (users/all-hosts/online).

Note

The protocol extension is deferred and seems like even a few clients that were supporting it are now abandoned. So using this

module makes very little sense.

The module has no options.

•

•

•

•

•

•

modules:
mod_sip:
always_record_route: false
record_route: "sip:example.com;lr"
routes:
- "sip:example.com;lr"
- "sip:sip.example.com;lr"

flow_timeout_udp: 30 sec
flow_timeout_tcp: 1 min
via:
- tls://sip-tls.example.com:5061
- tcp://sip-tcp.example.com:5060
- udp://sip-udp.example.com:5060

•

•

•

•

mod_stats

- 177/450 - Copyright © 2008 - 2024 ProcessOne

https://tools.ietf.org/html/rfc5626
https://tools.ietf.org/html/rfc5626
https://tools.ietf.org/html/rfc5626
https://xmpp.org/extensions/xep-0039.html

mod_stream_mgmt

This module adds support for XEP-0198: Stream Management. This protocol allows active management of an XML stream

between two XMPP entities, including features for stanza acknowledgments and stream resumption.

Available options:

ack_timeout: timeout()

A time to wait for stanza acknowledgments. Setting it to infinity effectively disables the timeout. The default value is 1 minute.

cache_life_time: timeout()

Same as top-level cache_life_time option, but applied to this module only. The default value is 48 hours.

cache_size: pos_integer() | infinity

Same as top-level cache_size option, but applied to this module only.

max_ack_queue: Size

This option specifies the maximum number of unacknowledged stanzas queued for possible retransmission. When the limit is

exceeded, the client session is terminated. The allowed values are positive integers and infinity. You should be careful when

setting this value as it should not be set too low, otherwise, you could kill sessions in a loop, before they get the chance to

finish proper session initiation. It should definitely be set higher that the size of the offline queue (for example at least 3 times

the value of the max offline queue and never lower than 1000). The default value is 5000.

max_resume_timeout: timeout()

A client may specify the period of time until a session times out if the connection is lost. During this period of time, the client

may resume its session. This option limits the period of time a client is permitted to request. It must be set to a timeout equal

to or larger than the default resume_timeout. By default, it is set to the same value as the resume_timeout option.

queue_type: ram | file

Same as top-level queue_type option, but applied to this module only.

resend_on_timeout: true | false | if_offline

If this option is set to true, any message stanzas that weren’t acknowledged by the client will be resent on session timeout.

This behavior might often be desired, but could have unexpected results under certain circumstances. For example, a message

that was sent to two resources might get resent to one of them if the other one timed out. Therefore, the default value for this

option is false, which tells ejabberd to generate an error message instead. As an alternative, the option may be set to if_offline.

In this case, unacknowledged messages are resent only if no other resource is online when the session times out. Otherwise,

error messages are generated.

resume_timeout: timeout()

This option configures the (default) period of time until a session times out if the connection is lost. During this period of time,

a client may resume its session. Note that the client may request a different timeout value, see the max_resume_timeout

option. Setting it to 0 effectively disables session resumption. The default value is 5 minutes.

mod_stun_disco

added in 20.04

This module allows XMPP clients to discover STUN/TURN services and to obtain temporary credentials for using them as per

XEP-0215: External Service Discovery.

•

•

•

•

•

•

•

•

mod_stream_mgmt

- 178/450 - Copyright © 2008 - 2024 ProcessOne

https://xmpp.org/extensions/xep-0198.html
https://xmpp.org/extensions/xep-0215.html

Available options:

mod_stun_disco

- 179/450 - Copyright © 2008 - 2024 ProcessOne

access: AccessName

This option defines which access rule will be used to control who is allowed to discover STUN/TURN services and to request

temporary credentials. The default value is local.

credentials_lifetime: timeout()

The lifetime of temporary credentials offered to clients. If ejabberd’s built-in TURN service is used, TURN relays allocated

using temporary credentials will be terminated shortly after the credentials expired. The default value is 12 hours. Note that

restarting the ejabberd node invalidates any temporary credentials offered before the restart unless a secret is specified (see

below).

offer_local_services: true | false

This option specifies whether local STUN/TURN services configured as ejabberd listeners should be announced automatically.

Note that this will not include TLS-enabled services, which must be configured manually using the services option (see below).

For non-anonymous TURN services, temporary credentials will be offered to the client. The default value is true.

secret: Text

The secret used for generating temporary credentials. If this option isn’t specified, a secret will be auto-generated. However, a

secret must be specified explicitly if non-anonymous TURN services running on other ejabberd nodes and/or external TURN

services are configured. Also note that auto-generated secrets are lost when the node is restarted, which invalidates any

credentials offered before the restart. Therefore, it’s recommended to explicitly specify a secret if clients cache retrieved

credentials (for later use) across service restarts.

services: [Service, ...]

The list of services offered to clients. This list can include STUN/TURN services running on any ejabberd node and/or external

services. However, if any listed TURN service not running on the local ejabberd node requires authentication, a secret must be

specified explicitly, and must be shared with that service. This will only work with ejabberd’s built-in STUN/TURN server and

with external servers that support the same REST API For Access To TURN Services. Unless the offer_local_services is set to

false, the explicitly listed services will be offered in addition to those announced automatically.

host: Host

The hostname or IP address the STUN/TURN service is listening on. For non-TLS services, it’s recommended to specify an IP

address (to avoid additional DNS lookup latency on the client side). For TLS services, the hostname (or IP address) should

match the certificate. Specifying the host option is mandatory.

port: 1..65535

The port number the STUN/TURN service is listening on. The default port number is 3478 for non-TLS services and 5349 for

TLS services.

restricted: true | false

This option determines whether temporary credentials for accessing the service are offered. The default is false for STUN/

STUNS services and true for TURN/TURNS services.

transport: tcp | udp

The transport protocol supported by the service. The default is udp for non-TLS services and tcp for TLS services.

type: stun | turn | stuns | turns

The type of service. Must be stun or turn for non-TLS services, stuns or turns for TLS services. The default type is stun.

Example:

•

•

•

•

•

•

•

•

•

•

services:
-
host: 203.0.113.3
port: 3478
type: stun
transport: udp
restricted: false

-
host: 203.0.113.3
port: 3478
type: turn
transport: udp
restricted: true

-
host: 2001:db8::3
port: 3478
type: stun
transport: udp
restricted: false

-
host: 2001:db8::3

mod_stun_disco

- 180/450 - Copyright © 2008 - 2024 ProcessOne

https://tools.ietf.org/html/draft-uberti-behave-turn-rest-00

mod_time

This module adds support for XEP-0202: Entity Time. In other words, the module reports server’s system time.

The module has no options.

mod_vcard

This module allows end users to store and retrieve their vCard, and to retrieve other users vCards, as defined in XEP-0054:

vcard-temp. The module also implements an uncomplicated Jabber User Directory based on the vCards of these users. Moreover,

it enables the server to send its vCard when queried.

port: 3478
type: turn
transport: udp
restricted: true

-
host: server.example.com
port: 5349
type: turns
transport: tcp
restricted: true

mod_time

- 181/450 - Copyright © 2008 - 2024 ProcessOne

https://xmpp.org/extensions/xep-0202.html
https://xmpp.org/extensions/xep-0054.html
https://xmpp.org/extensions/xep-0054.html

Available options:

allow_return_all: true | false

This option enables you to specify if search operations with empty input fields should return all users who added some

information to their vCard. The default value is false.

cache_life_time: timeout()

Same as top-level cache_life_time option, but applied to this module only.

cache_missed: true | false

Same as top-level cache_missed option, but applied to this module only.

cache_size: pos_integer() | infinity

Same as top-level cache_size option, but applied to this module only.

db_type: mnesia | sql | ldap

Same as top-level default_db option, but applied to this module only.

host

Deprecated. Use hosts instead.

hosts: [Host, ...]

This option defines the Jabber IDs of the service. If the hosts option is not specified, the only Jabber ID will be the hostname of

the virtual host with the prefix "vjud.". The keyword @HOST@ is replaced with the real virtual host name.

matches: pos_integer() | infinity

With this option, the number of reported search results can be limited. If the option’s value is set to infinity, all search results

are reported. The default value is 30.

name: Name

The value of the service name. This name is only visible in some clients that support XEP-0030: Service Discovery. The default

is vCard User Search.

search: true | false

This option specifies whether the search functionality is enabled or not. If disabled, the options hosts, name and vcard will be

ignored and the Jabber User Directory service will not appear in the Service Discovery item list. The default value is false.

use_cache: true | false

Same as top-level use_cache option, but applied to this module only.

vcard: vCard

A custom vCard of the server that will be displayed by some XMPP clients in Service Discovery. The value of vCard is a YAML

map constructed from an XML representation of vCard. Since the representation has no attributes, the mapping is

straightforward.

Example:

•

•

•

•

•

•

•

•

•

•

•

•

This XML representation of vCard:
#
<vCard xmlns='vcard-temp'>
<FN>Conferences</FN>
<ADR>
<WORK/>
<STREET>Elm Street</STREET>
</ADR>
</vCard>
#
is translated to:
#
vcard:
fn: Conferences
adr:
-
work: true
street: Elm Street

mod_vcard

- 182/450 - Copyright © 2008 - 2024 ProcessOne

https://xmpp.org/extensions/xep-0030.html

Available options for ldap backend:

mod_vcard

- 183/450 - Copyright © 2008 - 2024 ProcessOne

ldap_backups

Same as top-level ldap_backups option, but applied to this module only.

ldap_base

Same as top-level ldap_base option, but applied to this module only.

ldap_deref_aliases

Same as top-level ldap_deref_aliases option, but applied to this module only.

ldap_encrypt

Same as top-level ldap_encrypt option, but applied to this module only.

ldap_filter

Same as top-level ldap_filter option, but applied to this module only.

ldap_password

Same as top-level ldap_password option, but applied to this module only.

ldap_port

Same as top-level ldap_port option, but applied to this module only.

ldap_rootdn

Same as top-level ldap_rootdn option, but applied to this module only.

ldap_search_fields: {Name: Attribute, ...}

This option defines the search form and the LDAP attributes to search within. Name is the name of a search form field which

will be automatically translated by using the translation files (see msgs/*.msg for available words). Attribute is the LDAP

attribute or the pattern %u.

Examples:

The default is:

ldap_search_reported: {SearchField: VcardField}, ...}

This option defines which search fields should be reported. SearchField is the name of a search form field which will be

automatically translated by using the translation files (see msgs/*.msg for available words). VcardField is the vCard field name

defined in the ldap_vcard_map option.

Examples:

The default is:

ldap_servers

Same as top-level ldap_servers option, but applied to this module only.

ldap_tls_cacertfile

Same as top-level ldap_tls_cacertfile option, but applied to this module only.

ldap_tls_certfile

Same as top-level ldap_tls_certfile option, but applied to this module only.

•

•

•

•

•

•

•

•

•

User: "%u"
"Full Name": displayName
"Given Name": givenName
"Middle Name": initials
"Family Name": sn
Nickname: "%u"
Birthday: birthDay
Country: c
City: l
Email: mail
"Organization Name": o
"Organization Unit": ou

•

"Full Name": FN
"Given Name": FIRST
"Middle Name": MIDDLE
"Family Name": LAST
"Nickname": NICKNAME
"Birthday": BDAY
"Country": CTRY
"City": LOCALITY
"Email": EMAIL
"Organization Name": ORGNAME
"Organization Unit": ORGUNIT

•

•

•

mod_vcard

- 184/450 - Copyright © 2008 - 2024 ProcessOne

ldap_tls_depth

Same as top-level ldap_tls_depth option, but applied to this module only.

ldap_tls_verify

Same as top-level ldap_tls_verify option, but applied to this module only.

ldap_uids

Same as top-level ldap_uids option, but applied to this module only.

ldap_vcard_map: {Name: {Pattern, LDAPattributes}, ...}

With this option you can set the table that maps LDAP attributes to vCard fields. Name is the type name of the vCard as

defined in RFC 2426. Pattern is a string which contains pattern variables %u, %d or %s. LDAPattributes is the list containing

LDAP attributes. The pattern variables %s will be sequentially replaced with the values of LDAP attributes from

List_of_LDAP_attributes, %u will be replaced with the user part of a JID, and %d will be replaced with the domain part of a JID.

Examples:

The default is:

Available options for mnesia backend:

search_all_hosts: true | false

Whether to perform search on all virtual hosts or not. The default value is true.

mod_vcard_xupdate

The user’s client can store an avatar in the user vCard. The vCard-Based Avatars protocol (XEP-0153) provides a method for

clients to inform the contacts what is the avatar hash value. However, simple or small clients may not implement that protocol.

If this module is enabled, all the outgoing client presence stanzas get automatically the avatar hash on behalf of the client. So,

the contacts receive the presence stanzas with the Update Data described in XEP-0153 as if the client would had inserted it itself.

If the client had already included such element in the presence stanza, it is replaced with the element generated by ejabberd.

By enabling this module, each vCard modification produces a hash recalculation, and each presence sent by a client produces

hash retrieval and a presence stanza rewrite. For this reason, enabling this module will introduce a computational overhead in

servers with clients that change frequently their presence. However, the overhead is significantly reduced by the use of caching,

so you probably don’t want to set use_cache to false.

The module depends on mod_vcard.

Note

Nowadays XEP-0153 is used mostly as "read-only", i.e. modern clients don’t publish their avatars inside vCards. Thus in the

majority of cases the module is only used along with mod_avatar for providing backward compatibility.

•

•

•

•

NICKNAME: {"%u": []}
FN: {"%s": [displayName]}
LAST: {"%s": [sn]}
FIRST: {"%s": [givenName]}
MIDDLE: {"%s": [initials]}
ORGNAME: {"%s": [o]}
ORGUNIT: {"%s": [ou]}
CTRY: {"%s": [c]}
LOCALITY: {"%s": [l]}
STREET: {"%s": [street]}
REGION: {"%s": [st]}
PCODE: {"%s": [postalCode]}
TITLE: {"%s": [title]}
URL: {"%s": [labeleduri]}
DESC: {"%s": [description]}
TEL: {"%s": [telephoneNumber]}
EMAIL: {"%s": [mail]}
BDAY: {"%s": [birthDay]}
ROLE: {"%s": [employeeType]}
PHOTO: {"%s": [jpegPhoto]}

•

mod_vcard_xupdate

- 185/450 - Copyright © 2008 - 2024 ProcessOne

https://tools.ietf.org/html/rfc2426
https://xmpp.org/extensions/xep-0153.html
https://xmpp.org/extensions/xep-0153.html
https://xmpp.org/extensions/xep-0153.html

Available options:

cache_life_time: timeout()

Same as top-level cache_life_time option, but applied to this module only.

cache_missed: true | false

Same as top-level cache_missed option, but applied to this module only.

cache_size: pos_integer() | infinity

Same as top-level cache_size option, but applied to this module only.

use_cache: true | false

Same as top-level use_cache option, but applied to this module only.

mod_version

This module implements XEP-0092: Software Version. Consequently, it answers ejabberd’s version when queried.

Available options:

show_os: true | false

Should the operating system be revealed or not. The default value is true.

•

•

•

•

•

mod_version

- 186/450 - Copyright © 2008 - 2024 ProcessOne

https://xmpp.org/extensions/xep-0092.html

Advanced

Advanced ejabberd Administration

Clustering ejabberd

Managing an ejabberd server

MQTT Support

Securing ejabberd

Troubleshooting ejabberd

Unattended installation

XMPP Extensions, and how to support them

•

•

•

•

•

•

•

Advanced

- 187/450 - Copyright © 2008 - 2024 ProcessOne

Architecture

This section contains information to help your understand ejabberd architecture and will explain how to integrate ejabberd

properly into your overall infrastructure.

Overview

ejabberd is a configurable system where modules can be enabled or disabled based on customer requirements. Users can

connect not only from a regular PC but also from mobile devices and from the web. User data can be stored internally in Mnesia

or in one of the support SQL or NoSQL backend. Users can be totally managed by your own backend through a ReST interface.

ejabberd internal architecture is organised around its router. Most of the other elements are plugins that can be adapted,

enhanced or replaced to build a custom solution tailored to your needs.

ejabberd support a core concept of XMPP: Federation. Federation is a mechanism allowing different independent XMPP servers

and clusters to communicate with each other.

Here is a high level diagram of ejabberd internal architecture:

Typical large scale deployments

Here is a diagram for a typical ejabberd large scale deployment. It can scale massively and rely on several back-ends.

Architecture

- 188/450 - Copyright © 2008 - 2024 ProcessOne

Note that ejabberd ejabberd support a core concept of XMPP: Federation. Federation is a mechanism allowing different

independent XMPP servers and clusters to communicate with each other. This is a purely optional layer, but it can help integrate

with the rest of the world. It is also sometimes internally by companies to group users in subsidiaries or regions.

Virtual hosting

If you need to manage several small XMPP domains, ejabberd supports virtual hosting. It means you can host as many domain as

you want on a single ejabberd deployment.

Instances can be made to be totally independent and invisible for each other if needed (or they can communicate as they would

through federation).

Virtual hosting

- 189/450 - Copyright © 2008 - 2024 ProcessOne

Clustering

Purpose

The purpose of ejabberd clustering is to be able to use several servers for a single or small group of large domains, for fault-

tolerance and scalability.

Note that you do not necessarily need clustering if you want to run two large domains independently. You may simply want to run

two different independent servers.

However, to build reliable service and support large user base, clustering is a must have feature.

How it Works

A XMPP domain is served by one or more ejabberd nodes. These nodes can be run on different machines that are connected via a

network. They all must have the ability to connect to port 4369 of all another nodes, and must have the same magic cookie (see

Erlang/OTP documentation, in other words the file ~ejabberd/.erlang.cookie must be the same on all nodes). This is needed

because all nodes exchange information about connected users, s2s connections, registered services, etc…

Each ejabberd node has the following modules:

router

local router

session manager

s2s manager

Router

This module is the main router of XMPP packets on each node. It routes them based on their destination’s domains. It uses a

global routing table. The domain of the packet’s destination is searched in the routing table, and if it is found, the packet is

routed to the appropriate process. If not, it is sent to the s2s manager.

Local Router

This module routes packets which have a destination domain equal to one of this server’s host names. If the destination JID has a

non-empty user part, it is routed to the session manager, otherwise it is processed depending on its content.

Session Manager

This module routes packets to local users. It looks up to which user resource a packet must be sent via a presence table. Then

the packet is either routed to the appropriate c2s process, or stored in offline storage, or bounced back.

s2s Manager

This module routes packets to other XMPP servers. First, it checks if an opened s2s connection from the domain of the packet’s

source to the domain of the packet’s destination exists. If that is the case, the s2s manager routes the packet to the process

serving this connection, otherwise a new connection is opened.

•

•

•

•

Clustering

- 190/450 - Copyright © 2008 - 2024 ProcessOne

Before you get started

Before you start implementing clustering, there are a few things you need to take into account:

Cluster should be set up in a single data center: The clustering in ejabberd Community Edition relies on low latency

networking. While it may work across regions, it is recommended that you run an ejabberd cluster in a single Amazon region.

Clustering relies on Erlang features and Mnesia shared schemas. Before getting started, it is best to get familiar with the

Erlang environment as this guide will heavily reference Erlang terms.

Clustering Setup

Adding a node to a cluster

Suppose you have already configured ejabberd on one node named ejabberd01 . Let's create an additional node (ejabberd02) and

connect them together.

Copy the /home/ejabberd/.erlang.cookie file from ejabberd01 to ejabberd02 .

Alternatively you could pass the -setcookie <value> option to all erl commands below.

Make sure your new ejabberd node is properly configured. Usually, you want to have the same ejabberd.yml config file on the new

node that on the other cluster nodes.

Adding a node to the cluster is done by starting a new ejabberd node within the same network, and running join_cluster from a

cluster node. On the ejabberd02 node for example, as ejabberd is already started, run the following command as the ejabberd

daemon user, using the ejabberdctl script:

This enables ejabberd's internal replications to be launched across all nodes so new nodes can start receiving messages from

other nodes and be registered in the routing tables.

Removing a node from the cluster

To remove a node from the cluster, it just needs to be shut down. There is no specific delay for the cluster to figure out that the

node is gone, the node is immediately removed from other router entries. All clients directly connected to the stopped node are

disconnected, and should reconnect to other nodes.

If the cluster is used behind a load balancer and the node has been removed from the load balancer, no new clients should be

connecting to that node but established connections should be kept, thus allowing to remove a node smoothly, by stopping it after

most clients disconnected by themselves. If the node is started again, it's immediately attached back to the cluster until it has

been explicitly removed permanently from the cluster.

To permanently remove a running node from the cluster, the leave_cluster command must be run as the ejabberd daemon user,

from one node of the cluster:

The removed node must be running while calling leave_cluster to make it permanently removed. It's then immediately stopped.

Restarting cluster nodes

Ejabberd Community Server uses mnesia internal database to manage cluster and internode synchronization. As a result, you

may restart ejabberd nodes as long as there is at least one running node. If you stop the last running node of a cluster, you MUST

restart that node first in order to get a running service back.

•

•

1.

1.

2.

ejabberdctl --no-timeout join_cluster 'ejabberd@ejabberd01'

ejabberdctl leave_cluster 'ejabberd@ejabberd02'

Before you get started

- 191/450 - Copyright © 2008 - 2024 ProcessOne

Service Load-Balancing

Domain Load-Balancing Algorithm

ejabberd includes an algorithm to load balance the components that are plugged on an ejabberd cluster. It means that you can

plug one or several instances of the same component on each ejabberd cluster and that the traffic will be automatically

distributed.

The default distribution algorithm attempts to deliver to a local instance of a component. If several local instances are available,

one instance is chosen at random. If no instance is available locally, one instance is randomly chosen among the remote

component instances.

If you need a different behaviour, you can change the load balancing behaviour with the domain_balancing option.

Load-Balancing Buckets

When there is a risk of failure for a given component, domain balancing can cause service trouble. If one component is failing the

service will not work correctly unless the sessions are rebalanced.

In this case, it is best to limit the problem to the sessions handled by the failing component. This is what the component_number

option does, making the load balancing algorithm not dynamic, but sticky on a fix number of component instances. Check

domain_balancing top-level option documentation for details.

Service Load-Balancing

- 192/450 - Copyright © 2008 - 2024 ProcessOne

Managing an ejabberd server

ejabberdctl

With the ejabberdctl command line administration script you can execute ejabberdctl commands (described in the next section,

ejabberdctl Commands) and also many general ejabberd commands (described in section ejabberd Commands). This means you

can start, stop and perform many other administrative tasks in a local or remote ejabberd server (by providing the argument –

node NODENAME).

The ejabberdctl script can be configured in the file ejabberdctl.cfg . This file includes detailed information about each

configurable option. See section Erlang Runtime System.

The ejabberdctl script returns a numerical status code. Success is represented by 0 , error is represented by 1 , and other codes

may be used for specific results. This can be used by other scripts to determine automatically if a command succeeded or failed,

for example using: echo $?

To restrict what commands can be executed; see API Permissions.

Bash Completion

If you use Bash, you can get Bash completion for ejabberdctl commands names.

Some methods to enable that feature:

Copy the file tools/ejabberdctl.bc to the directory /etc/bash_completion.d/ (in Debian, Ubuntu, Fedora and maybe others)

Or add to your $HOME/.bashrc a line similar to:

When ejabberd is running in the machine, type ejabberdctl in a console and press the TAB key.

The first time this is used, the list of commands is extracted from ejabberd and stored in a file in /tmp/ . The next time, that file is

reused for faster responses.

ejabberdctl Commands

When ejabberdctl is executed without any parameter, it displays the available options. If there isn't an ejabberd server running,

the available parameters are:

start : Start ejabberd in background mode. This is the default method.

debug : Attach an Erlang shell to an already existing ejabberd server. This allows to execute commands interactively in the

ejabberd server.

live : Start ejabberd in live mode: the shell keeps attached to the started server, showing log messages and allowing to

execute interactive commands.

If there is an ejabberd server running in the system, ejabberdctl shows the ejabberdctl commands described below and all the

ejabberd commands available in that server (see List of ejabberd Commands).

•

•

source /path/to/ejabberd/tools/ejabberdctl.bc

•

•

•

Managing an ejabberd server

- 193/450 - Copyright © 2008 - 2024 ProcessOne

The ejabberdctl commands are:

help : Get help about ejabberdctl or any available command. Try ejabberdctl help help .

status : Check the status of the ejabberd server.

stop : Stop the ejabberd server.

restart : Restart the ejabberd server.

mnesia : Get information about the Mnesia database.

ejabberd Commands

Please go to the API section.

Erlang Runtime System

ejabberd is an Erlang/OTP application that runs inside an Erlang runtime system. This system is configured using environment

variables and command line parameters. The ejabberdctl administration script uses many of those possibilities. You can

configure some of them with the file ejabberdctl.cfg , which includes detailed description about them. This section describes for

reference purposes all the environment variables and command line parameters.

The environment variables:

EJABBERD_CONFIG_PATH : Path to the ejabberd configuration file.

EJABBERD_MSGS_PATH : Path to the directory with translated strings.

EJABBERD_LOG_PATH : Path to the ejabberd service log file.

EJABBERD_SO_PATH : Path to the directory with binary system libraries.

EJABBERD_PID_PATH : Path to the PID file that ejabberd can create when started.

HOME : Path to the directory that is considered ejabberd ’s home. This path is used to read the file .erlang.cookie .

ERL_CRASH_DUMP : Path to the file where crash reports will be dumped.

ERL_EPMD_ADDRESS : IP address where epmd listens for connections (see epmd).

ERL_INETRC : Indicates which IP name resolution to use. If using -sname , specify either this option or -kernel inetrc filepath .

ERL_MAX_PORTS : Maximum number of simultaneously open Erlang ports.

ERL_MAX_ETS_TABLES : Maximum number of ETS and Mnesia tables.

The command line parameters:

-sname ejabberd : The Erlang node will be identified using only the first part of the host name, i.e. other Erlang nodes outside this

domain cannot contact this node. This is the preferable option in most cases.

-name ejabberd : The Erlang node will be fully identified. This is only useful if you plan to setup an ejabberd cluster with nodes in

different networks.

-kernel inetrc ’/etc/ejabberd/inetrc’ : Indicates which IP name resolution to use. If using -sname , specify either this option or

ERL_INETRC .

-kernel inet_dist_listen_min 4200 inet_dist_listen_min 4210 : Define the first and last ports that epmd can listen to (see epmd).

-kernel inet_dist_use_interface { 127,0,0,1 } : Define the IP address where this Erlang node listens for other nodes connections

(see epmd).

-detached : Starts the Erlang system detached from the system console. Useful for running daemons and background processes.

•

•

•

•

•

ejabberd Commands

- 194/450 - Copyright © 2008 - 2024 ProcessOne

-noinput : Ensures that the Erlang system never tries to read any input. Useful for running daemons and background processes.

-pa /var/lib/ejabberd/ebin : Specify the directory where Erlang binary files (*.beam) are located.

-s ejabberd : Tell Erlang runtime system to start the ejabberd application.

-mnesia dir ’/var/lib/ejabberd/’ : Specify the Mnesia database directory.

-sasl sasl_error_logger {file, /var/log/ejabberd/erlang.log} : Path to the Erlang/OTP system log file. SASL here means “System

Architecture Support Libraries” not “Simple Authentication and Security Layer”.

+K [true|false] : Kernel polling.

-smp [auto|enable|disable] : SMP support.

+P 250000 : Maximum number of Erlang processes.

-remsh ejabberd@localhost : Open an Erlang shell in a remote Erlang node.

-hidden : The connections to other nodes are hidden (not published). The result is that this node is not considered part of the

cluster. This is important when starting a temporary ctl or debug node.

Note that some characters need to be escaped when used in shell scripts, for instance " and {} . You can find other options in

the Erlang manual page (erl -man erl).

Web Admin

The ejabberd Web Admin allows to administer some parts of ejabberd using a web browser: accounts, Shared Roster Groups,

manage the Mnesia database, create and restore backups, view server statistics, …

Basic Setup

If not done already, register an account and grant administration rights to it using the configure access rule (see Administration

Account):

Make sure ejabberd_web_admin is available in request_handlers of a ejabberd_http listener. If you want to use HTTPS, enable tls. For

example:

Open the Web Admin page in your favorite web browser. The exact address depends on your configuration; in this example the

address is: https://example.org:5443/admin/

In the login window provide the full Jabber ID: admin1@example.org and password. If the web address hostname is the same that

the account JID, you can provide simply the username instead of the full JID: admin1 .

You're good! You can now use the Web Admin.

Additional Security

For security reasons, you can serve the Web Admin on a secured connection and bind it to the internal LAN IP.

1.

acl:
admin:
user: admin1@example.org

access_rules:
configure:
allow: admin

2.

listen:
-
port: 5443
ip: "::"
module: ejabberd_http
tls: true
request_handlers:
/admin: ejabberd_web_admin

3.

4.

5.

Web Admin

- 195/450 - Copyright © 2008 - 2024 ProcessOne

In this example, the Web Admin will be available in the address https://192.168.1.1:5282/admin/ :

Vhost permissions

As you may have noticed in the previous examples, the configure access rule determines what ACL can access the Web Admin.

And then you can add specific accounts to that ACL.

It is possible to define specific ACL for individual vhosts, this allows you to grant administrative privilege to certain accounts only

to one or some vhosts.

In this example different accounts have different privileges in WebAdmin:

adminglobal@example.net can administer all virtual hosts in http://example.net:5280/admin/

admincom@example.com can administer only example.com in http://example.com:5280/admin/

Commands permissions

added in 24.06

Developer: Add Pages

Developer: Use Commands

added in 24.06

Ad-hoc Commands

If you enable mod_configure and mod_adhoc, you can perform several administrative tasks in ejabberd with an XMPP client. The

client must support Ad-Hoc Commands (XEP-0050), and you must login in the XMPP server with an account with proper

privileges.

hosts:
- example.org

listen:
-
ip: "192.168.1.1"
port: 5282
module: ejabberd_http
certfile: "/usr/local/etc/server.pem"
tls: true
request_handlers:
/admin: ejabberd_web_admin

•

•

hosts:
- example.net
- example.com

listen:
-
port: 5280
module: ejabberd_http
request_handlers:
/admin: ejabberd_web_admin

acl:
admin:
user:
- adminglobal: example.net

access_rules:
configure:
allow: admin

host_config:
example.com:
acl:
admin:
user:
- adminglobal: example.net
- admincom: example.com

Ad-hoc Commands

- 196/450 - Copyright © 2008 - 2024 ProcessOne

https://xmpp.org/extensions/xep-0050.html
https://xmpp.org/extensions/xep-0050.html

Change Computer Hostname

ejabberd uses the distributed Mnesia database. Being distributed, Mnesia enforces consistency of its file, so it stores the name of

the Erlang node in it (see section Erlang Node Name). The name of an Erlang node includes the hostname of the computer. So,

the name of the Erlang node changes if you change the name of the machine in which ejabberd runs, or when you move ejabberd

to a different machine.

You have two ways to use the old Mnesia database in an ejabberd with new node name: put the old node name in

ejabberdctl.cfg , or convert the database to the new node name.

Those example steps will backup, convert and load the Mnesia database. You need to have either the old Mnesia spool dir or a

backup of Mnesia. If you already have a backup file of the old database, you can go directly to step 5. You also need to know the

old node name and the new node name. If you don’t know them, look for them by executing ejabberdctl or in the ejabberd log

files.

Before starting, setup some variables:

OLDNODE=ejabberd@oldmachine
NEWNODE=ejabberd@newmachine

Change Computer Hostname

- 197/450 - Copyright © 2008 - 2024 ProcessOne

Start ejabberd enforcing the old node name:

Generate a backup file:

Stop the old node:

Make sure there aren't files in the Mnesia spool dir. For example:

Start ejabberd. There isn't any need to specify the node name anymore:

Convert the backup to new node name using mnesia_change_nodename:

Install the backup file as a fallback using install_fallback:

Stop ejabberd:

You may see an error message in the log files, it’s normal, so don’t worry:

Now you can finally start ejabberd:

Check that the information of the old database is available: accounts, rosters... After you finish, remember to delete the temporary

backup files from public directories.

OLDFILE=/tmp/old.backup
NEWFILE=/tmp/new.backup

1.

ejabberdctl --node $OLDNODE start

2.

ejabberdctl --node $OLDNODE backup $OLDFILE

3.

ejabberdctl --node $OLDNODE stop

4.

mkdir /var/lib/ejabberd/oldfiles
mv /var/lib/ejabberd/*.* /var/lib/ejabberd/oldfiles/

5.

ejabberdctl start

6.

ejabberdctl mnesia_change_nodename $OLDNODE $NEWNODE $OLDFILE $NEWFILE

7.

ejabberdctl install_fallback $NEWFILE

8.

ejabberdctl stop

Mnesia(ejabberd@newmachine):
** ERROR ** (ignoring core)
** FATAL ** A fallback is installed and Mnesia must be restarted.
 Forcing shutdown after mnesia_down from ejabberd@newmachine...

9.

ejabberdctl start

10.

Change Computer Hostname

- 198/450 - Copyright © 2008 - 2024 ProcessOne

Add More Modules

ejabberd-modules

ejabberd starts automatically modules installed in .ejabberd-modules , in addition to all the modules included with ejabberd. There

are API commands to compile, install, upgrade and uninstall those additional modules.

The exact path to the ejabberd-modules directory in your ejabberd installation may be:

$HOME/.ejabberd-modules when compiling source code or using installers

/opt/ejabberd/.ejabberd-modules in the ejabberd container image

/home/ejabberd/.ejabberd-modules in the ecs container image

That path can be modified using the variable CONTRIB_MODULES_PATH in the ejabberdctl.cfg configuration file.

To get new modules in ejabberd-modules :

If you develop your own module, you can add your module to ejabberd-modules and let ejabberd compile, install and start it.

Tell ejabberd to download the ejabberd-contrib git repository, which contains many additional ejabberd modules written in

Erlang/Elixir.

ejabberd-contrib

ejabberd-contrib is a git repository that hosts a collection of contributed modules for ejabberd written in Erlang/Elixir. Check the

ejabberd-contrib GitHub page.

Furthermore, in the extra directory of that repository there are references to other modules hosted in other git repositories.

First of all, let's get/update the modules source code:

Modules Management

Once you have placed the modules source code in ejabberd-modules , you can:

list modules

install a module

uninstall a module, or upgrade it

List Modules

Get a list of all the modules available to install:

Info

•

•

•

•

•

ejabberdctl modules_update_specs

•

•

•

ejabberdctl modules_available

...
mod_cron Execute scheduled commands
mod_default_contacts Auto-add roster contacts on registration
mod_default_rooms Auto-bookmark rooms on registration
mod_deny_omemo Prevent OMEMO sessions from being established
mod_ecaptcha Generate CAPTCHAs using ecaptcha
...

Add More Modules

- 199/450 - Copyright © 2008 - 2024 ProcessOne

https://github.com/processone/ejabberd/blob/master/ejabberdctl.cfg.example#L180
https://github.com/processone/ejabberd-contrib

What modules are currently installed:

Install Module

Let’s install a module:

That command performs several tasks:

downloads any Erlang/Elixir dependencies specified in the modules's rebar.config file

compiles the module and its dependencies (if not yet already compiled)

installs it (inside ejabberd-modules)

copies the default module configuration file (if any)

and starts the module (if there was a default configuration file

As a result, now .ejabberd-modules contains a new directory mod_cron/ with the binary *.beam files and the default module

configuration.

The default module configuration file, if it exists, will be read by ejabberd when it starts. If you prefer to keep all the

configuration in your main ejabberd.yml file, move the content of that file, but remember that the file will be overwritten if you

install or upgrade the module.

Uninstall Module

And finally, you can uninstall the module:

By the way, you can upgrade the module, which essentially uninstalls and installs the same module with one single command call:

Dependencies in container

When a module in ejabberd-modules depends on an Erlang or Elixir library, it is defined in the rebar.config file. To download

those dependencies during module installation, either git or mix is required, but none of them are available in the ejabberd or

the ecs container images. Consequently, the module installation will fail. The solution is quite simple: install git or mix .

For example, let's start an ejabberd container and try to install a module with dependencies:

An error message like this will appear:

ejabberdctl modules_installed

ejabberdctl module_install mod_cron

Module mod_cron has been installed and started.
It's configured in the file:
/home/ejabberd/.ejabberd-modules/mod_cron/conf/mod_cron.yml

Configure the module in that file, or remove it
and configure in your main ejabberd.yml

•

•

•

•

•

ejabberdctl module_uninstall mod_cron

ejabberdctl module_upgrade mod_cron

podman run --name ejabberd -d -p 5222:5222 -p 5280:5280 ghcr.io/processone/ejabberd

podman exec ejabberd ejabberdctl module_install mod_ecaptcha

Fetching dependency ecaptcha: /bin/sh: git: not found
/bin/sh: cd: line 1: can't cd to ecaptcha: No such file or directory
/bin/sh: git: not found
Module mod_ecaptcha has been installed and started.
It's configured in the file:
/opt/ejabberd/.ejabberd-modules/mod_ecaptcha/conf/mod_ecaptcha.yml

Configure the module in that file, or remove it
and configure in your main ejabberd.yml

Install Module

- 200/450 - Copyright © 2008 - 2024 ProcessOne

In order to download modules dependencies, first of all install git in the container:

Now remove the module deps/ folder and install again:

This time dependencies will be downloaded, compiled and installed:

podman exec --user root ejabberd apk add git

podman exec ejabberd rm -rf /opt/ejabberd/.ejabberd-modules/sources/ejabberd-contrib/mod_ecaptcha/deps/

podman exec ejabberd ejabberdctl module_upgrade mod_ecaptcha

Fetching dependency ecaptcha: Cloning into 'ecaptcha'...
Module mod_ecaptcha has been installed and started.
It's configured in the file:
/opt/ejabberd/.ejabberd-modules/mod_ecaptcha/conf/mod_ecaptcha.yml

Configure the module in that file, or remove it
and configure in your main ejabberd.yml

Dependencies in container

- 201/450 - Copyright © 2008 - 2024 ProcessOne

Securing ejabberd

Firewall Settings

You need to take the following ports in mind when configuring your firewall. The ports may change depending on your ejabberd

configuration. Most of them are TCP ports, except the explicitely mentioned ones:

epmd

epmd (Erlang Port Mapper Daemon) is a small name server included in Erlang/OTP and used by Erlang programs when establishing

distributed Erlang communications. ejabberd needs epmd to use ejabberdctl and also when clustering ejabberd nodes. This

small program is automatically started by Erlang, and is never stopped. If ejabberd is stopped, and there aren't any other Erlang

programs running in the system, you can safely stop epmd if you want.

ejabberd runs inside an Erlang node. To communicate with ejabberd , the script ejabberdctl starts a new Erlang node and

connects to the Erlang node that holds ejabberd . In order for this communication to work, epmd must be running and listening

for name requests in the port 4369. You should block the port 4369 in the firewall in such a way that only the programs in your

machine can access it, or configure the option ERL_EPMD_ADDRESS in the file ejabberdctl.cfg .

If you build a cluster of several ejabberd instances, each ejabberd instance is called an ejabberd node. Those ejabberd nodes use

a special Erlang communication method to build the cluster, and EPMD is again needed listening in the port 4369. So, if you plan

to build a cluster of ejabberd nodes you must open the port 4369 for the machines involved in the cluster. Remember to block the

port so Internet doesn't have access to it.

Once an Erlang node solved the node name of another Erlang node using EPMD and port 4369, the nodes communicate directly.

The ports used in this case by default are random, but can be configured in the file ejabberdctl.cfg . The Erlang command-line

parameter used internally is, for example:

Port Description

5222 Jabber/XMPP client connections, plain or STARTTLS

5223 Jabber client connections using the old SSL method

5269 Jabber/XMPP incoming server connections

5280/5443 HTTP/HTTPS for Web Admin and many more (ejabberd_http)

1883/8883 MQTT/MQTTS service (mod_mqtt)

3478/5349 STUN+TURN/STUNS+TURNS service (ejabberd_stun)

3478 UDP ' '

49152-65535 range

UDP

STUN+TURN service (ejabberd_stun), configure with turn_min_port and turn_max_port

5060/5061 SIP service (ejabberd_sip)

7777 SOCKS5 file transfer proxy (mod_proxy65)

4369 EPMD (see epmd) listens for Erlang node name requests

random port range Used by epmd for connections between Erlang nodes, configure with inet_dist_listen_min and

inet_dist_listen_max

5210 Erlang connectivity when ERL_DIST_PORT is set, alternative to EPMD

erl ... -kernel inet_dist_listen_min 4370 inet_dist_listen_max 4375

Securing ejabberd

- 202/450 - Copyright © 2008 - 2024 ProcessOne

https://erlang.org/doc/man/epmd.html
https://erlang.org/doc/man/epmd.html

It is also possible to configure in ejabberdctl.cfg the network interface where the Erlang node will listen and accept connections.

The Erlang command-line parameter used internally is, for example:

Erlang Cookie

The Erlang cookie is a string with numbers and letters. An Erlang node reads the cookie at startup from the command-line

parameter -setcookie . If not indicated, the cookie is read from the file $HOME/.erlang.cookie .

If this file does not exist, it is created immediately with a random cookie in the user $HOME path. This means the user running

ejabberd must have a $HOME , and have write access to that path. So, when you create a new account in your system for running

ejabberd, either allow it to have a $HOME , or set as $HOME a path where ejabberd will have write access. Depending on your setup,

examples could be:

or

Two Erlang nodes communicate only if they have the same cookie. Setting a cookie on the Erlang node allows you to structure

your Erlang network and define which nodes are allowed to connect to which.

Thanks to Erlang cookies, you can prevent access to the Erlang node by mistake, for example when there are several Erlang

nodes running different programs in the same machine.

Setting a secret cookie is a simple method to difficult unauthorized access to your Erlang node. However, the cookie system is

not ultimately effective to prevent unauthorized access or intrusion to an Erlang node. The communication between Erlang nodes

are not encrypted, so the cookie could be read sniffing the traffic on the network. The recommended way to secure the Erlang

node is to block the port 4369.

Erlang Node Name

An Erlang node may have a node name. The name can be short (if indicated with the command-line parameter -sname) or long (if

indicated with the parameter -name). Starting an Erlang node with -sname limits the communication between Erlang nodes to

the LAN.

Using the option -sname instead of -name is a simple method to difficult unauthorized access to your Erlang node. However, it is

not ultimately effective to prevent access to the Erlang node, because it may be possible to fake the fact that you are on another

network using a modified version of Erlang epmd . The recommended way to secure the Erlang node is to block the port 4369.

Securing Sensitive Files

ejabberd stores sensitive data in the file system either in plain text or binary files. The file system permissions should be set to

only allow the proper user to read, write and execute those files and directories.

ejabberd configuration file: /etc/ejabberd/ejabberd.yml : Contains the JID of administrators and passwords of external

components. The backup files probably contain also this information, so it is preferable to secure the whole /etc/ejabberd/

directory.

ejabberd service log: /var/log/ejabberd/ejabberd.log : Contains IP addresses of clients. If the loglevel is set to 5, it contains

whole conversations and passwords. If a logrotate system is used, there may be several log files with similar information, so it is

preferable to secure the whole /var/log/ejabberd/ directory.

Mnesia database spool files in /var/lib/ejabberd/ : The files store binary data, but some parts are still readable. The files are

generated by Mnesia and their permissions cannot be set directly, so it is preferable to secure the whole /var/lib/ejabberd/

directory.

erl ... -kernel inet_dist_use_interface "{127,0,0,1}"

adduser --home /usr/local/var/lib/ejabberd ejabberd

adduser --home /var/lib/ejabberd ejabberd

Erlang Cookie

- 203/450 - Copyright © 2008 - 2024 ProcessOne

Erlang cookie file: /var/lib/ejabberd/.erlang.cookie : See section Erlang Cookie.

Securing Sensitive Files

- 204/450 - Copyright © 2008 - 2024 ProcessOne

Troubleshooting ejabberd

Log Files

An ejabberd node writes three log files:

ejabberd.log : is the ejabberd service log, with the messages reported by ejabberd code

error.log : is the file accumulating error messages from ejabberd.log

crash.log : is the Erlang/OTP log, with the crash messages reported by Erlang/OTP using SASL (System Architecture Support

Libraries)

The option loglevel modifies the verbosity of the file ejabberd.log. The syntax:

loglevel: Level : The standard form to set a global log level.

The possible Level are:

0 : No ejabberd log at all (not recommended)

1 : Critical

2 : Error

3 : Warning

4 : Info

5 : Debug

For example, the default configuration is:

loglevel: 4

By default ejabberd rotates the log files when they get grown above a certain size. The exact value is controlled by the

log_rotate_size top-level option.

However, you can rotate the log files manually. You can either use an external tool for log rotation and the reopen_log API

command to reopen the log files, or the rotate_log API command to perform both steps (please refer to section ejabberd

Commands).

The log_rotate_count toplevel option defines the number of rotated files to keep by the reopen_log API command. Every such file

has a numeric suffix.

Debug Console

The Debug Console is an Erlang shell attached to an already running ejabberd server. With this Erlang shell, an experienced

administrator can perform complex tasks.

This shell gives complete control over the ejabberd server, so it is important to use it with extremely care. There are some simple

and safe examples in the article Interconnecting Erlang Nodes

To exit the shell, close the window or press the keys: control+c control+c.

Too many db tables

When running ejabberd, the log shows this error:

The number of concurrent ETS and Mnesia tables is limited. If this error occurs, it means that you have reached this limit.

•

•

•

•

•

•

•

•

•

** Too many db tables **

Troubleshooting ejabberd

- 205/450 - Copyright © 2008 - 2024 ProcessOne

https://ejabberd.im/interconnect-erl-nodes
https://ejabberd.im/interconnect-erl-nodes

For a solution, please read the section about ERL_MAX_ETS_TABLES on the Performance Tuning page.

Too many db tables

- 206/450 - Copyright © 2008 - 2024 ProcessOne

https://ejabberd.im/tuning#erl_max_ets_tables

Upgrade Procedure for ejabberd

This document contains administration procedure for each version upgrade. Only upgrade from version N to N+1 is documented

and supported. If you upgrade from an older version than previous one, you have to review all upgrade notes and apply each

steps one by one for the possible database changes. You also have to stop your old ejabberd server, and start the new one.

Until release note explicitly state you must restart the server for upgrade, you should be able to run soft upgrade using a cluster.

If you don't have cluster, upgrade from older release than previous one, or have explicit note soft upgrade does not work, then

you have to fallback to standalone upgrade process.

Generic upgrade process

This is the simplest process, and require service restart.

read the corresponding upgrade notes

apply the required changes in database from the upgrade note.

stop old node

archive content of mnesia database directory (database, i.e. /opt/ejabberd-XX.YY/database , /usr/local/var/lib/ejabberd , ...)

install new version

extract database archive in new path

if systemctl is used to manage ejabberd, copy the new service file and reload systemctl:

start new node

Soft upgrade process

This process needs you to run in cluster, with at least two nodes. In this case, we assume you run node A and B with version N,

and will upgrade to version N+1.

read the corresponding upgrade notes, make sure it does not explicitly states "soft upgrade is not supported".

apply the required changes in database from the upgrade note.

make sure node A is running

run leave_cluster on node B

stop old node B

install new version on B's host

start new node B

run join_cluster on node B, passing node A as parameter

make sure both nodes are running and working as expected

run leave_cluster on node A

stop old node A

install new version on A's host

start new node A

run join_cluster on node A, passing node B as parameter

•

•

•

•

•

•

•

cp ejabberd-21.12/bin/ejabberd.service /etc/systemd/system/
systemctl daemon-reload

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Upgrade Procedure for ejabberd

- 207/450 - Copyright © 2008 - 2024 ProcessOne

Module update process

Instead of upgrading all ejabberd to a brand new version, maybe you just want to update a few modules with bugfixes... in that

case you can update only specific modules.

This process is only recommended for bugfixes that involve functional changes, and do not involve structural or memory changes

(those ones are usually detected and applied at server start only).

How to do this?

Apply the fixes to your source code, compile and reinstall ejabberd, so the new *.beam files replace the old ones

In the ejabberd Web Admin go to Nodes -> your node -> Update

This will detect what *.beam files have changed in the installation

Select which modules you want to update now, and click Update

This will load into memory the corresponding *.beam files

If you prefer to use commands, check update_list + update.

Notice this does not restart modules or any other tasks. If the fix you plan to apply requires a module restart, you can use this

alternative: restart_module.

Note on database schema upgrade

ejabberd automatically updates the Mnesia table definitions at startup when needed. If you also use an external database (like

MySQL, ...) for storage of some modules, check in the corresponding upgrade notes of the new ejabberd version if you need to

update those tables yourself manually.

1.

2.

3.

4.

5.

Module update process

- 208/450 - Copyright © 2008 - 2024 ProcessOne

Specific version upgrade notes

The corresponsing ugprade notes are available in the release notes of each release, and also available in the Archive section:

Upgrading from ejabberd 24.07 to 24.10

Upgrading from ejabberd 24.06 to 24.07

Upgrading from ejabberd 24.02 to 24.06

Upgrading from ejabberd 23.10 to 24.02

Upgrading from ejabberd 23.04 to 23.10

Upgrading from ejabberd 23.01 to 23.04

Upgrading from ejabberd 22.10 to 23.01

Upgrading from ejabberd 22.05 to 22.10

Upgrading from ejabberd 21.12 to 22.05

Upgrading from ejabberd 21.07 to 21.12

Upgrading from ejabberd 21.04 to 21.07

Upgrading from ejabberd 21.01 to 21.04

Upgrading from ejabberd 19.08 to 20.01

Upgrading from ejabberd 19.05 to 19.08

Upgrading from ejabberd 19.02 to 19.05

Upgrading from ejabberd 18.12 to 19.02

Upgrading from ejabberd 18.09 to 18.12

Upgrading from ejabberd 18.06 to 18.09

Upgrading from ejabberd 18.04 to 18.06

Upgrading from ejabberd 18.03 to 18.04

Upgrading from ejabberd 18.01 to 18.03

Upgrading from ejabberd 17.11 to 18.01

Upgrading from ejabberd 17.09 to 17.11

Upgrading from ejabberd ≥17.06 and ≤17.08 to 17.09

Upgrading from ejabberd 17.03 or 17.04 to 17.06

Upgrading from ejabberd ≥16.08 and ≤17.01 to 17.03

Upgrading from ejabberd 16.06 to 16.08

Upgrading from ejabberd 16.04 to 16.06

Upgrading from ejabberd 16.03 to 16.04

Upgrading from ejabberd 16.02 to 16.03

Upgrading from ejabberd 15.11 to 16.02

Upgrading from ejabberd 2.1.1x to 16.02

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Specific version upgrade notes

- 209/450 - Copyright © 2008 - 2024 ProcessOne

ejabberd and XMPP tutorials

Learning ejabberd and XMPP through videos and hands-on tutorials.

Text tutorials

In the ProcessOne's blog Tutorial tag you will find tutorials about:

How to setup MariaDB, MQTT, PubSub, STUN/TURN, WebSocket.

Elixir: Part 1, Part 2, Embed in Phoenix, Embed in Elixir app.

Useful configuration steps

Configuration for Office IM

Configuration for XMPP compliance test

Using a local development trusted CA on MacOS

In the so-called ejabberd book there are also old archived ejabberd tutorials.

Architecture

Understanding ejabberd SaaS architecture

Excerpt from XMPP Academy #1 starting at 1m33s.

What are ejabberd backends? What backends are available in ejabberd and how do they work?

Excerpt from XMPP Academy #2 starting at 2m05s.

ejabberd backends architecture

Excerpt from XMPP Academy #2 starting at 14m00s.

What are ejabberd session backends and how to use them to scale?

Excerpt from XMPP Academy #2 starting at 19m42s.

XMPP on mobile devices (smartphones)

Mobile XMPP support on ejabberd SaaS and Business Edition: Standby, push and detached modes

Excerpt from XMPP Academy #1 starting at 16m44s.

How does Apple and Google Push support work on ejabberd SaaS and ejabberd Business Edition?

Excerpt from XMPP Academy #3 starting at 1m20s.

What is the relationship between ejabberd Push support and XEP-0357: Push Notifications?

Excerpt from XMPP Academy #3 starting at 22m34s.

What are message carbons and how do they work?

Excerpt from XMPP Academy #2 starting at 27m30s.

Demo: learning message carbons with Psi XMPP console

Excerpt from XMPP Academy #2 starting at 29m51s.

XMPP for the Web

ejabberd roadmap: announcing OAuth2 support

Excerpt from XMPP Academy #1 starting at 27m43s.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

ejabberd and XMPP tutorials

- 210/450 - Copyright © 2008 - 2024 ProcessOne

https://www.process-one.net/blog/tag/tutorial/
https://www.process-one.net/blog/install-and-configure-mariadb-with-ejabberd/
https://www.process-one.net/blog/starting-with-mqtt-protocol-and-ejabberd-mqtt-broker/
https://www.process-one.net/blog/publish-subscribe-pattern-and-pubsub-in-ejabberd/
https://www.process-one.net/blog/how-to-set-up-ejabberd-video-voice-calling/
https://www.process-one.net/blog/getting-started-with-websocket-api-in-ejabberd/
https://www.process-one.net/blog/elixir-sips-ejabberd-with-elixir-part-1/
https://www.process-one.net/blog/ejabberd-with-elixir-packet-filters/
https://www.process-one.net/blog/embedding-ejabberd-into-an-elixir-phoenix-web-application/
https://www.process-one.net/blog/how-to-use-ejabberd-as-an-elixir-application-dependency/
https://www.process-one.net/blog/ejabberd-xmpp-server-useful-configuration-steps/
https://www.process-one.net/blog/how-to-move-the-office-to-real-time-im-on-ejabberd/
https://www.process-one.net/blog/how-to-configure-ejabberd-to-get-100-in-xmpp-compliance-test/
https://www.process-one.net/blog/using-a-local-development-trusted-ca-on-macos/
https://www.ejabberd.im/book/index.html
https://www.ejabberd.im/tutorials/
https://youtu.be/-dqQfCpw98E?t=1m33s
https://youtu.be/SbpFgdryyIA?t=2m05s
https://youtu.be/SbpFgdryyIA?t=14m00s
https://youtu.be/SbpFgdryyIA?t=19m42s
https://youtu.be/-dqQfCpw98E?t=16m44s
https://youtu.be/LToKLTf-N_E?t=1m20s
https://youtu.be/LToKLTf-N_E?t=22m34s
https://youtu.be/SbpFgdryyIA?t=27m30s
https://youtu.be/SbpFgdryyIA?t=29m51s
https://youtu.be/-dqQfCpw98E?t=27m43s

What is the impact of Websocket on Web chat performance?

Excerpt from XMPP Academy #3 starting at 25m02s.

Multi-User Chat

Why do avatars / carbons not work in MUC rooms? What is special about MUC rooms?

Excerpt from XMPP Academy #2 starting at 34m15s.

Developer tools and techniques

What are the typical tools for quick XMPP prototyping?

ejabberd and XMPP server-side implementation

How does ejabberd internally store messages which are not yet delivered?

How are privacy lists managed in ejabberd?

Why do we seem to find duplicate in Message Archive Management backend?

Excerpt from XMPP Academy #3 starting at 32m20s.

•

•

•

•

•

•

Multi-User Chat

- 211/450 - Copyright © 2008 - 2024 ProcessOne

https://youtu.be/LToKLTf-N_E?t=25m02s
https://youtu.be/SbpFgdryyIA?t=34m15s
https://youtu.be/LToKLTf-N_E?t=27m45s
https://youtu.be/-dqQfCpw98E?t=22m42s
https://youtu.be/-dqQfCpw98E?t=25m54s
https://youtu.be/LToKLTf-N_E?t=32m20s

Getting started with MIX

MIX stands for Mediated Information eXchange and defined in MIX-CORE (XEP-0369), MIX-PRESENCE (XEP-0403) and MIX-PAM

(XEP-0405). More concretely, ejabberd supports MIX 0.14.1.

It is a work in progress extension for the XMPP protocol to build a group messaging protocol that does not rely on the presence

mechanism. It is designed to overcome the limitation of Multi-User Chat (XEP-0045) , in a context where most clients are mobile

clients.

To do so, MIX is built on top of PubSub (XEP-0060) and use different nodes per channel to separate event types. There is five

nodes to support five different types of event for each MIX channel:

Messages

Presence

Participant list changes

Subject update

Conversion configuration changes

This is a work in progress, but this is a very important task and we are happy to provide the very first server implementation of

the Mix protocol to get up to speed on that specification.

Here is a short walk through what can already be done.

Also note that the specification can (and will) change significantly before it becomes stable. These examples are based on

XEP-0369 v0.1.

Configuration

Configuration is simple:

Install a recent ejabberd version (19.02 or newer)

You need to add mod_mix and mod_mix_pam in ejabberd configuration, modules section:

Make sure you have PubSub enabled. Default configuration is fine:

The examples assume you have this virtual host:

Usage

There is no client supporting MIX yet so here is how it works directly at XMPP stream level.

Here are real-life examples from playing with our MIX implementation:

•

•

•

•

•

•

•

modules:
mod_mix: {}
mod_mix_pam: {}

•

modules:
mod_pubsub:
access_createnode: pubsub_createnode
plugins:
- "flat"
- "pep"

•

hosts:
- shakespeare.example

Getting started with MIX

- 212/450 - Copyright © 2008 - 2024 ProcessOne

https://xmpp.org/extensions/xep-0369.html
https://xmpp.org/extensions/xep-0403.html
https://xmpp.org/extensions/xep-0405.html
https://xmpp.org/extensions/attic/xep-0369-0.14.1.html
https://xmpp.org/extensions/xep-0045.html
https://xmpp.org/extensions/xep-0060.html
https://xmpp.org/extensions/attic/xep-0369-0.1.html

Creating a MIX Channel

First of all, create a new MIX channel following 7.3.2 Creating a Channel:

Joining a MIX Channel

Now tell your server that you want your account to join that MIX channel, using MIX-PAM: 2.7 Joining a Channel:

You receive IQ that confirms success:

Subscribers on the participants node for that channel will also receive the new list of participants (so, including ourselves in that

case):

Setting a nick

You may want to set a nick for this channel (see 7.1.4 Setting a Nick):

Note: Support for MIX nickname registration is not implemented in ejabberd.

<iq id='lx09df27'
to='mix.shakespeare.example'
type='set'>

<create channel='coven' xmlns='urn:xmpp:mix:core:0'/>
</iq>

<iq type='set'
to='hag66@shakespeare.example'
id='E6E10350-76CF-40C6-B91B-1EA08C332FC7'>

<client-join xmlns='urn:xmpp:mix:pam:0'
channel='coven@mix.shakespeare.example'>

<join xmlns='urn:xmpp:mix:core:0'>
<nick>third witch</nick>
<subscribe node='urn:xmpp:mix:nodes:messages'></subscribe>
<subscribe node='urn:xmpp:mix:nodes:presence'></subscribe>
<subscribe node='urn:xmpp:mix:nodes:participants'></subscribe>
<subscribe node='urn:xmpp:mix:nodes:subject'></subscribe>
<subscribe node='urn:xmpp:mix:nodes:config'></subscribe>

</join>
</client-join>

</iq>

<iq type="result"
from="hag66@shakespeare.example"
to="hag66@shakespeare.example/MacBook-Pro-de-Mickael"
id="E6E10350-76CF-40C6-B91B-1EA08C332FC7">

<client-join xmlns='urn:xmpp:mix:pam:0'>
<join xmlns="urn:xmpp:mix:core:0"

jid='d79d011852b97adfaad6#coven@mix.shakespeare.example'>
<nick>third witch</nick>
<subscribe node="urn:xmpp:mix:nodes:messages"></subscribe>
<subscribe node="urn:xmpp:mix:nodes:presence"></subscribe>
<subscribe node="urn:xmpp:mix:nodes:participants"></subscribe>
<subscribe node="urn:xmpp:mix:nodes:subject"></subscribe>
<subscribe node="urn:xmpp:mix:nodes:config"></subscribe>

</join>
</client-join>

</iq>

<message from="coven@mix.shakespeare.example"
type="headline"
to="hag66@shakespeare.example/MacBook-Pro-de-Mickael">

<event xmlns="http://jabber.org/protocol/pubsub#event">
<items node="urn:xmpp:mix:nodes:participants">
<item id="3d1766e2bd1b02167104f350f84b0668f850ef92">
<participant xmlns="urn:xmpp:mix:core:0" jid="hag66@shakespeare.example"></participant>
</item>
</items>
</event>
</message>

<iq type='set'
to='coven@mix.shakespeare.example'
id='7nve413p'>

<setnick xmlns='urn:xmpp:mix:core:0'>
<nick>thirdwitch</nick>

</setnick>
</iq>

Usage

- 213/450 - Copyright © 2008 - 2024 ProcessOne

https://xmpp.org/extensions/xep-0369.html#usecase-admin-create
https://xmpp.org/extensions/xep-0405.html#usecase-user-join
https://xmpp.org/extensions/xep-0369.html#usecase-setting-nick

Sending and receiving messages

You can now start chatting with your peers, by publishing on the message node (see 7.1.6 Sending a Message):

The message is received by all subscribers on the message node on that MIX channel:

Querying participants list

A participant can always get list of participants with a PubSub query on node items for the channel (see 6.6 Determining the

Participants in a Channel):

The channel will reply with list of participants:

Caveats

At the moment it is unclear from XEP-0369 example how you match a message you receive to a participant. We are going to

improve our implementation in the following way:

Add a participant id on the item tag when broadcasting new participant.

Add the participant id on the published items.

Add the participant id in participants list on the publisher

Another issue is that the current specification and implementation will have trouble scaling and offer plenty of opportunities for

"Denial of Service" attacks. This is something that will change in the future as the specification matures. However, currently, do

not deploy or rely on this implementation for large-scale production services. The work is still an experiment to progress on the

specifications by offering client developers to give real life feedback on a reference implementation of the current specification.

<message to='coven@mix.shakespeare.example'
id='92vax143g'
type='groupchat'>

<body>Harpier cries: 'tis time, 'tis time.</body>
</message>

<message
to='hag77@shakespeare.example'
from='coven@mix.shakespeare.example/19be8c262ed618e078b7'
type='groupchat'
id='1625493702877370'>
<mix xmlns='urn:xmpp:mix:core:0'>
<nick>thirdwitch</nick>
<jid>hag66@shakespeare.example</jid>

</mix>
<body>Harpier cries: 'tis time, 'tis time.</body>

</message>

<iq type='get'
to='coven@mix.shakespeare.example'
id='mix4'>

<pubsub xmlns='http://jabber.org/protocol/pubsub'>
<items node='urn:xmpp:mix:nodes:participants'></items>

</pubsub>
</iq>

<iq to='hag66@shakespeare.example/tka1'
from='coven@mix.shakespeare.example'
type='result'
id='kl2fax27'>

<pubsub xmlns='http://jabber.org/protocol/pubsub'>
<items node='urn:xmpp:mix:nodes:participants'>
<item id='19be8c262ed618e078b7'>
<participant nick='thirdwitch'

jid='hag66@shakespeare.example'
xmlns='urn:xmpp:mix:core:0'/>

</item>
<item id='6be2b26cbf4d7108f1fb'>
<participant jid='hag77@shakespeare.example'

xmlns='urn:xmpp:mix:core:0'/>
</item>

</items>
</pubsub>

</iq>

1.

2.

3.

Caveats

- 214/450 - Copyright © 2008 - 2024 ProcessOne

https://xmpp.org/extensions/xep-0369.html#usecase-user-message
https://xmpp.org/extensions/xep-0369.html#find-channel-participants
https://xmpp.org/extensions/xep-0369.html#find-channel-participants

Conclusion

We are only at the beginning of MIX. However, we are excited to have reached a point where it is already usable in some cases.

It is still missing on administrative tasks, right management, user invitations, relationship with MAM archiving and probably a lot

more. And we need consolidations on participants message attribution. However, we want to iterate fast with client developers to

prototype implementation changes and have meaningful and real life feedback to improve XEP-0359.

Send us your feedback !

Conclusion

- 215/450 - Copyright © 2008 - 2024 ProcessOne

MQTT Support

Benefits

ejabberd is a multiprotocol server that supports MQTT out of the box since ejabberd Business Edition 4.0 and ejabberd

Community Server 19.02

There are major benefits in using MQTT service embedded in ejabberd:

MQTT service relies on ejabberd infrastructure code, that has been battle tested since 15+ years, like the clustering engine.

ejabberd MQTT service has been tested on large scale and can support millions of concurrent connections highly efficiently.

ejabberd MQTT is rock-solid and highly scalable.

The ejabberd APIs and modules can be reused in MQTT. Authentication, virtual hosting, database backends, ... They both work with

XMPP and MQTT. You can also share your security policy, as defined in the configuration file between the two protocols.

You can leverage existing skills and plugins you have written for ejabberd, like for example custom authentication.

You can deploy services that take advantage of both protocols and have them interoperate with each other, on a single platform,

with a single tool.

ejabberd supports MQTT 5: it is a state of the art, modern MQTT server. And it also supports MQTT 3.1.1 in case you want to use

previous clients.

In summary:

You can switch between XMPP and MQTT as you wish, even use both protocols on the same infrastructure.

You will save on infrastructure, given the high-performance of the platform.

You get support on solution design for real-time infrastructure and can get help choosing between XMPP and MQTT, from a

vendor that has no interest in selling one protocol more than another.

ejabberd Business Edition offers a different clustering than eCS. Using MQTT with ejabberd Business Edition means you can

leverage:

The clustering engine of eBE will be used for the MQTT service. It means that you have a more scalable cluster, that supports

geoclustering. With geoclustering, you can deploy a single MQTT service across different datacenters, spread in different

regions. You can deploy a truly global service.

The backend integration that are supported in ejabberd Business Edition will be available in MQTT. You have no need to

develop support for new API.

Basic Setup

Maybe you already have MQTT enabled in your ejabberd server, as it comes enabled by default in many distributions.

MQTT support in ejabberd is enabled by adding mod_mqtt to the list of listen and the list of modules like this:

The listener on port 1883 is MQTT over cleartext TCP/IP connection; you can later setup encryption, WebSocket, and encrypted

WebSocket.

For available options you can consult the mod_mqtt listener and the mod_mqtt module.

1.

2.

3.

4.

5.

•

•

•

•

•

listen:
-
port: 1883
module: mod_mqtt
backlog: 1000

modules:
mod_mqtt: {}

MQTT Support

- 216/450 - Copyright © 2008 - 2024 ProcessOne

https://mqtt.org/

Test Setup

Start ejabberd server and you can connect to ejabberd MQTT service with your preferred MQTT client.

Let's use the clients included with mosquitto, available in Debian, Brew and many others (see mosquitto downloads).

First of all register several accounts and subscribe one to the topic test/1 with:

Then go to another terminal or window and publish something on that topic:

You will see the message received and displayed in the mosquitto_sub window:

Access Control

The mod_mqtt module provides two options for access control:

access_subscribe to restrict access for subscribers,

and access_publish to restrict access for publishers.

Both options accept mapping filter: rule where filter is an MQTT topic filter and rule is the standard ejabberd Access Rule.

As an example, let's say only author@localhost is allowed to publish to topic "/test/1/" and its subtopics, while only

user1@localhost is allowed to subscribe to this topic and its subtopics, and nobody else can publish or subscribe to anything else.

The configuration will look something like this:

Encryption

Self-Signed Certificate

If you have already setup encryption in ejabberd, you can bypass this step.

ejabberdctl register author localhost Pass
ejabberdctl register user1 localhost Pass

mosquitto_sub -u user1@localhost -P Pass -t "test/1" -d -v

Client (null) sending CONNECT
Client (null) received CONNACK (0)
Client (null) sending SUBSCRIBE (Mid: 1, Topic: test/1, QoS: 0, Options: 0x00)
Client (null) received SUBACK
Subscribed (mid: 1): 0

mosquitto_pub -u author@localhost -P Pass -t "test/1" -d -m "ABC"

Client (null) sending CONNECT
Client (null) received CONNACK (0)
Client (null) sending PUBLISH (d0, q0, r0, m1, 'test/1', ... (3 bytes))
Client (null) sending DISCONNECT

Client (null) received PUBLISH (d0, q0, r0, m0, 'test/1', ... (3 bytes))
test/1 ABC

•

•

acl:
publisher:
user: author@localhost

subscriber:
user: user1@localhost

modules:
mod_mqtt:
access_publish:
"test/1/#":
- allow: publisher
- deny

"#":
- deny

access_subscribe:
"test/1/#":
- allow: subscriber
- deny

"#":
- deny

Test Setup

- 217/450 - Copyright © 2008 - 2024 ProcessOne

https://mosquitto.org/
https://packages.debian.org/sid/mosquitto-clients
https://formulae.brew.sh/formula/mosquitto
https://mosquitto.org/download/

If you want to use TLS, you may want to create a self-signed certificate (at least to get started). The following page is a nice

guide: Mosquitto SSL Configuration -MQTT TLS Security.

Here is a summary of the steps, adapted for ejabberd MQTT:

Now copy mqtt.pem to the path with ejabberd configuration files, and configure accordingly:

Configure Encryption

Add a new listener with tls option in the port number 8883 (the standard for encrypted MQTT):

The listener on port 1883 is MQTT over cleartext TCP/IP connection. The listener on port 8883 is MQTT over TLS. You can enable

both or only one of them depending on your needs.

Test Encryption

You can repeat the commands from previous test, appending -p 8883 to use the encrypted port. If you are using a self-signed

certificate as explained previously, you will also have to append --cafile server.crt . For example:

WebSocket

Setup WS

Add mod_mqtt as a request_handler on the ejabberd_http listener:

This configuration maps the path /mqtt to the MQTT WebSocket handler on the main ejabberd HTTP listener.

You can enable listeners independently, for example enable only the WebSocket listener and not the TCP/IP ones.

openssl genrsa -des3 -out ca.key 4096
openssl req -new -x509 -days 1826 -key ca.key -out ca.crt
openssl genrsa -out server.key 4096
openssl req -new -out server.csr -key server.key
openssl x509 -req -in server.csr -CA ca.crt -CAkey ca.key -CAcreateserial -out server.crt -days 360
cat server.crt server.key > mqtt.pem

certfiles:
- "/etc/ejabberd/mqtt.pem"

listen:
-
port: 1883
module: mod_mqtt
backlog: 1000

-
port: 8883
module: mod_mqtt
backlog: 1000
tls: true

mosquitto_sub -u user1@localhost -P Pass -t "test/1" -d -v -p 8883 --cafile server.crt

listen:
-
port: 5280
module: ejabberd_http
request_handlers:
/mqtt: mod_mqtt

WebSocket

- 218/450 - Copyright © 2008 - 2024 ProcessOne

http://www.steves-internet-guide.com/mosquitto-tls/

Test WS

Our beloved mosquitto client does not support MQTT over WebSocket, so you may have to find some capable MQTT client. For

example, in MQTTX, setup in the login window:

Host: ws:// localhost

Port: 5280

Path: /mqtt

If you need an example on how to use MQTTJS library, you can check our small example project: mqttjs-demo

Encrypted WS

To enable encryption on WebSocket, enable tls like this:

For testing this in the MQTTX client:

Host: wss:// localhost

Port: 5281

Path: /mqtt

SSL/TLS: true

Certificate: CA signed server

If you used a self-signed certificate, you will have to disable SSL Secure

•

•

•

listen:
-
port: 5281
ip: "::"
module: ejabberd_http
tls: true
request_handlers:
/mqtt: mod_mqtt

•

•

•

•

•

•

WebSocket

- 219/450 - Copyright © 2008 - 2024 ProcessOne

https://mqttx.app/
https://github.com/processone/mqttjs-demo

Setting vCards / Avatars for MUC rooms

ejabberd supports the ability to set vCard for MUC rooms. One of the most common use case is to be able to define an avatar for

your own MUC room.

How does it work?

To be allowed to set vCard for a given room, you need to be owner of that room.

To set up vCard avatar for your MUC room, you first need to make sure you convert your avatar image to base64 encoding, so

that you can pass it on XMPP stream.

If you want to convert it manually from command line, you can use base64 tool. For example:

However, when coding the client, you can more likely directly do the proper image base64 encoding in your code.

Setting up MUC vCard

To set the MUC vCard, you can send a vcard-temp set request, as defined in XEP-0054: vcard-temp, but directly addressed to

your MUC room. For example, assuming my room id is test@conference.localhost :

Please, note that you have to set the mime type of the image properly to help the client displaying it.

You can of course add other fields to the vCard if needed.

base64 muc_logo.png > muc_logo.b64

<iq id='set1'
type='set'
to='test@conference.localhost'>

<vCard xmlns='vcard-temp'>
<PHOTO>
<TYPE>image/png</TYPE>
<BINVAL>

iVBORw0KGgoAAAANSUhEUgAAAEAAAABACAYAAACqaXHeAAAABGdBTUEAALGPC/
xhBQAAACBjSFJNAAB6JgAAgIQAAPoAAACA6AAAdTAAAOpgAAA6mAAAF3CculE8AAAACXBIWXMAAAsTAAALEwEAmpwYAAAB1WlUWHRYTUw6Y29tLmFkb2JlLnhtcAAAAAAAPHg6eG1wbWV0YSB4bWxuczp4PSJhZG9iZTpuczptZXRhLyIgeDp4bXB0az0iWE1QIENvcmUgNS40LjAiPgogICA8cmRmOlJERiB4bWxuczpyZGY9Imh0dHA6Ly93d3cudzMub3JnLzE5OTkvMDIvMjItcmRmLXN5bnRheC1ucyMiPgogICAgICA8cmRmOkRlc2NyaXB0aW9uIHJkZjphYm91dD0iIgogICAgICAgICAgICB4bWxuczp0aWZmPSJodHRwOi8vbnMuYWRvYmUuY29tL3RpZmYvMS4wLyI+CiAgICAgICAgIDx0aWZmOkNvbXByZXNzaW9uPjE8L3RpZmY6Q29tcHJlc3Npb24+CiAgICAgICAgIDx0aWZmOk9yaWVudGF0aW9uPjE8L3RpZmY6T3JpZW50YXRpb24+CiAgICAgICAgIDx0aWZmOlBob3RvbWV0cmljSW50ZXJwcmV0YXRpb24+MjwvdGlmZjpQaG90b21ldHJpY0ludGVycHJldGF0aW9uPgogICAgICA8L3JkZjpEZXNjcmlwdGlvbj4KICAgPC9yZGY6UkRGPgo8L3g6eG1wbWV0YT4KAtiABQAADkVJREFUeAHtWgtwVNUZ/
nY3m0022bxIyItAIBBArZRUUbCoKCgVnWJxxlataO1rlKl2amec1urUdmrp2KE6nXFgGIWpQGmlzCDaoTDUBwoMVcFCeOQFhDwhCXlsNrub3fT7z7l3H8kmm4RUWsNJ7uvcc//zf//r/
OectfSxYBwX6zjGrqBfEcDltID/Be+7rBZgsVgup/yvuIBI4LJawGVX//gUQB8iY0/C56EFlWj0Szfi+7+Znow8ThAi5N84GRA1Hek3MvRY/
huJkEg4Eq90GAuwtItVbypFayosCM14bIFo0LqtxTK0ZweDfvZr5WHDmAogGAwq3q3W2AwEg33weHrQ6fYgM90Fh8OuzHGgEARILKBh840E2dcXVIBMwcm1t7cbXn8LvN4L8PnOwx+4yLo2+PwNSHfNx8QJi2C1JuKSXUBrW2syErinx4uW1nY0NLbgXP0FNDS34ejJelTVd+Cplbfi9lvKIvlV96ZFuD3n0Ni8DclJ03kUIcmRB0diFhm2hyxGQGsTF01qgXt9LejoOonOrk/
g7j5AsJsQCOhW0pzyx6T8LcjJukWBF6sZtQA0cA4jVvEpra229k5UVdfhyLEaHPi0BusPngM+7BR98GjEzKVzsGX1A5h7bWkUYPWga3i2INDrRlPLj9UQJcaUkHA1BXEXUlPmIS31GqQ6i2GzJYU+c3fX4nzrbrS1vw6vb5+ql+/
IGr8tQV+wCn18nlp0EBMy5+meDPcbsQuYGje1HQgEUVFVi/
f3H8Xf9hzFrjfq2IGXhwNZC11o9VP0B9x4ee1teORbS5DmSoliQD0YJ9OUO7sqcLK6lIIt4RsfgsFapT2JKzYCSU56FJkZy5Hhmou2jkO0lhXopablndVazO8cdC0RvIXXOvXttKL9yM66Ubmc2IRpNSMSgPi4aFsOAX74aAXefOsAfrvuCFDrAaY6YS9woCTVDpfDhkO7W4A5Tux+cQUW33qdghkgDatBw8AdupgC6Og6hZNVM9kPIViy+F5M30XmAzxqKBBt1gJY7qWdzVbKd262reNV6sQqC+j3dSgq2IGC3HtYL7HFfKduh+8CAt7U+qnKs9j4l3fxm58fFHKwLEjD5Bkp8NLJnAlW1Lt70bGrHt9/
ugzPrFqOqVPyVW9CwzZIgNTsxDoTNFqJuEm9FIHYbC7e+wiogfc5vE/g/SnjY0oFoqgS+P2VyMpcrcDrl2HNG43jCyDS5Ls9Xry54z2sfGYXcLoHhYsy4aAaznl6UdsTwLSUBFTWUAuVXry++T7cf+
+tNFcHtaQtxxSg2flwr6JLEbTWO4UhAiHrFksGr208JMZIEZOXvopooZWwJ85FUf531BvTutRDxGnIIGiajDBeW9eEF9Zsw/rfHwZumIDS0hRUU9O9dL4JNPf0RAsqd1/
A9cvz8cet92Fe2WzVjbiKTWx1BIU2pfFGfaPNN1wloC+GH3kn/Fosibzz8J4RP+9ljiDZhlBi8zCoAEzw4kv/Lq/Csic3onZPK2bekYcL1PapDr/qPD/
ZhgY+t7zfgmdfXIhVjy1Dbo74rfjnyMHLdzqp4Y1WvVQNr6j2Wey3kdF/FlwperTRlhObREwBRIL/9LNTKFuxjlYWxKw7J+CEAZyiRq7DioaabnFHbH/
7Ydxz5wKl7cFMXmsoPiplAbH5HbJWU25krMqjC5xATe1qTC9+Hon29EGtIKZdmIyeZLAre2i9BGHMmJGKE+0+wa00k51oRVNjD+5dXIhj//wRlt/
1VQVeRXm6jI7CYX5NoYRr4tzFl9MQBEQIhWjvXIPqs6sRCHrJj1UJof9HAwQgjIrPt7R1YNXzm4EzPpQWOVFBzUvSozyRp2QbOTzhw5T8dMwunaLoKn/vF+WFnqTAZgAMSGoWp6g+4rSJ/7qZ2eMsXGx/
EbX1m1RzLYRo6lECEM2bjG7Y8g/s2VyD2fPTlb9bCZhDri7E3uILIp2Jzh9+fRgHPy43OtCvhY6ANoGL4BqbWrD+T++g+YIOXCKYwcolKV9zQm37eTTBbs9A04XH0HrxU6O7OAKQVuL3Tz/
xPjIXZuMsI73klP3Z7Q70IZNuIGXb2weZiQWU8OQq5i+g5ejodGPnrv248aGX8b2VHD6HUUJBcBhtYzfRc5O+vjbG0WwVS+ubXlETpP6uELIAU/
tiolt3fES6QWRxeHNzGBustNIK7Del4aUXjuDY8RrVLMFmU9e2i534+56D+PaTr+KepW/gzLvtmPd1MnPp6h2MnX71phAqGZtK0NW9Aa3tH/drI9mEUczAV326Hqs3HOVY70KbT/w1NscCpIN5/
gyXHRVBH3bsOoRZjAVi6h9wXvD69kPY++fTQKETVy3NRnlzDy4yYZLx+XMt5FPsV/htbdvJmeAC3ouShBGLFoAJXhg7cqwaqOpAaUkeTnXKwoER+ORlRFE4aOK1BIXr07HunXLUNa3H2v3ngH3NQEkapi/
ORReHz4teCtJD11B/EUT+67da2pJKSy7m9ryEbs8qpDiLqAhtISEXEKAyhH1WfpZsyUIFL/r7IdlkDsRoy3S4uxdr15wAuvwovSMfhZOTUcn40SgNVIltSbGIjzYPiEVL1/VQkdmMU0F09wi+cFEuIDiFPQ9z/
eM154G8RPQwyKnKcNuYd2JaXoYJO0eJgpvTqOg+ZTnSWFvP8IGbHaggaD6MyVXS5iSl1B5vQxRFHQMMCXi9PtS1MLNLt8HHYUwkIOehinpPjH7enKGZq0KpCOx43w5Od+RCG5yWvJFAzuSM50CvHoZFOcJhyAX4pCTkF83Tt0cVrISmwfvowYdICEtjXpidGDQ1o1oABtN2uw05LocKWHb15lJgjJ73Me1VEROA2rH0WoIoW14wVxE2Dfxq7j69KINzfb+a54sNm+
+k3edXxlAECoB4Okc0nh32iQYM3UeUCyQm2nHtrEls4IOdbnDZy5ixkEiNc4LE4T85eXIULG0BDAhmbj7nmmlsYEebt5dWED8IRlEb64exMARFI10tjCY7VsKZLAqWoqUbZQFSPWvGZHzju9PQfLwbeUkU2aiioVAafQnlAZdsAZwCk4YsqAY5QGWmL0eCLVn5vx4FZGwwiswCZfbmSnXi0fvmA83d6qU0vGQ+zE54HY5SQ3nAcBpH0I6+Fa6ZAqNQLY44HGXcE7jJaBImHBJA5MeLFs7Fg09cjZp9HVzp5oqrzOcjG4z03ugv3O1ICYymve7NAiczXOZ22b/
i+mBOlPaFahQumb5KLEhxJuGZJ+5m1gBUM7UVVxDriGcJ8j6FNFyMHebBJUMk8hkJFgZW0/
OGBqRsjp9YLFyKYgZHqjzSeCTzGE7RsctiuQq+3gruBf6U65RLjA9FMGEkUQKQFip9pd9fM3sa3tr5Te7qnIed7TPIvZpAGGRiXYS0m4LqZDJlHpIcqqyytw/
8H6YLkJC05aIG0CNUeXTw4OZL3CJJHC3WMovz/
3JuwC5E8aSfcG1C5jcyK4yGrFPhCKKmAKTq7jvnY8PmDjzywF+BBRORyilV1yBzBFFygOBR6yWvtDlRnkiEAqifQDOo9uAkJ006ARHqQxQyKmYrI7HF0h4SmujNahWWJbfvX+StdCirWrMJ/
jhsCXmYPvk15je5McELhUG3xvRylpbmlm178eAvdyEpPUElkj7pJ6KkE317ux9fKU7FKz+7l8EmjTuzvWpFyGwWFK0QUUlxIZK4WaKsSeXjZgu5CmEL/
L2d6HKf5p2SgGLeZnVwUaMSdY3LSEe0KILgcrQyZ5MhFwVWxO/
LuRRWhulTtnIzdfqg4PlxeEFEHiKLMCvLW7LCc8ei6zBl3Xs4w0WNrHQ7WsWWI4pDVNUdQLrTji9z59eZzHR6iBIbvHygtWhPcHHI+tIAClbuCJ9rlOpIAQgvifyykOJr5G8ByjmS/
YA7wc+RjwIDvNCNXQa4gNlMmDT38d7ZfRBnuNE5aVEW6mRxo1/xsy1Fr1ygmz+AEAHIjpEIUYnKkJcoXA2rAzQfSVBbnZ7BSb08y0p1AoczjxKRthTOWvlkQTH78FJZNYpI/sTXUJh/
PxXnHFLzqjFPgwpAXEC2tCqqz2HlC7uBualq81OwGlyYFovc5AS0pYpfWkJCk28F7GiK/
o5xo18JB7BU0s4jQI8CLjylpvwQhbmPI8OwnFgBrx859RhTADIUCgBZH1izdidwvAfTFmdyL5BRWUAZGpWdIRkhTvyrXdbJkTg7M9SHYRSh57G6Ud33tRM4+yQfTufD/
LnLI9z7564U44SU4YKXtgMEoIOfHio2vbkXr/7uMGYsmYgKrg+qQsAFBJ7CYbGijsNSuRtPPVuGMw3t2H7kQmhOoRuP7VmA+cgG52zISHsOEzKWUuNzlLlLT/
L7AbGSsKXE7z9qFBDNmxsjsqR915KNyL45U632OCW54TDm4zB4up5j83H+AmNeJrb94mtquPR6/
TjFX4rIXCLFGZ1vx2dj6BZm0HR76rjB8RED8TzGmaIQUBGMlJEAN3sMCcAc9uTF3g8+we0Pb8LUEieS+IMHWR0ONHF8r5LAwyRpWT4eX1GGZUvmYfKkXJNW6GoyHKoYk5vI4KMJXgpwkyUlAJPhHvr81u3v8rc8G/
k+lYe4AqVbkMJfdU3EbdcX44ayGcwSpyJ3ot4Cl29N1kw6ow1+JlNDXU3QEnDHoh8Lzb5PCLVzC2v72x9i977jmFmcw2QmlYcL+bmZPLKQk5NJv5NEI8xepMuEa/+/7iiAPgqAS9vUvp9jt/
ykZahfdCiNU+sitLHQwOUWV5QL9GfGBKvqBbDR4IsA3MQaCoICtn/5IgHtj818DuUB4wGsCTryqjOeyJpxdn9FAONM4QPgXrGAASIZZxVXLGCcKXwA3CsWMEAk46ziP3wnyrgPINtbAAAAAElFTkSuQmCC

</BINVAL>
</PHOTO>

</vCard>
</iq>

Setting vCards / Avatars for MUC rooms

- 220/450 - Copyright © 2008 - 2024 ProcessOne

https://xmpp.org/extensions/xep-0054.html

After that IQ set stanza, the server will reply with success:

The MUC room also broadcasts a notification about non-privacy related configuration change to users that are currently in the

room:

Retrieving a MUC room vCard

Any user can retrieve the MUC vCard but sending a vcard-temp get IQ to the room itself:

Server will reply by sending back the vCard:

<iq from="test@conference.localhost"
type="result"
to="owner@localhost/r"
id="set1">

<vCard xmlns="vcard-temp"/>
</iq>

<message from="test@conference.localhost"
type="groupchat"
to="owner@localhost/r"
id="17095969463368094420">

<x xmlns="http://jabber.org/protocol/muc#user">
<status code="104"/>
</x>
</message>

<iq to='test@conference.localhost'
id='get1'
type='get'>

<vCard xmlns='vcard-temp'/>
</iq>

<iq from="test@conference.localhost"
type="result"
to="user@localhost/r"
id="get1">

<vCard xmlns="vcard-temp">
<PHOTO>
<TYPE>image/png</TYPE>
<BINVAL>

iVBORw0KGgoAAAANSUhEUgAAAEAAAABACAYAAACqaXHeAAAABGdBTUEAALGPC/
xhBQAAACBjSFJNAAB6JgAAgIQAAPoAAACA6AAAdTAAAOpgAAA6mAAAF3CculE8AAAACXBIWXMAAAsTAAALEwEAmpwYAAAB1WlUWHRYTUw6Y29tLmFkb2JlLnhtcAAAAAAAPHg6eG1wbWV0YSB4bWxuczp4PSJhZG9iZTpuczptZXRhLyIgeDp4bXB0az0iWE1QIENvcmUgNS40LjAiPgogICA8cmRmOlJERiB4bWxuczpyZGY9Imh0dHA6Ly93d3cudzMub3JnLzE5OTkvMDIvMjItcmRmLXN5bnRheC1ucyMiPgogICAgICA8cmRmOkRlc2NyaXB0aW9uIHJkZjphYm91dD0iIgogICAgICAgICAgICB4bWxuczp0aWZmPSJodHRwOi8vbnMuYWRvYmUuY29tL3RpZmYvMS4wLyI+CiAgICAgICAgIDx0aWZmOkNvbXByZXNzaW9uPjE8L3RpZmY6Q29tcHJlc3Npb24+CiAgICAgICAgIDx0aWZmOk9yaWVudGF0aW9uPjE8L3RpZmY6T3JpZW50YXRpb24+CiAgICAgICAgIDx0aWZmOlBob3RvbWV0cmljSW50ZXJwcmV0YXRpb24+MjwvdGlmZjpQaG90b21ldHJpY0ludGVycHJldGF0aW9uPgogICAgICA8L3JkZjpEZXNjcmlwdGlvbj4KICAgPC9yZGY6UkRGPgo8L3g6eG1wbWV0YT4KAtiABQAADkVJREFUeAHtWgtwVNUZ/
nY3m0022bxIyItAIBBArZRUUbCoKCgVnWJxxlataO1rlKl2amec1urUdmrp2KE6nXFgGIWpQGmlzCDaoTDUBwoMVcFCeOQFhDwhCXlsNrub3fT7z7l3H8kmm4RUWsNJ7uvcc//zf//r/
OectfSxYBwX6zjGrqBfEcDltID/Be+7rBZgsVgup/yvuIBI4LJawGVX//gUQB8iY0/C56EFlWj0Szfi+7+Znow8ThAi5N84GRA1Hek3MvRY/
huJkEg4Eq90GAuwtItVbypFayosCM14bIFo0LqtxTK0ZweDfvZr5WHDmAogGAwq3q3W2AwEg33weHrQ6fYgM90Fh8OuzHGgEARILKBh840E2dcXVIBMwcm1t7cbXn8LvN4L8PnOwx+4yLo2+PwNSHfNx8QJi2C1JuKSXUBrW2syErinx4uW1nY0NLbgXP0FNDS34ejJelTVd+Cplbfi9lvKIvlV96ZFuD3n0Ni8DclJ03kUIcmRB0diFhm2hyxGQGsTF01qgXt9LejoOonOrk/
g7j5AsJsQCOhW0pzyx6T8LcjJukWBF6sZtQA0cA4jVvEpra229k5UVdfhyLEaHPi0BusPngM+7BR98GjEzKVzsGX1A5h7bWkUYPWga3i2INDrRlPLj9UQJcaUkHA1BXEXUlPmIS31GqQ6i2GzJYU+c3fX4nzrbrS1vw6vb5+ql+/
IGr8tQV+wCn18nlp0EBMy5+meDPcbsQuYGje1HQgEUVFVi/
f3H8Xf9hzFrjfq2IGXhwNZC11o9VP0B9x4ee1teORbS5DmSoliQD0YJ9OUO7sqcLK6lIIt4RsfgsFapT2JKzYCSU56FJkZy5Hhmou2jkO0lhXopablndVazO8cdC0RvIXXOvXttKL9yM66Ubmc2IRpNSMSgPi4aFsOAX74aAXefOsAfrvuCFDrAaY6YS9woCTVDpfDhkO7W4A5Tux+cQUW33qdghkgDatBw8AdupgC6Og6hZNVM9kPIViy+F5M30XmAzxqKBBt1gJY7qWdzVbKd262reNV6sQqC+j3dSgq2IGC3HtYL7HFfKduh+8CAt7U+qnKs9j4l3fxm58fFHKwLEjD5Bkp8NLJnAlW1Lt70bGrHt9/
ugzPrFqOqVPyVW9CwzZIgNTsxDoTNFqJuEm9FIHYbC7e+wiogfc5vE/g/SnjY0oFoqgS+P2VyMpcrcDrl2HNG43jCyDS5Ls9Xry54z2sfGYXcLoHhYsy4aAaznl6UdsTwLSUBFTWUAuVXry++T7cf+
+tNFcHtaQtxxSg2flwr6JLEbTWO4UhAiHrFksGr208JMZIEZOXvopooZWwJ85FUf531BvTutRDxGnIIGiajDBeW9eEF9Zsw/rfHwZumIDS0hRUU9O9dL4JNPf0RAsqd1/
A9cvz8cet92Fe2WzVjbiKTWx1BIU2pfFGfaPNN1wloC+GH3kn/Fosibzz8J4RP+9ljiDZhlBi8zCoAEzw4kv/Lq/Csic3onZPK2bekYcL1PapDr/qPD/
ZhgY+t7zfgmdfXIhVjy1Dbo74rfjnyMHLdzqp4Y1WvVQNr6j2Wey3kdF/FlwperTRlhObREwBRIL/9LNTKFuxjlYWxKw7J+CEAZyiRq7DioaabnFHbH/
7Ydxz5wKl7cFMXmsoPiplAbH5HbJWU25krMqjC5xATe1qTC9+Hon29EGtIKZdmIyeZLAre2i9BGHMmJGKE+0+wa00k51oRVNjD+5dXIhj//wRlt/
1VQVeRXm6jI7CYX5NoYRr4tzFl9MQBEQIhWjvXIPqs6sRCHrJj1UJof9HAwQgjIrPt7R1YNXzm4EzPpQWOVFBzUvSozyRp2QbOTzhw5T8dMwunaLoKn/vF+WFnqTAZgAMSGoWp6g+4rSJ/7qZ2eMsXGx/
EbX1m1RzLYRo6lECEM2bjG7Y8g/s2VyD2fPTlb9bCZhDri7E3uILIp2Jzh9+fRgHPy43OtCvhY6ANoGL4BqbWrD+T++g+YIOXCKYwcolKV9zQm37eTTBbs9A04XH0HrxU6O7OAKQVuL3Tz/
xPjIXZuMsI73klP3Z7Q70IZNuIGXb2weZiQWU8OQq5i+g5ejodGPnrv248aGX8b2VHD6HUUJBcBhtYzfRc5O+vjbG0WwVS+ubXlETpP6uELIAU/
tiolt3fES6QWRxeHNzGBustNIK7Del4aUXjuDY8RrVLMFmU9e2i534+56D+PaTr+KepW/gzLvtmPd1MnPp6h2MnX71phAqGZtK0NW9Aa3tH/drI9mEUczAV326Hqs3HOVY70KbT/w1NscCpIN5/
gyXHRVBH3bsOoRZjAVi6h9wXvD69kPY++fTQKETVy3NRnlzDy4yYZLx+XMt5FPsV/htbdvJmeAC3ouShBGLFoAJXhg7cqwaqOpAaUkeTnXKwoER+ORlRFE4aOK1BIXr07HunXLUNa3H2v3ngH3NQEkapi/
ORReHz4teCtJD11B/EUT+67da2pJKSy7m9ryEbs8qpDiLqAhtISEXEKAyhH1WfpZsyUIFL/r7IdlkDsRoy3S4uxdr15wAuvwovSMfhZOTUcn40SgNVIltSbGIjzYPiEVL1/VQkdmMU0F09wi+cFEuIDiFPQ9z/
eM154G8RPQwyKnKcNuYd2JaXoYJO0eJgpvTqOg+ZTnSWFvP8IGbHaggaD6MyVXS5iSl1B5vQxRFHQMMCXi9PtS1MLNLt8HHYUwkIOehinpPjH7enKGZq0KpCOx43w5Od+RCG5yWvJFAzuSM50CvHoZFOcJhyAX4pCTkF83Tt0cVrISmwfvowYdICEtjXpidGDQ1o1oABtN2uw05LocKWHb15lJgjJ73Me1VEROA2rH0WoIoW14wVxE2Dfxq7j69KINzfb+a54sNm+
+k3edXxlAECoB4Okc0nh32iQYM3UeUCyQm2nHtrEls4IOdbnDZy5ixkEiNc4LE4T85eXIULG0BDAhmbj7nmmlsYEebt5dWED8IRlEb64exMARFI10tjCY7VsKZLAqWoqUbZQFSPWvGZHzju9PQfLwbeUkU2aiioVAafQnlAZdsAZwCk4YsqAY5QGWmL0eCLVn5vx4FZGwwiswCZfbmSnXi0fvmA83d6qU0vGQ+zE54HY5SQ3nAcBpH0I6+Fa6ZAqNQLY44HGXcE7jJaBImHBJA5MeLFs7Fg09cjZp9HVzp5oqrzOcjG4z03ugv3O1ICYymve7NAiczXOZ22b/
i+mBOlPaFahQumb5KLEhxJuGZJ+5m1gBUM7UVVxDriGcJ8j6FNFyMHebBJUMk8hkJFgZW0/
OGBqRsjp9YLFyKYgZHqjzSeCTzGE7RsctiuQq+3gruBf6U65RLjA9FMGEkUQKQFip9pd9fM3sa3tr5Te7qnIed7TPIvZpAGGRiXYS0m4LqZDJlHpIcqqyytw/
8H6YLkJC05aIG0CNUeXTw4OZL3CJJHC3WMovz/
3JuwC5E8aSfcG1C5jcyK4yGrFPhCKKmAKTq7jvnY8PmDjzywF+BBRORyilV1yBzBFFygOBR6yWvtDlRnkiEAqifQDOo9uAkJ006ARHqQxQyKmYrI7HF0h4SmujNahWWJbfvX+StdCirWrMJ/
jhsCXmYPvk15je5McELhUG3xvRylpbmlm178eAvdyEpPUElkj7pJ6KkE317ux9fKU7FKz+7l8EmjTuzvWpFyGwWFK0QUUlxIZK4WaKsSeXjZgu5CmEL/
L2d6HKf5p2SgGLeZnVwUaMSdY3LSEe0KILgcrQyZ5MhFwVWxO/
LuRRWhulTtnIzdfqg4PlxeEFEHiKLMCvLW7LCc8ei6zBl3Xs4w0WNrHQ7WsWWI4pDVNUdQLrTji9z59eZzHR6iBIbvHygtWhPcHHI+tIAClbuCJ9rlOpIAQgvifyykOJr5G8ByjmS/
YA7wc+RjwIDvNCNXQa4gNlMmDT38d7ZfRBnuNE5aVEW6mRxo1/xsy1Fr1ygmz+AEAHIjpEIUYnKkJcoXA2rAzQfSVBbnZ7BSb08y0p1AoczjxKRthTOWvlkQTH78FJZNYpI/sTXUJh/
PxXnHFLzqjFPgwpAXEC2tCqqz2HlC7uBualq81OwGlyYFovc5AS0pYpfWkJCk28F7GiK/
o5xo18JB7BU0s4jQI8CLjylpvwQhbmPI8OwnFgBrx859RhTADIUCgBZH1izdidwvAfTFmdyL5BRWUAZGpWdIRkhTvyrXdbJkTg7M9SHYRSh57G6Ud33tRM4+yQfTufD/
LnLI9z7564U44SU4YKXtgMEoIOfHio2vbkXr/7uMGYsmYgKrg+qQsAFBJ7CYbGijsNSuRtPPVuGMw3t2H7kQmhOoRuP7VmA+cgG52zISHsOEzKWUuNzlLlLT/
L7AbGSsKXE7z9qFBDNmxsjsqR915KNyL45U632OCW54TDm4zB4up5j83H+AmNeJrb94mtquPR6/
TjFX4rIXCLFGZ1vx2dj6BZm0HR76rjB8RED8TzGmaIQUBGMlJEAN3sMCcAc9uTF3g8+we0Pb8LUEieS+IMHWR0ONHF8r5LAwyRpWT4eX1GGZUvmYfKkXJNW6GoyHKoYk5vI4KMJXgpwkyUlAJPhHvr81u3v8rc8G/
k+lYe4AqVbkMJfdU3EbdcX44ayGcwSpyJ3ot4Cl29N1kw6ow1+JlNDXU3QEnDHoh8Lzb5PCLVzC2v72x9i977jmFmcw2QmlYcL+bmZPLKQk5NJv5NEI8xepMuEa/+/7iiAPgqAS9vUvp9jt/
ykZahfdCiNU+sitLHQwOUWV5QL9GfGBKvqBbDR4IsA3MQaCoICtn/5IgHtj818DuUB4wGsCTryqjOeyJpxdn9FAONM4QPgXrGAASIZZxVXLGCcKXwA3CsWMEAk46ziP3wnyrgPINtbAAAAAElFTkSuQmCC

</BINVAL>
</PHOTO>

</vCard>
</iq>

Retrieving a MUC room vCard

- 221/450 - Copyright © 2008 - 2024 ProcessOne

Using ejabberd with MySQL

ejabberd is bundled with a native Erlang driver to use MySQL as a backend for persistent storage. Using MySQL as backend is

thus extremely straightforward.

ejabberd installation

ejabberd packages and binary installers contain all the modules needed to connect to your MySQL server. You have no extra

module to install anymore.

If you are building ejabberd from source, make sure that you configure ejabberd to include MySQL module. It can be done by

passing option --enable-mysql to configure script. For example:

MySQL installation

You need a MySQL server that you can point your ejabberd configuration to. The database does not have to be on the same

server than ejabberd.

Requirements

ejabberd uses FULLTEXT indexes with InnoDB. Thus, you need MySQL 5.6 or greater to use with ejabberd.

Note: If you do not store message archive in database however, you can try using older 5.5 version. You may need to adapt

MySQL database schema to cope with those older MySQL versions.

MySQL on Linux

This documentation will not get into the details of making MySQL running on Linux for production. It is dependent on Linux

distribution and system administrators preferences and habits.

It is also well documented, so it should not be an issue.

Amazon RDS compliance

ejabberd is fully compliant with MySQL on Amazon RDS.

You just need to make sure to use MySQL version 5.6 or greater when you create your database.

MySQL on OSX with Homebrew

For testing / development, it is common to start experimenting with MySQL with Homebrew installation.

Here is how to get started to help with setup up environment.

With Homebrew properly installed, you can use the following command to install MySQL:

You can then follow instruction to finish the installation, for example by running mysql_secure_installation .

You can manually start server with:

cd ejabberd-source
./configure --enable-mysql

brew install mysql

mysql.server start

Using ejabberd with MySQL

- 222/450 - Copyright © 2008 - 2024 ProcessOne

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_MySQL.html
https://brew.sh/

To connect to your local MySQL server using mysql command-line, assuming you kept the default set up, use:

To stop it, use:

MySQL on Windows with Bash

On Windows you can install MySQL easily like on Linux using Ubuntu Bash:

After configuration, you can start MySQL with:

You can connect on the database with your created admin password:

MySQL database creation

Create ejabberd user and database

MySQL admins should use this procedure and grant rights to a dedicated ejabberd user (replace password with your desired

password):

You can then create a dedicated ejabberd database (use password created earlier):

You should now be able to connect to ejabberd database with user ejabberd (use password defined on GRANT command):

Decide which SQL schema to use

Read carefully the Default and New Schemas section and decide which schema is preferable in your case: the default or the new

schema.

Then modify the ejabberd.yml configuration file to setup your desired option value:

mysql -uroot

mysql.server stop

sudo apt-get install mysql-server-5.6

sudo /etc/init.d/mysql start

mysql -uroot -ppassword

echo "GRANT ALL ON ejabberd.* TO 'ejabberd'@'localhost' IDENTIFIED BY 'password';" | mysql -h localhost -u root

echo "CREATE DATABASE ejabberd;" | mysql -h localhost -u ejabberd -p

mysql -h localhost -u ejabberd -p -D ejabberd

Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 8
Server version: 5.7.11 Homebrew

Copyright (c) 2000, 2016, Oracle and/or its affiliates. All rights reserved.

Oracle is a registered trademark of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective
owners.

Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.

mysql>

new_sql_schema: true

MySQL database creation

- 223/450 - Copyright © 2008 - 2024 ProcessOne

Use automatic schema update

Since ejabberd 23.10, ejabberd can take care to create the tables automatically the first time it starts with an empty database,

and also takes care to update the database schema when you upgrade ejabberd to a newer version.

That feature works both for default and new SQL schema, for MySQL, PostgreSQL and SQLite.

To enable automatic database schema creation and update, simply add in your ejabberd.yml configuration file:

In that case, you don't need to load the database schema manually: no need to read the next section.

Load database schema manually

MySQL default schema is defined in a file called mysql.sql , and the new schema is mysql.new.sql . Some tables of the schema are

described in: ejabberd SQL database schema documentation.

Those schema files can be found:

Git repository and source code package: /sql/ directory

When installed from source code or binary installer, the SQL schemas are copied to PREFIX/lib/ejabberd-VERSION/priv/sql

Load the schema in your ejabberd database with the command:

To make sure all looks fine, you can show the list of SQL tables:

Your database is now ready to connect with ejabberd.

ejabberd configuration

Setup MySQL connection

In ejabberd.yml , define your database parameters:

update_sql_schema: true

•

•

mysql -h localhost -D ejabberd -u ejabberd -p < mysql.sql

echo "SHOW TABLES;" | mysql -h localhost -D ejabberd -u ejabberd -p --table

mysql: [Warning] Using a password on the command line interface can be insecure.
+-------------------------+
| Tables_in_ejabberd |
+-------------------------+
| archive |
| archive_prefs |
| caps_features |
| last |
| motd |
| muc_registered |
| muc_room |
| privacy_default_list |
| privacy_list |
| privacy_list_data |
| private_storage |
| pubsub_item |
| pubsub_node |
| pubsub_node_option |
| pubsub_node_owner |
| pubsub_state |
| pubsub_subscription_opt |
| roster_version |
| rostergroups |
| rosterusers |
| sm |
| spool |
| sr_group |
| sr_user |
| users |
| vcard |
| vcard_search |
| vcard_xupdate |
+-------------------------+

ejabberd configuration

- 224/450 - Copyright © 2008 - 2024 ProcessOne

https://github.com/processone/ejabberd/tree/master/sql
https://github.com/processone/ejabberd/tree/master/sql

Those parameters are mandatory if you want to use MySQL with ejabberd.

Authentication use MySQL

If you decide to store user password in ejabberd, you need to tell ejabberd to use MySQL instead of internal database for

authentication.

You thus need to change ejabberd configuration auth_method to replace internal authentication with sql :

If you restart ejabberd, it should connect to your database for authentication. In case it does not work as expected, check your

config file syntax and log files (ejabberd.log , error.log , crash.log)

For example, you can create a user in database with ejabberdctl :

You should now be able to connect XMPP users based on MySQL user base.

Modules use MySQL

At this stage, only the authentication / user base has been moved to MySQL. For data managed by modules, ejabberd still uses

the Mnesia internal database by default; you can decide to use MySQL on a module-by-module basis.

For each modules that support SQL backend, you can pass option db_type: sql to use your configured MySQL database. Switch

can be done on a module by module basis. For example, if you want to store contact list in MySQL, you can do:

However, if you want to use MySQL for all modules that support MySQL, you can simply use global option default_db: sql :

Note: even if you move all the persistent data you can to MySQL, Mnesia will still be started and used to manage clustering.

Migrating data from internal to MySQL

To migrate your data, once you have setup your sql service, you can move most of the data to your database.

You need to take precautions before you launch the migration:

Before you launch migration from internal database, make sure you have made a proper backup.

Always try the migration first on an instance created from your data backup, to make sure the migration script will work fine on

your dataset.

Then, when doing final migration, make sure your instance is not accepting connections by blocking incoming connections, for

example with firewall rules (block port 5222, 5269 and 5280 as default).

sql_type: mysql
sql_server: "localhost"
sql_database: "ejabberd"
sql_username: "ejabberd"
sql_password: "password"
If you want to specify the port:
sql_port: 3306

auth_method: sql

/sbin/ejabberdctl register "testuser" "localhost" "passw0rd"

User testuser@localhost successfully registered

modules:
mod_roster:
db_type: sql

default_db: sql

1.

2.

3.

Migrating data from internal to MySQL

- 225/450 - Copyright © 2008 - 2024 ProcessOne

When you are ready, you can:

Connect to a running ejabberd:

Alternatively, use ejabberdctl live to launch ejabberd with an Erlang shell attached.

Launch the migration command ejd2sql:export/2 from Erlang shell. First parameter is the XMPP domain name you want to

migrate (i.e localhost). Second parameter sql tells ejabberd to export to configured MySQL database. For example:

You should be set now.

Converting database from default to new schema

Please check the section Default and New Schemas.

Getting further

To get further you can read the ejabberd Configuration section about Databases.

1.

./ejabberdctl debug

2.

3.

ejd2sql:export(<<"localhost">>, sql).

Converting database from default to new schema

- 226/450 - Copyright © 2008 - 2024 ProcessOne

Development

ejabberd for Developers

As a developer, you can customize ejabberd to design almost every type of XMPP related type of solutions.

As a starting point, we recommend that you get extremely familiar with both the core XMPP protocol itself and its extensions.

From that, once you understand well XMPP, you can tame ejabberd to build your dream messaging system.

Getting started

Source code

ejabberd source is available on Github: ejabberd

You will need to get familiar with it to start learning about ejabberd module writing. The first place to start? You should read the

time module. This is one of the simplest possible module for ejabberd.

Another great source of inspiration and knowledge is to read the source code of the many contributed ejabberd modules. Many of

them are available from ejabberd-contribs repository.

For a complete overview of ejabberd source code and its dependencies, please refer to ejabberd and related repositories

Development Environment

The first step to develop for ejabberd is to install and configure your development environment:

Check the Source Code Installation section

If using Emacs, install erlang-mode in your operating system

If using OSX, check the OSX development environment section

For Visual Studio Code and alternatives, check the Developing ejabberd with VSCode section

Customizing ejabberd

ejabberd development guide

ejabberd modules development

•

•

•

•

•

•

Development

- 227/450 - Copyright © 2008 - 2024 ProcessOne

https://github.com/processone/ejabberd
https://github.com/processone/ejabberd/blob/master/src/mod_time.erl
https://github.com/processone/ejabberd-contrib
https://www.erlang.org/doc/apps/tools/erlang_mode_chapter.html

ejabberd Developer Guide

Introduction

This guide is a brief explanation of ejabberd internals. It is not intended to be a comprehensive ejabberd's internal API

documentation. You still need to read and understand ejabberd's source code.

This guide should help you to understad ejabberd's code faster: it provides entry points from where to start reading relevant

parts of the code and ignore irrelevant ones.

Note that there is absolutely no need to know every line of code of ejabberd, but some parts are crucial to understand.

In order to read and understand the guide you must be pretty fluent with Erlang programming language and understand basics

of the XMPP protocol: there is no detailed explanation of Erlang syntax and/or features and it's assumed that you're familiar with

such terms as xml stream , stanza , c2s , s2s and so on. If you see these words for the first time in your life you're unlikely to

understand the guide.

Coding style convention

NOTE: this section is only relevant for ejabberd contributors. If you're hacking ejabberd for internal needs, you are free to

choose whatever coding style you like.

ejabberd follows Erlang Coding Standards & Guidelines or at least tries to do so: there is still a lot of poorly written legacy code

(which is being leisurely rewritten), but the new code should be written with keeping these rules in mind. In some cases the rules

can be bypassed, but the reason doing so should be really weighty. The rules shouldn't be ignored just because a contributor

doesn't like them.

The typical coding style rules found violated in contributors' code are:

100 column per line: in fact we have defined 80 columns as a soft and 100 columns as a hard limit, which means most of your

lines should be no longer than 80 characters and the rest must never be longer than 100 characters.

no deep nesting

no boolean parameters in case control

only CamelCase variables name

no macros

no case-catch

It's worth noting that the code itself should be indented using Emacs indentation style (that is the standard indentation style for

Erlang programs). If you're not using Emacs for ejabberd development, indent the code using it first before making a PR/commit.

Start-up procedure

ejabberd is written as a standard OTP application, so the startup module can be found in src/ejabberd.app.src or, if ejabberd is

compiled, in ebin/ejabberd.app file: that is, ejabberd_app.erl module from where start/2 function is called by Erlang application

controller. This function makes some initialization (such as logger, mnesia, configuration file, etc.) and ends up by starting the

main ejabberd supervisor - ejabberd_sup . Thus, for further startup order refer to ejabberd_sup.erl module (this is a simple list-

like module with supervisor childspecs).

WARNING: only "core stuff" should be attached to ejabberd_sup . For attaching modules use gen_mod's supervisor (via

gen_mod:start_child/3,4 functions), for attaching database backend modules use ejabberd_backend_sup supervisor, etc.

Once ejabberd_sup is started, ejabberd application is considered to be started.

•

•

•

•

•

•

ejabberd Developer Guide

- 228/450 - Copyright © 2008 - 2024 ProcessOne

https://github.com/inaka/erlang_guidelines/blob/master/README.md
https://github.com/inaka/erlang_guidelines/blob/master/README.md#100-column-per-line
https://github.com/inaka/erlang_guidelines/blob/master/README.md#avoid-deep-nesting
https://github.com/inaka/erlang_guidelines/blob/master/README.md#avoid-boolean-parameters
https://github.com/inaka/erlang_guidelines/blob/master/README.md#variable-names
https://github.com/inaka/erlang_guidelines/blob/master/README.md#no-macros
https://github.com/inaka/erlang_guidelines/blob/master/README.md#dont-use-case-catch

Core

The ejabberd core is not well-defined. Moreover, the described core layers are pure abstraction grouping several modules

together by some criteria for better understanding of ejabberd internal processing rules.

Network Layer

Once ejabberd is started, some external events should obviously make it doing something. Besides explicit administrative

commands, the most relevant such events are incoming connections. Incoming connections are handled inside Network Layer .

The layer implemented by ejabberd_listener.erl , ejabberd_receiver.erl and ejabberd_socket.erl modules.

NOTE: ejabberd_listner.erl is able to handle raw TCP and UDP connections, however only XMPP connections are described

here.

Once a connection is accepted by ejabberd_listener.erl , an instance (a process) of ejabberd_receiver.erl is started and it

becomes the socket owner, where it performs the following operations:

Throttles a connection using shapers from shaper.erl module

Performs TLS decoding using fast_tls library

Performs stream decompression using ezlib library

Parses incoming raw XML data into #xmlel{} packets using fast_xml library

ejabberd_socket.erl does the same but in a reverse order, i.e. it performs stream compression and/or TLS encoding, serializes

#xmlel{} packets into raw XML data and puts them into a socket (note that shapers do not apply for outgoing data).

Once xmlel{} packet is constructed by ejabberd_receiver.erl it's passed to XMPP Stream Layer .

XMPP Stream Layer

XMPP Stream Layer is represented by xmpp_stream_in.erl and xmpp_stream_out.erl modules. An instance (i.e. a process) of

xmpp_stream_in.erl is started along with an instance of ejabberd_receiver.erl and all incoming #xmlel{} packets are passed from

the latter to the former. xmpp_stream_in.erl module does the following:

Encodes/decodes #xmlel{} packets using xmpp library from/to internal structures (records) defined in xmpp_codec.hrl.

Performs negotiation of inbound XMPP streams

Performs STARTTLS negotiation (if needed)

Performs compression negotiation (if needed)

Performs SASL authentication

NOTE: XMPP Stream Layer was only introduced in ejabberd 17.03. Prior to this XMPP stream negotiation was handled inside

ejabberd_c2s.erl , ejabberd_s2s_in.erl , ejabberd_service.erl and ejabberd_s2s_out.erl . This has lead to unmaintainable

monolithic spaghetti code with a lot of code duplication between these modules. It's believed introducing xmpp_stream_in.erl and

xmpp_stream_out.erl modules now solves this problem.

During these procedures xmpp_stream_in.erl calls functions from its callback modules, i.e. the modules of xmpp_stream_in

behaviour: ejabberd_c2s.erl , ejabberd_s2s_in.erl or ejabberd_service.erl , depending on the stream namespace.

xmpp_stream_out.erl does the same but for outbound XMPP streams. The only its callback module is ejabberd_s2s_out.erl .

NOTE: xmpp_stream_in.erl shares the same process and state with its callback modules, i.e. functions from xmpp_stream_in.erl

and functions from ejabberd_c2s/s2s_in/service.erl modules are evaluated inside the same process. This is also true for

xmpp_stream_out.erl and ejabberd_s2s_out.erl . The state is represented by a map() in both cases.

•

•

•

•

•

•

•

•

•

Core

- 229/450 - Copyright © 2008 - 2024 ProcessOne

https://github.com/processone/fast_tls
https://github.com/processone/ezlib
https://github.com/processone/fast_xml
https://github.com/processone/xmpp
https://github.com/processone/xmpp/blob/master/include/xmpp_codec.hrl

EJABBERD_C2S, EJABBERD_S2S_IN AND EJABBERD_SERVICE

These are modules of xmpp_stream_in behaviour. The only purpose of these modules is to provide callback functions for

xmpp_stream_in.erl module. Examples of such callback functions are:

tls_enabled/1 : tells whether or not TLS is enabled in the configuration

check_password_fun/1 : provides a function for SASL authentication

handle_authenticated_packet/2 : what to do with packets after authentication is completed

Roughly, they represent an intermediate (or "glue") code between XMPP Stream Layer and Routing Layer for inbound XMPP

streams.

ejabberd_s2s_out.erl is described elsewhere

Routing Layer

EJABBERD_ROUTER

ejabberd_router.erl module is the main dispatcher of XMPP stanzas.

It's pretty small and straightforward module whose the only task is to find the "route" for a stanza. ejabberd_router.erl only

operates with #message{} , #presence{} and #iq{} packets (defined in xmpp_codec.hrl), so please note, that it is not possible to

route arbitrary #xmlel{} packets or any other Erlang terms through ejabberd_router .

The only valid routes are:

local route: stanzas of this route type are destined to the local server itself, i.e. stanzas with to attribute in the form of

domain.com or domain.com/resource , where domain.com is a virtual host serviced by ejabberd. ejabberd_router passes such

stanzas to ejabberd_local.erl module via ejabberd_local:route/1 function call.

session manager route: stanzas of this route type are destined to local users, i.e. stanzas with to attribute in the form of

user@domain.com or user@domain.com/resource where domain.com is a virtual host serviced by ejabberd. ejabberd_router passes

such stanzas to ejabberd_sm.erl module via ejabberd_sm:route/1 function call.

registered route: if a stanza is not destined to local virtual host, ejabberd first checks if there is a "registered" route for the

stanza, i.e. a domain registered via ejabberd_router:register_route/2 function. For doing this it looks up the routing table and if

there is a process Pid registered on this domain, ejabberd routes the stanza as Pid ! {route, Stanza} . The routing table is

backend-dependent and is implemented in the corresponding backend module such as ejabberd_router_mnesia.erl .

s2s route: if a stanza is neither destined to local virtual host nor to registered route, ejabberd_router passes it to

ejabberd_s2s.erl module via ejabberd_s2s:route/1 function call.

Mentioned modules are explained in more details in the following sections. You're encouraged to inspect exported functions of

ejabberd_router.erl , because most likely you will use some of them.

EJABBERD_LOCAL

ejabberd_local.erl handles stanzas destined to the local server itself. For #message{} and #presence{} it only calls hooks, while

for #iq{} it finds the corresponding "IQ handler" by looking up its internal table to find a correspondence between a namespace

of IQ's child element and the handler. Once the handler (an erlang function) is found, it passes further IQ processing to

gen_iq_handler.erl via gen_iq_handler:handle/5 call.

ejabberd_local.erl is also able to send IQ requests and to process responses for them. This is implemented in

ejabberd_local:route_iq/2,3 functions. This is also the most notable function of the module. Calling to other functions is not

recommended.

EJABBERD_SM

ejabberd_sm.erl handles stanzas destined to local users. For #message{} , #presence{} and full-JID #iq{} it looks up its internal

table (aka session table) for the corresponding ejabberd_c2s process and, if the process is found, it routes the stanza to this

process via ejabberd_c2s:route/2 call.

Bare-JID #iq{} stanzas are processed in a similar way as in ejabberd_local.erl . The internal session table is backend-dependent

and is implemented in the corresponding backend module: ejabberd_sm_mnesia.erl , ejabberd_sm_redis.erl and so on.

•

•

•

•

•

•

•

Network Layer

- 230/450 - Copyright © 2008 - 2024 ProcessOne

https://github.com/processone/xmpp/blob/master/include/xmpp_codec.hrl

The most notable functions of the module are:

get_user_resources/2

dirty_get_sessions_list/0

dirty_get_my_sessions_list/0

get_vh_session_list/1

get_vh_session_number/1

get_vh_by_backend/1

get_session_pid/3

get_user_info/2

get_user_info/3

get_user_ip/3

is_existing_resource/3

ROUTE-REGISTERED PROCESSES

Any process can register a route to itself. It's done by calling to ejabberd_router:route/2 function. Note that a route should be

unregistered via ejabberd_router:unregister_route/1 function if the registering process terminates or the route is no longer

needed. Once a route is registered to a process, this process will receive Erlang messages in the form of {route, Stanza} .

NOTE: from and to fields are always set in the Stanza , so it's safe to assume that xmpp:get_from(Stanza) and

xmpp:get_to(Stanza) always return #jid{} and never undefined .

Refer to the code of mod_muc.erl or ejabberd_service.erl for an example of a route-registered process.

EJABBERD_S2S AND EJABBERD_S2S_OUT

If a stanza is destined neither to local virtual host not to a route-registered process, it's passed to ejabberd_s2s.erl module via

ejabberd_s2s:route/1 function call. ejabberd_s2s in its turn will look up the internal table (currently it's s2s Mnesia table) for the

ejabberd_s2s_out process and, if found, passes the stanza to this process or, otherwise, will start new ejabberd_s2s_out process.

ejabberd_s2s_out.erl handles outbound XMPP S2S streams. This is the only callback module of xmpp_stream_out behaviour.

Adding new functionality

There are two common ways to add new functionality to ejabberd:

using IQ Handlers

using hooks

Here is a rule of thumb on which way to choose:

if you want to handle newly introduced IQs (that is, to generate replies for them), use IQ handlers

if you want to modify ejabberd behaviour along the way of a stanza passing through all layers or want to "listen" for some

internal events (like ejabberd configuration change), use hooks.

IQ Handlers

An IQ Handler is a function processing an IQ stanza (internally represented as #iq{} record). There are two types of IQ handlers:

local and sm .

local IQ handler is a function processing IQs coming from ejabberd_local , that is, an IQ destined to the local server itself as

described in ejabberd_local.

sm IQ handler is a function processing IQs coming from ejabberd_sm , that is, a bare-JID IQ destined to a local user as

described in ejabberd_sm.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Adding new functionality

- 231/450 - Copyright © 2008 - 2024 ProcessOne

An IQ handler is registered as:

where:

Type is ejabberd_local for local handlers or ejabberd_sm for sm handlers

Host is a virtual host for which the IQ is to be processed

Namespace is an XML namespace of IQ's child element

Once registered, matching IQ stanzas are handled by calling Module:Function(IQ) . The result should be in the form of #iq{} or

ignore . When #iq{} is returned, it's treated as a reply and routed back to the IQ originator, otherwise, if ignore is returned, the

further processing stops.

NOTE: from and to fields are always set in the IQ , so it's safe to assume that xmpp:get_from(IQ) and xmpp:get_to(IQ) always

return #jid{} and never undefined .

If a handler is no longer needed it should be unregistered as:

with the same meaning of the arguments.

Hooks

When ejabberd is processing an arbitrary event (incoming IQ, outgoing presence, configuration change, etc), it is convenient to

consider some of them notable. In order for someone to be notified of such events, ejabberd executes "hooks". A hook is

represented by a unique name. All functions associated with the hook's name will be called in some specified order.

NOTE: The conception of hooking is not ejabberd specific, see Hooking Wikipedia page for a general description.

For example, when a packet is received on a client connection, ejabberd runs user_send_packet hook. Several modules need to

listen for an event represented by this hook (that is, a packet and a C2S state), so they associate their internal functions with it:

mod_ping.erl associates user_send/1 function, mod_privacy.erl associates user_send_packet/1 function and so on. The event is

passed as an argument to the "hooked" functions, thus, the function from mod_ping.erl will be called as

mod_ping:user_send({Stanza,

C2SState}) , the function from mod_privacy.erl will be called as mod_privacy:user_send_packet({Stanza, C2SState}) and so on.

There are two types of hooks: with an accumulator and without an accumulator.

a hook with an accumulator, as its name suggests, accumulates some state during execution of a list of associated functions:

the first argument of the hooked function will always be an accumulator and the function must return the new value for the

accumulator (whether it's modified or not) in the form of NewAcc or {stop, NewAcc} . If {stop, NewAcc} is returned, a hook is

considered evaluated and next functions in its associated list are not called. Otherwise, the new value NewAcc is passed to the

next function in the associated list. An example of hooks with accumulator are: disco_info , filter_packet , muc_process_iq and

so on.

a hook without accumulator doesn't accumulate anything during execution of a list of associated functions: the returning

values of such functions are simply ignored unless stop is returned. In the latter case, evaluation of next functions in the

associated list is not performed. An example of hooks without accumulator are: config_reloaded , component_init and so on.

Both types of hooks have local or global scope.

a hook with local scope is associated with particular virtual host and is run only when an event is matching this host. Most of

the hooks have local scope.

a hook with global scope is not associated with any virtual host and is run for an event matching any hosts. A very few hooks

have global scope.

gen_iq_handler:add_iq_handler(Type :: ejabberd_local | ejabberd_sm,
Host :: binary(),
Namespace :: binary(),
Module :: module(),
Function :: atom()) -> ok

•

•

•

gen_iq_handler:remove_iq_handler(Type :: ejabberd_local | ejabberd_sm,
Host :: binary(),
Namespace :: binary()) -> ok

•

•

•

•

Adding new functionality

- 232/450 - Copyright © 2008 - 2024 ProcessOne

https://en.wikipedia.org/wiki/Hooking

A function gets associated with a local hook as follows (the type of a hook doesn't matter):

where:

Hook is a hook name

Host is a virtual host

Seq is a sequence number. This number defines position of the function in the list to maintain execution order. Functions with

lower sequence number are executed before those with bigger sequence number. For functions with the same sequence

number the order is unspecified. A function associated with an accumulating hook is called as Module:Function(Acc, Arg1,

Arg2, ...) where Acc is an accumulator value, Arg1 , Arg2 , ... - arguments of the hook. Recall that such function must return a

new accumulator value (whether it's modified or not) in the form of NewAcc or {stop, NewAcc} where NewAcc is the new

accumulator value. A function associated with a hook without an accumulator is called as Module:Function(Arg1,

Arg2, ...) . All returning values except stop are ignored.

WARNING: a Function with the corresponding arity should be exported by a Module

A function for a global hook gets associated as follows (the type of a hook doesn't matter):

with the same meaning of the arguments. Note that Host argument is omitted in this case.

For any types of hooks, if an association is no longer needed, it can be deleted by calling ejabberd_hooks:delete/5,6 functions

with exactly the same arguments used to create an association.

In some cases a new hook should be introduced. There is no need to explicitly register the new hook, one only needs to run a

hook in the required place. The following functions can be used for this:

for local hooks with accumulator: ejabberd_hooks:run_fold(Hook,

Host, Acc, Args) . The function returns a new accumulator value.

for local hooks without accumulator: ejabberd_hooks:run(Hook, Host,

Args) . The function always returns ok .

for global hooks with accumulator: ejabberd_hooks:run_fold(Hook,

Acc, Args) . The function returns a new accumulator value.

for global hooks without accumulator: ejabbed_hooks:run(Hook,

Args) . The function always returns ok .

where Args is a list of arguments (other variables have the same meaning as above).

There is a helper script that you can use to check hook correctness and find mishooked functions. The script also generates a

module src/hooks_type_test.erl from where you can learn about existing hooks and check execution order. You can place your

code inside src directory (if any), and run:

Modules

gen_mod behaviour

As you might know, ejabberd is a modular software. The best method to add new functionality to it is to write a new module. For

doing this one should create an Erlang module of gen_mod behaviour:

ejabberd_hooks:add(Hook :: atom(),
Host :: binary(),
Module :: module(),
Function :: atom(),
Seq :: integer() -> ok

•

•

•

ejabberd_hooks:add(Hook :: atom(),
Module :: module(),
Function :: atom(),
Seq :: integer()) -> ok

•

•

•

•

make hooks

Modules

- 233/450 - Copyright © 2008 - 2024 ProcessOne

Several callbacks should be defined in the module:

Module:start(Host, Opts) where Host is a virtual host where the module is about to start and Opts is an option list (typically

defined in the modules section of ejabberd.yml). The function is executed when a module is being started. It is intended to

initialize a module. This is a good place to register hooks and IQ handlers, as well as to create an initial state of a module (if

needed). The function should return either ok or {ok, pid()} .

Module:stop(Host) where Host is a virtual host. The function is executed when a module is being stopped. It is intended to

make some module cleanup: most likely unregistering hooks and IQ handlers. The returning value is ignored

Module:reload(Host, NewOpts, OldOpts) where NewOpts and OldOpts is the new and old options list respectively. The function is

called every time a module is being reloaded. This is the only optional callback, thus, if undefined, the module will be reloaded

by calling sequentially Module:stop/1 and Module:start/2 .

Module:depends(Host, Opts) where the meaning of the arguments is the same. The function is called to build modules

dependencies on startup. The function must return a list of type [{module(), DependencyType}] , where DependencyType is one of

hard or soft . The hard dependency means the module is non-functional if the other module is not loaded. The soft

dependency means the module has suboptimal functionality if the other module is not loaded.

Module:mod_opt_type(Option) . The function is used to process configuration options of Module . The function has the same

meaning as Module:opt_type/1 callback described in Configuration validation section.

Stateful modules

While some modules don't need to maintain an internal state ("stateless" modules), others are required to do this ("stateful"

modules). The common practice is to implement a stateful module as a gen_server process. There is a couple of helpers to deal

with such modules:

gen_mod:start_child(Module, Host, Opts) where Module is a name of a stateful module. This function should be called as the last

function inside of Module:start/2 . It will create a gen_server process with a registered name and will attach it to

ejabberd_gen_mod_sup supervisor.

gen_mod:stop_child(Module, Host) should be used inside of Module:stop/1 function and will terminate the corresponding

registered gen_server process.

gen_mod:get_module_proc(Host, Module) can be used to obtain a registered name of a stateful module (i.e. its gen_server 's name).

WARNING: don't forget to set process_flag(trap_exit, true) inside Module:init/1 callback function, otherwise,

Module:terminate/2 callback will never be called when a module is being stopped.

WARNING: keeping module's configuration options in an internal state is not recommended. Use gen_mod:get_module_opt/4,5

functions to retrieve the options: in this case you don't need to re-initialize options in the state inside Module:reload/3 callback.

If a stateful module is intended to maintain a state in the form of a table, ETS can be used for this. In this case there is no need to

implement it as a gen_server process. But make sure you're not calling ets:new/2 several times for several virtual hosts (badarg

will be raised in this case). E.g., the following code is incorrect:

The correct code will look something like that:

There is a plenty of examples of modules: pick up any file starting with mod_ inside src directory.

%% file mod_foo.erl
-module(mod_foo).
...
-behaviour(gen_mod).
...

•

•

•

•

•

•

•

•

start(Host, Opts) ->
...
ets:new(some_table, named_table, ...]),
...

start(Host, Opts) ->
...
try ets:new(some_table, [named_table, ...])
catch _:badarg -> ok end,
...

Modules

- 234/450 - Copyright © 2008 - 2024 ProcessOne

gen_mod module

Module gen_mod.erl has various useful functions to work with modules, the most notable are:

is_loaded/2 : whether or not the module in question is loaded at a given virtual host

get_opt/3,4 : gets a value of an option from module's options list (see description of ejabberd_config:get_option/3 function from

Fetching configuration options for details)

get_module_opt/4,5 : the same as above, but an option is referenced by a virtual host and a module.

Configuration

ejabberd has quite powerful configuration processor - ejabberd_config.erl . It performs configuration file parsing and validation.

Validation

In order to validate options ejabberd_config has to install feedback with the rest of the code. For doing this, it provides

ejabberd_config behaviour with a single callback function: Module:opt_type/1 . The callback accepts an option name as an atom()

and must return either validating function if an option is known for the Module or a list of available options (as a list of atoms). A

validating function is a fun() of a single argument - the value of the option. The validating function must return any new value

for the option (whether it's modified or not) or should crash if the value doesn't match expected format. Here is an example:

NOTE: gen_mod behaviour defines a very similar callback - Module:mod_opt_type/1 with the same meaning of arguments and

returning values, except the callback is called to validate the Module 's specific options (i.e. options defined in the corresponding

subsection of the modules section of a configuration file).

Fetching options

The most notable function of the module is:

The function is used to get a value Value of a configuration option Option . The ValidatingFun is a validating function described in

the previous section and Default is the default value if the option is not defined in the config.

Using XMPP library

xmpp module

Prior to version 16.12, ejabberd used to operate with #xmlel{} packets directly: fast_xml API functions have been used for

manipulating with #xmlel{} packets (such as fast_xml:get_subtag/2 , fast_xml:get_attr_s/2 , fast_xml:get_path_s/2 and so on) as

well as some functions from jlib.erl module.

This is now deprecated and actually not possible. Instead, the new API functions are used from brand new xmpp library.

NOTE: although direct calling of fast_xml API is deprecated, there are still two useful functions: fxml_stream:parse_element/1

and fxml:element_to_binary/1 . You can use these functions for (de)serialization of data stored on disc or in a database.

•

•

•

%% file: some.erl
-module(some).
-behaviour(ejabberd_config).
-export([opt_type/1]).
...
opt_type(max_connections_number) ->

%% max_connections_number should be non-negative integer
%% if the condition is satisfied, return this integer
%% fail with function_clause otherwise
fun(I) when is_integer(I), I>=0 -> I end;

opt_type(_) ->
%% only max_connections_number is known
[max_connections_number].

get_option(Option :: atom() | {atom(), binary() | global},
ValidatingFun :: fun(),
Default :: term()) -> Value :: term().

Configuration

- 235/450 - Copyright © 2008 - 2024 ProcessOne

https://github.com/processone/fast_xml
https://github.com/processone/xmpp

The library is built on top of XMPP Codec : a number of decoding/encoding modules automatically generated by Fast XML

generator from the specification file xmpp_codec.spec. The goal is to avoid manual processing of XML trees and, instead, using

well-typed auto-generated structures defined in xmpp_codec.hrl. Every particular XML packet within some namespace has to

have a specification defined in xmpp_codec.spec . The advantage of such approach is that you tell the generator what to parse

instead of taming fast_xml library how to parse.

NOTE: describing how to write XMPP codec specification is out of scope of this guide

WARNING: you should never use functions from xmpp_codec.erl module directly: use functions from xmpp.erl module. The same

is true for header files: do NOT include xmpp_codec.hrl -- include xmpp.hrl instead

XMPP CODEC

Once a raw XML packet is parsed by ejabberd_receiver.erl into #xmlel{} record, it's passed to xmpp_stream_in.erl module,

where decoding of #xmlel{} into xmpp_element() format (i.e. into well-known record type defined in xmpp_codec.hrl) is performed

(refer to XMPP Stream Layer section for details). At that level "lazy" decoding is applied: only top-level element is decoded. For

example, an xmlel() packet

is decoded into the following xmpp_element() :

Note that the sub-element is still in xmlel() format. This "semi-decoded" packet is then passed upstream (at the Routing Layer).

Thus, a programmer should explicitly decode sub-elements if needed. To accomplish this one can use the following function:

where the only supported Option is ignore_els : with this option lazy decoding is performed. By default, full decoding is applied,

i.e. all known sub-elements get decoded. Namespace is a "top-level" namespace: it should be provided only if <<"xmlns">> attribute

is omitted in El , otherwise decoding would fail (see below).

There is also xmpp:decode(El :: xmlel()) -> xmpp_element() function, which is a short-hand for xmpp:decode(El, ?NS_CLIENT, [])

(where ?NS_CLIENT is a predefined namespace for <<"jabber:client">> , see Namespaces section).

Both functions might fail with {xmpp_codec, Why} exception. The value of Why can be used to format the failure reason into

human readable description using xmpp:format_error/1 function, e.g., using sub-element from example #message{} above, we can

write:

To apply reverse operation use xmpp:encode/2 functions:

There is also xmpp:encode(Pkt :: xmpp_element()) -> El :: xmlel() function which is a short-hand for xmpp:encode(Pkt, <<>>) .

Namespace is a "top-level" namespace: it is used to tell the codec whether to include <<"xmlns">> attribute into resulting #xmlel{}

element or not -- if the Pkt is within the same Namespace , <<"xmlns">> attribute will be omitted in the result. For example:

#xmlel{name = <<"message">>,
attrs = [{<<"type">>,<<"chat">>}],
children = [#xmlel{name = <<"composing">>,

attrs = [{<<"xmlns">>,
<<"http://jabber.org/protocol/chatstates">>}],

children = []}]}

#message{id = <<>>,type = chat,lang = <<>>,from = undefined,
to = undefined,subject = [],body = [],thread = undefined,
sub_els = [#xmlel{name = <<"composing">>,

attrs = [{<<"xmlns">>,
<<"http://jabber.org/protocol/chatstates">>}],

children = []}],
meta =

xmpp:decode(El :: xmlel(), Namespace :: binary(), [Option]) -> xmpp_element()`

try xmpp:decode(El) of
#chatstate{} = ChatState -> process_chatstate(ChatState)

catch _:{xmpp_codec, Why} ->
Text = xmpp:format_error(Why),
?ERROR_MSG("failed to decode element: ~s", [Txt])

end

xmpp:encode(Pkt :: xmpp_element(), Namespace :: binary()) -> El :: xmlel()

> rr(xmpp).
...

Using XMPP library

- 236/450 - Copyright © 2008 - 2024 ProcessOne

https://github.com/processone/fast_xml/blob/master/src/fxml_gen.erl
https://github.com/processone/fast_xml/blob/master/src/fxml_gen.erl
https://github.com/processone/xmpp/blob/master/specs/xmpp_codec.spec
https://github.com/processone/xmpp/blob/master/include/xmpp.hrl

NOTE: xmpp:encode/1,2 functions would never fail as long as the provided input is a valid xmpp_element() with valid values of its

record fields. Use dialyzer checks of your code for validation.

NOTE: there is no need to explicitly decode a sub-element of an IQ passed into an IQ handler because decoding is performed

inside gen_iq_handler.erl module and a handler actually will never receive malformed sub-elements.

Luckily, there is a helper function for sub-elements decoding, described in the next section and in a lot of cases it's more

convenient to use it.

GETTING SUB-ELEMENTS

Once a programmer gets a stanza in xmpp_element() format, (s)he might want to get its subelement. To accomplish this the

following function can be used:

This function finds a Tag by its well-known record inside sub-elements of the Stanza . It automatically performs decoding (if

needed) and returns either found xmpp_element() or false if no elements have matched. Note that the function doesn't fail if

some of sub-elements are invalid.

Example:

SETTING AND REMOVING SUB-ELEMENTS

In order to inject a sub-element into or delete one from arbitrary stanza() one can use xmpp:set_subtag/2 and

xmpp:remove_subtag/2 respectively.

FROM AND TO

Every stanza() element has from and to record fields. In order to get/set them one can manipulate with these record fields

directly, e.g. via Msg#message.from or Pres#presence.to expressions, or, use xmpp:get_from/1 , xmpp:get_to/1 , xmpp:set_from/2 ,

xmpp:set_to/2 and xmpp:set_from_to/3 functions, depending on which approach is more convenient in the current situation.

NOTE: although in general from and to fields may have undefined values, these fields are always filled with correct #jid{}

records at XMPP Stream Layer, thus, it is safe to assume that the fields always possess valid #jid{} values.

> Msg.
#message{id = <<>>,type = chat,lang = <<>>,from = undefined,

to = undefined,subject = [],body = [],thread = undefined,
sub_els = [#chatstate{type = composing}],
meta =

> xmpp:encode(Msg).
#xmlel{name = <<"message">>,

attrs = [{<<"type">>,<<"chat">>},
{<<"xmlns">>,<<"jabber:client">>}],

children = [#xmlel{name = <<"composing">>,
attrs = [{<<"xmlns">>,

<<"http://jabber.org/protocol/chatstates">>}],
children = []}]}

> xmpp:encode(Msg, <<"jabber:client">>).
#xmlel{name = <<"message">>,

attrs = [{<<"type">>,<<"chat">>}],
children = [#xmlel{name = <<"composing">>,

attrs = [{<<"xmlns">>,
<<"http://jabber.org/protocol/chatstates">>}],

children = []}]}

xmpp:get_subtag(Stanza :: stanza(), Tag :: xmpp_element()) -> Pkt :: xmpp_element() | false

> rr(xmpp).
...
> Msg.
#message{id = <<>>,type = chat,lang = <<>>,from = undefined,

to = undefined,subject = [],body = [],thread = undefined,
sub_els = [#xmlel{name = <<"composing">>,

attrs = [{<<"xmlns">>,
<<"http://jabber.org/protocol/chatstates">>}],

children = []}],
meta =

> xmpp:get_subtag(Msg, #chatstate{type = composing}).
#chatstate{type = composing}
> xmpp:get_subtag(Msg, #chatstate{type = inactive}).
false
> xmpp:get_subtag(Msg, #disco_info{}).
false

Using XMPP library

- 237/450 - Copyright © 2008 - 2024 ProcessOne

METADATA

Every stanza() element has meta field represented as a map() . It's useful when there is a need to attach some metadata to the

stanza before routing it further. A programmer can manipulate with this field directly using maps module, or use xmpp:get_meta/

1,2,3 , xmpp:set_meta/2 , xmpp:put_meta/3 , xmpp:update_meta/3 and xmpp:del_meta/2 functions, which is almost always more

convenient (except pattern matching).

TEXT ELEMENTS

Some xmpp_element() s has fields defined in [#text{}] format. The example is #message.body and #presence.status fields. To avoid

writing a lot of extracting code the following functions can be used: xmpp:mk_text/1,2 to convert some binary text written in some

language into [#text{}] term, or xmpp:get_text/1,2 to extract binary text from the [#text{}] element by a language.

GENERATING ERRORS

In order to generate stanza errors or stream errors xmpp:err_/0,2 or xmpp:serr_*/0,2 can be used respectively, such as

xmpp:err_service_unavailable() or xmpp:serr_not_authorized() . If a stanza should be bounced back with an error, xmpp:make_error/

2 function can be used

NAMESPACES

There are many predefined macros for XML namespaces in ns.hrl. However, this file must NOT be included, as it's already

included in xmpp.hrl .

A function xmpp:get_ns/1 can be used to retrieve a namespace from xmpp_element() or from xmlel() directly:

jid module

jid.erl module provides functions to work with XMPP addresses (aka "JIDs"). There are two common types of internal

representation of JIDs:

jid() : a JID is represented by a record #jid{} defined in jid.hrl

ljid() : a JID is represented by a tuple {User, Server, Resource} where User , Server and Resource are stringprepped version

of a nodepart, namepart and resourcepart of a JID respectively. This representation is useful to use for JIDs comparison and

when a JID should be used as a key (in a Mnesia database, ETS table, etc.)

The most notable functions in this module are:

decode(Input :: binary()) -> jid() : decodes binary data into jid() . Fails with {bad_jid, Input} otherwise.

encode(JID :: jid() | ljid()) -> binary() : encodes JID into binary data

remove_resource(JID :: jid() | ljid()) -> jid() | ljid() : removes resource part of a JID

replace_resource(JID :: jid() | ljid(), Resource :: binary()) -> jid() | ljid() : replaces resource part of a JID

tolower(JID :: jid() | ljid()) -> ljid() : transforms JID into ljid() representation

make(LJID :: ljid() | jid()) -> jid() : transforms LJID into jid() representation

Inspect exported functions of jid.erl for more details.

External Authentication

You can configure ejabberd to use as authentication method an external script, as described in the Administrator section:

External Script.

Let's see the interface between ejabberd and your script, and several example scripts. There are also several old example scripts.

> rr(xmpp).
...
> xmpp:get_ns(#message{}).
<<"jabber:client">>.
> xmpp:get_ns(xmpp:encode(#presence{})).
<<"jabber:client">>.

•

•

•

•

•

•

•

•

External Authentication

- 238/450 - Copyright © 2008 - 2024 ProcessOne

https://erlang.org/doc/man/maps.html
https://github.com/processone/xmpp/blob/master/include/ns.hrl
https://github.com/processone/xmpp/blob/master/include/jid.hrl
https://github.com/processone/xmpp/blob/master/src/jid.erl
https://ejabberd.im/extauth

Extauth Interface

The external authentication script follows the Erlang port driver API.

That script is supposed to do these actions, in an infinite loop:

read from stdin: AABBBBBBBBB.....

A : 2 bytes of length data (a short in network byte order)

B : a string of length found in A that contains operation in plain text operation are as follows:

auth:User:Server:Password (check if a username/password pair is correct)

isuser:User:Server (check if it’s a valid user)

setpass:User:Server:Password (set user’s password)

tryregister:User:Server:Password (try to register an account)

removeuser:User:Server (remove this account)

removeuser3:User:Server:Password (remove this account if the password is correct)

write to stdout: AABB

A : the number 2 (coded as a short, which is bytes length of following result)

B : the result code (coded as a short), should be 1 for success/valid, or 0 for failure/invalid

As you noticed, the : character is used to separate the fields. This is possible because the User and Server fields can't contain

the : character; and Password can have that character, but is always the last field. So it is always possible to parse the input

characters unambiguously.

Perl Example Script

This is a simple example Perl script; for example if the file is copied to the path /etc/ejabberd/check_pass_null.pl then configure

ejabberd like this:

Content of check_pass_null.pl :

•

•

•

•

•

•

•

•

•

•

•

•

auth_method: [external]
extauth_program: /etc/ejabberd/check_pass_null.pl

#!/usr/bin/perl

use Unix::Syslog qw(:macros :subs);

my $domain = $ARGV[0] || "example.com";

while(1)
{
my $rin = '',$rout;
vec($rin,fileno(STDIN),1) = 1;
$ein = $rin;
my $nfound = select($rout=$rin,undef,undef,undef);

my $buf = "";
syslog LOG_INFO,"waiting for packet";
my $nread = sysread STDIN,$buf,2;
do { syslog LOG_INFO,"port closed"; exit; } unless $nread == 2;
my $len = unpack "n",$buf;
my $nread = sysread STDIN,$buf,$len;

my ($op,$user,$host,$password) = split /:/,$buf;
#$user =~ s/\./\//og;
my $jid = "$user\@$domain";
my $result;

syslog(LOG_INFO,"request (%s)", $op);

SWITCH:
{

$op eq 'auth' and do
{

$result = 1;
},last SWITCH;

$op eq 'setpass' and do

External Authentication

- 239/450 - Copyright © 2008 - 2024 ProcessOne

https://erlang.org/doc/tutorial/c_portdriver.html

Python Example Script

Example Python script:

{
$result = 1;

},last SWITCH;

$op eq 'isuser' and do
{

password is null. Return 1 if the user $user\@$domain exitst.
$result = 1;

},last SWITCH;

$op eq 'tryregister' and do
{

$result = 1;
},last SWITCH;

$op eq 'removeuser' and do
{

password is null. Return 1 if the user $user\@$domain exitst.
$result = 1;

},last SWITCH;

$op eq 'removeuser3' and do
{

$result = 1;
},last SWITCH;

};
my $out = pack "nn",2,$result ? 1 : 0;
syswrite STDOUT,$out;

}

closelog;

#!/usr/bin/python

import sys
import struct

def read_from_stdin(bytes):
if hasattr(sys.stdin, 'buffer'):
return sys.stdin.buffer.read(bytes)

else:
return sys.stdin.read(bytes)

def read():
(pkt_size,) = struct.unpack('>H', read_from_stdin(2))
pkt = sys.stdin.read(pkt_size)
cmd = pkt.split(':')[0]
if cmd == 'auth':

u, s, p = pkt.split(':', 3)[1:]
if u == "wrong":

write(False)
else:

write(True)
elif cmd == 'isuser':

u, s = pkt.split(':', 2)[1:]
if u == "wrong":

write(False)
else:

write(True)
elif cmd == 'setpass':

u, s, p = pkt.split(':', 3)[1:]
write(True)

elif cmd == 'tryregister':
u, s, p = pkt.split(':', 3)[1:]
write(True)

elif cmd == 'removeuser':
u, s = pkt.split(':', 2)[1:]
write(True)

elif cmd == 'removeuser3':
u, s, p = pkt.split(':', 3)[1:]
write(True)

else:
write(False)

def write(result):
if result:

sys.stdout.write('\x00\x02\x00\x01')
else:

sys.stdout.write('\x00\x02\x00\x00')
sys.stdout.flush()

if __name__ == "__main__":
try:

while True:
read()

External Authentication

- 240/450 - Copyright © 2008 - 2024 ProcessOne

except struct.error:
pass

External Authentication

- 241/450 - Copyright © 2008 - 2024 ProcessOne

PubSub overview

This document describes ejabberd's PubSub architecture to understand how to write custom plugins.

XEP-0060 (PubSub) is more than 100 pages of specifications, with 12 very detailed use cases with many possibles options and

possible situations:

Subscribe

Unsubscribe

Configure subscription

Retrieve items

Publish item

Delete item

Create node

Configure node

Delete node

Purge node

Manage subscriptions

Manage affiliations

XEP-0163 (PEP) is based on PubSub XEP-0248 (deprecated) for Collection Nodes and uses generic PubSub functionality, specified

in XEP-0060.

History

Initial implementation made by Aleksey Shchepin, ability to organise nodes in a tree added by Christophe Romain in 2007. First

attempt to create a flexible API for plugins started in 2007, and improved until 2015.

Implementation

PubSub service comes in several parts:

A poll of iq handlers handled by ejabberd router

A sending process

A core router to perform high level actions for every use case

Plugins to handle nodes, affiliations/subscriptions, and items at lower level and interface with data backend

Nodetree plugins

They handles storage and organisation of PubSub nodes. Called on get, create and delete node. Default implementation includes

three plugins:

tree: (default) both internal and odbc backend.

virtual: no backend, no configurable nodes.

dag: handles XEP-0248 .

If all nodes shares same configuration, I/O on pubsub_node can be avoided using virtual nodetree.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

PubSub overview

- 242/450 - Copyright © 2008 - 2024 ProcessOne

https://xmpp.org/extensions/xep-0060.html
https://xmpp.org/extensions/xep-0060.html
https://xmpp.org/extensions/xep-0163.html
https://xmpp.org/extensions/xep-0163.html
https://xmpp.org/extensions/xep-0248.html
https://xmpp.org/extensions/xep-0248.html

Node plugins

They handle affiliations, subscriptions and items. They provide default node configuration and features. Called on every pubsub

use cases. Each plugin is responsible of checks to handle all possibles cases and reply action result to PubSub engine to let it

handle the routing. The most common plugins available in default installation are:

flat: (default) all nodes are in a flat namespace, there are no parent/child nodes

hometree: all nodes are organized as in a filesystem under /home/hostname/user/...

pep: handles XEP-0163

dag: handles XEP-0248 .

public, private, ... which are derivate of flat, with different default node configuration.

NODE_FLAT

node_flat is the default plugin, without node hierarchy, which handles standard PubSub case. The default node configuration

with this plugin is:

NODE_HOMETREE

node_hometree use exact same features as flat plugin, but organise nodes in a tree following same scheme as path in filesystem.

Every user can create nodes in its own home. Each node can contain items and/or sub-nodes. Example:

NODE_PEP

node_pep handles XEP-0163: Personal Eventing Protocol It do not persist items, just keeping last item in memory cache. Node

names are raw namespace attached to a given bare JID. Every user can have its own node with a common namespace sharing

with others.

NODE_DAG

node_dag handles XEP-0248: PubSub Collection Nodes Contribution from Brian Cully. Every node takes places in a tree and is

either a collection node (have only sub-nodes) or a leaf node (contains only items). No restriction on the tree structure

Plugin design

Due to complexity of XEP-0060, PubSub engine do successive calls to nodetree and node plugins in order to check validity,

perform corresponding action and return result or appropriate error to users. Plugin design follows this requirement and divide

actions by type of data to allow transient backend implementation without any PubSub engine change.

•

•

•

•

•

[{deliver_payloads, true},
{notify_config, false},
{notify_delete, false},
{notify_retract, true},
{purge_offline, false},
{persist_items, true},
{max_items, 10},
{subscribe, true},
{access_model, open},
{roster_groups_allowed, []},
{publish_model, publishers},
{notification_type, headline},
{max_payload_size, 60000},
{send_last_published_item, on_sub_and_presence},
{deliver_notifications, true},
{presence_based_delivery, false}].

/home/user
/home/domain/user
/home/domain/user/my_node
/home/domain/user/my_node/child_node

Plugin design

- 243/450 - Copyright © 2008 - 2024 ProcessOne

https://xmpp.org/extensions/xep-0163.html
https://xmpp.org/extensions/xep-0163.html
https://xmpp.org/extensions/xep-0248.html
https://xmpp.org/extensions/xep-0248.html

Create Node

Plugin design

- 244/450 - Copyright © 2008 - 2024 ProcessOne

Delete Node

Plugin design

- 245/450 - Copyright © 2008 - 2024 ProcessOne

Subscribe

Plugin design

- 246/450 - Copyright © 2008 - 2024 ProcessOne

Unsubscribe

Plugin design

- 247/450 - Copyright © 2008 - 2024 ProcessOne

Publish item

Plugin design

- 248/450 - Copyright © 2008 - 2024 ProcessOne

Delete item

Plugin design

- 249/450 - Copyright © 2008 - 2024 ProcessOne

Purge Node

Plugin design

- 250/450 - Copyright © 2008 - 2024 ProcessOne

Get item

Available backends

Flat, hometree and PEP supports mnesia and SQL backends. Any derivated plugin can support the same (public, private, club,

buddy...). Adding backend does not require any PubSub engine change. Plugin just need to comply API. Business Edition also

supports optimized ets and mdb.

Customisation

To write your own plugin, you need to implement needed functions:

Generic function must call their corresponding partner in node_flat .

[init/3, terminate/2, options/0, features/0,
create_node_permission/6, create_node/2, delete_node/1,
purge_node/2, subscribe_node/8, unsubscribe_node/4,
publish_item/6, delete_item/4, remove_extra_items/3,
get_entity_affiliations/2, get_node_affiliations/1,
get_affiliation/2, set_affiliation/3,
get_entity_subscriptions/2, get_node_subscriptions/1,
get_subscriptions/2, set_subscriptions/4,
get_pending_nodes/2, get_states/1, get_state/2,
set_state/1, get_items/7, get_items/3, get_item/7,
get_item/2, set_item/1, get_item_name/3, node_to_path/1,
path_to_node/1]

Available backends

- 251/450 - Copyright © 2008 - 2024 ProcessOne

Simple plugin would just call node_flat and override some defaults such as:

options/0 and features/0 to match your needs. This triggers the way PubSub controls calls to your plugins.

create_node_permission/6 for example to check an LDAP directory against an access flag

Write your own tests on publish or create node, forbids explicit access to items, etc...

Clustering

ejabberd's implementation tends to cover most generic and standard uses. It's good for common use, but far from optimal for

edges or specific cases. Nodes, affiliations, subscriptions and items are stored in a replicated database. Each ejabberd node have

access to all the data. Each ejabberd node handles part of the load, but keep locking database cluster wide on node records write

(pubsub_node) Affiliations, subscriptions and items uses non blocking write (pubsub_state and pubsub_item)

•

•

•

Clustering

- 252/450 - Copyright © 2008 - 2024 ProcessOne

Roster versioning

Roster versioning as implemented currently by ejabberd is a simplified approach to roster versioning.

This is an all-or-nothing approach that does not support the granular diff as explained in RFC-6121.

Our implementation conforms to version 0.6 of XEP-0237, sending the full roster in case of change or empty result if the roster

did not change.

As a result, as a client developer, when implementing support for roster versioning, you should expect both the traditional form

for returning the roster, with version (iq result) and the incremental roster changes (iq set).

Example

As a summary, here is how you should expect it to work.

First, you can check that the feature is advertised in the stream:features as urn:xmpp:features:rosterver :

You can then bootstrap the use of roster versioning using empty ver attribute when sending your roster get iq:

In return, you get a full roster with the current version:

The client can store this version to send subsequent roster queries.

If client send a roster query with reference version it received get an empty iq result meaning the roster did not change:

If client send roster query with any other reference version, it will receive the full roster again in the roster iq result.

<stream:features>
<bind xmlns="urn:ietf:params:xml:ns:xmpp-bind"/>
<session xmlns="urn:ietf:params:xml:ns:xmpp-session">
<optional/>
</session>
<c xmlns="http://jabber.org/protocol/caps" node="http://www.process-one.net/en/ejabberd/" ver="/lmQr0llUEtX/pIt+6BDAbnIT/U=" hash="sha-1"/>
<sm xmlns="urn:xmpp:sm:2"/>
<sm xmlns="urn:xmpp:sm:3"/>
<ver xmlns="urn:xmpp:features:rosterver"/>

</stream:features>

<iq id='roster1' to='myuser@domain.com' type='get'>
<query xmlns='jabber:iq:roster' ver=''/>
</iq>

<iq from="myuser@domain.com" type="result" xml:lang="en" to="myuser@domain.com/resource" id="roster1">
<query xmlns="jabber:iq:roster" ver="81cb523a7b77c7011552be85a3dde55189297590">
<item subscription="both" jid="contact@domain.com">
<group>Test</group>
</item>
...
</query>
</iq>

<iq id="roster2" to="myuser@domain.com" type="get">
<query xmlns='jabber:iq:roster' ver='81cb523a7b77c7011552be85a3dde55189297590'/>
</iq>

<iq from="myuser@domain.com" type="result" xml:lang="en" to="myuser@domain.com/resource" id="roster2"/>

Roster versioning

- 253/450 - Copyright © 2008 - 2024 ProcessOne

https://tools.ietf.org/html/rfc6121#section-2.6
https://xmpp.org/extensions/attic/xep-0237-0.6.html#example-3

ejabberd Stanza Routing

Message Routing

In case of a message sent from User A to User B, both of whom are served by the same domain, the flow of the message through

the system is as follows:

User A's ejabberd_receiver receives the stanza and passes it to ejabberd_c2s .

After some consistency check, user_send_packet is called if the stanza is correct.

The stanza is matched against any privacy lists in use and, in case of being allowed, routed by ejabberd_router:route/3 .

ejabberd_router:route/3 runs the filter_packet hook. filter_packet hook can drop of modify the stanza.

ejabberd_router will then consult the routing table to know what do to next. It is easier to understand by looking at an example of

actual routing table content:

In that case, user is local so we need to route to same domain (in our case localhost). We then can see that we have to call

ejabberd_local:route to route the message to local user. As both user are local (no server-to-server involved), it matches our

expectations.

ejabberd_local routes the stanza to ejabberd_sm given it's got at least a bare JID as the recipient.

ejabberd_sm determines the available resources of User B, takes into account their session priorities and whether the message is

addressed to a particular resource or a bare JID and appropriately replicates (or not) the message and sends it to the recipient's

ejabberd_c2s process(es).

In case no resources are available for delivery (hence no ejabberd_c2s processes to pass the message to), offline_message_hook is

run to delegate offline message storage.

ejabberd_c2s verifies the stanza against any relevant privacy lists and sends it on the user socket if it does exist. In the case of

ejabberd Business Edition and ejabberd Saas, session can be detached and push notifications can be used as a fallback.

user_receive_packet hook is run to notify the rest of the system about stanza delivery to User B.

Here is a broader diagram, including server-to-server routing:

1.

2.

3.

4.

5.

(ejabberd@localhost)2> ets:tab2list(route).
[{route,<<"pubsub.localhost">>,
{apply_fun,#Fun<ejabberd_router.2.122122122>}},

{route,<<"muc.localhost">>,
{apply_fun,#Fun<mod_muc.2.122122123>}},

{route,<<"localhost">>,{apply,ejabberd_local,route}}]

1.

2.

1.

ejabberd Stanza Routing

- 254/450 - Copyright © 2008 - 2024 ProcessOne

Message Routing

- 255/450 - Copyright © 2008 - 2024 ProcessOne

ejabberd SQL Database Schema

We present the tables that might be in use, depending on your server configuration, together with a short explanation of the

fields involved and their intended use. Tables are presented roughly grouped by related functionality.

Consider this document a work in progress, not all tables are documented yet.

Latest version of database schema are available in ejabberd Github repository:

MySQL schema

Postgres schema

SQLite schema

MS SQL Server schema. This schema need testing / feedback and possibly improvement from SQL Server users.

Authentication

Table users

Contains the information required to authenticate users.

The password are hashed if you use SCRAM authentication. In that case the next fields are also defined

Rosters

Table rosterusers

This is a quite complex table, used as a store for a quite complex protocol that is the one defined to manage rosters and

subscriptions on rfc6121.

In the common case of two users adding each other as contacts, entries in the roster table follows a series of steps as they moves

from a subscription request to the final approval and bi-directional subscription being established. This process can be initiated

either by the user, or by the (possible remote) peer. Also need to account for the case where the user, or the contact, might not be

online at the moment of the subscription request is made.

Steps are further complicated by the fact that entries in the roster aren't required to have corresponding subscriptions. For

details of the meaning of the different fields, refer to the protocol itself, as these are mostly a direct mapping of it.

•

•

•

•

Field Type Usage

username string User

password string User password, can be hashed

created_at timestamp When the user account was created

Field Type Usage

serverkey string support for salted passwords

salt string support for salted passwords

iterationcount integer support for salted passwords

ejabberd SQL Database Schema

- 256/450 - Copyright © 2008 - 2024 ProcessOne

https://github.com/processone/ejabberd
https://github.com/processone/ejabberd/blob/master/sql/mysql.sql
https://github.com/processone/ejabberd/blob/master/sql/pg.sql
https://github.com/processone/ejabberd/blob/master/sql/lite.sql
https://github.com/processone/ejabberd/blob/master/sql/mssql.sql
https://tools.ietf.org/html/rfc6121
https://tools.ietf.org/html/rfc6121#section-2

Note: If you manage users contacts from outside the roster workflow of XMPP (for example your site backends perform the

linking between users), it is likely that you only need to care about the username, jid and nick fields, and set the subscription

field to be always 'B' for a mutual link between users.

Table rostergroups

Table sr_group

Table sr_user

Messages

Table spool

Messages sent to users that are offline are stored in this table. Do not confuse this with general message archiving: messages are

only temporarily stored in this table, removed as soon as the target user is back online and the pending messages delivered to it.

The seq field is used for sorting, and to easily identify a particular user message.

Table privacy_list_data

The table is used to store privacy rules.

The table is a direct translation of the XMPP packet used to set privacy lists. For more details, please read XEP-0016: Privacy

Lists, Syntax and Semantics. Here is an example packet coming from privacy list specification:

Field Type Usage

username string User

jid string Contact jid

nick string Contact nickname

subscription char 'B'=both | 'T'=To | 'F'=From | 'N'=none

ask char 'S'=subscribe | 'U'=unsubscribe | B='both' | 'O'=out | 'I'=in | 'N'=none

askmessage string Message to be displayed on the subscription request

server char 'N' for normal users contacts

subscribe string

type string "item"

created_at timestamp Creation date of this roster entry

Field Type Usage

username string User

xml blob Raw packet

seq integer Unique, autoincrement sequence number.

created_at timestamp When the message was stored

<item
type='[jid|group|subscription]'
value='bar'
action='[allow|deny]'
order='unsignedInt'>
[<message/>]

Messages

- 257/450 - Copyright © 2008 - 2024 ProcessOne

https://xmpp.org/extensions/xep-0016.html#protocol-syntax
https://xmpp.org/extensions/xep-0016.html#protocol-syntax

The table fields are defined as follow:

Multiuser Chat Rooms

Table muc_room

It is used to store persistent rooms, that is, rooms that must be automatically started with the server.

The opts field is legible, but not mean to be modified directly. It contents depends on the implementation of mod_muc. It contains

the room configuration and affiliations.

[<presence-in/>]
[<presence-out/>]
[<iq/>]

</item>

Field Type Usage

id int Privacy list rule id.

t char Privacy rule type: 'j' for jid, 'g' for group and 's' for subscription.

value string Privacy list value for match, whose content depends on privacy list rule type.

action char Privacy list action: 'd' for deny and 'a' for allow.

ord int Order for applying the privacy list rule.

match_all boolean (0 or

1)

If true (1), means any packet types will be matched. Other matches should be

false (0).

match_iq boolean (0 or

1)

If true (1), means iq packets will be matched by rule.

match_message boolean (0 or

1)

If true (1), means message packets type will be matched by rule.

match_presence_in boolean (0 or

1)

If true (1), means inbound presence packets type will be matched by rule.

match_presence_out boolean (0 or

1)

If true (1), means outbound packets type will be matched by rule.

Field Type Usage

name string Room name

host string Hostname of the conference component

opts string Room options, encoded as erlang terms

created_at timestamp Creation date

Multiuser Chat Rooms

- 258/450 - Copyright © 2008 - 2024 ProcessOne

Table muc_registered

Contains a map of user to nicknames. When a user register a nickname with the conference module, that nick is reserved and

can't be used by anyone else, in any room from that conference host.

Table room_history

In ejabberd Business Edition, this table is used if persistent room history is enabled. If so, recent room history is saved to the DB

before ejabberd is stopped, allowing the recent history to survive server restarts.

Table muc_online_room

This table is used to store rooms that actually exists in the memory of the server.

Table muc_online_users

This table is used to store MucSub subscriptions.

Field Type Usage

jid string User jid

host string Hostname of the conference component

nick string Room options, encoded as erlang terms

created_at timestamp Creation date

Field Type Usage

room string Room jid

nick string Nickname that sent the message

packet string XML stanza with the message

have_subject boolean True if the message stanza had subject

created_at timestamp Creation date

size integer Size in bytes of the xml packet

Field Type Usage

name string Room name

host string Hostname of the conference component

node string Erlang node where the room is

pid string Pid of the thread running the room

Field Type Usage

username string User

server string Hostname of the user

resource string User resource

name string Name of the room

host string Hostname of the conference component

node string Erlang node

Multiuser Chat Rooms

- 259/450 - Copyright © 2008 - 2024 ProcessOne

Table muc_room_subscribers

This table is used to store MucSub subscriptions.

VCard

Table vcard

The table is used to store raw vCard content for delivery of the vCard "as is".

The table fields are defined as follow:

Table vcard_search

The table is used to store vCard index on a few of the Vcard field used for vCard search in users directory.

You can learn more about the vCard specification on Wikipedia vCard page.

Field Type Usage

room string Room name

host string Hostname of the conference component

jid string User jid

nick string User nick

nodes string MucSub nodes

created_at timestamp Creation date

Field Type Usage

username string Owner of the Vcard

vcard text Raw Vcard

created_at timestamp Record creation date

VCard

- 260/450 - Copyright © 2008 - 2024 ProcessOne

https://en.wikipedia.org/wiki/VCard

The table fields are defined as follow:

Others

Table last

This table is used to store the last time the user was seen online. It is defined as follow:

Note that the table is not updated while the user has the session open.

Field Type Usage

username string Raw username for display

lusername string Lowercase username for search

fn string Raw fullname for display

lfn string Lowercase fullname for search

family string Raw family name for display

lfamilly string Lowercase family name for search

given string Raw given name for display

lgiven string Lowercase given name for search

middle string Raw middle name for display

lmiddle string Lowercase middle name for search

nickname string Raw nickname for display

lnickname string Lowercase nickname for search

bday string Raw birthday for display

lbday string Lowercase and processed birthday for search

ctry string Raw country for display

lctry string Lowercase country for search

locality string Raw city for display

llocality string Lowercase city for search

email string Raw email for display

lemail string Lowercase email for search

orgname string Raw organisation name for display

lorgname string Lowercase organisation name for search

orgunit string Raw organisation department name for display

lorgunit string Lowercase organisation department for search

Field Type Usage

username string User

seconds string Timestamp for the last time the user was seen online

state string Why user got disconnected. Usually is empty

Others

- 261/450 - Copyright © 2008 - 2024 ProcessOne

Table caps_features

Ejabberd uses this table to keep a list of the entity capabilities discovered.

The subnode field correspond to the 'ver' ("verification string") of XEP-0115. There is one entry in this table for each feature

advertised by the given (node,subnode) pair.

Table private_storage

Used for user private data storage.

Field Type Usage

node string Node

subnode string Subnode

feature string Entity feature

created_at timestamp Creation date

Field Type Usage

username string User

namespace string XEP-0049 namespace of the stored data

data string Raw xml

created_at timestamp Creation date

Others

- 262/450 - Copyright © 2008 - 2024 ProcessOne

External authentication

There are examples of external authentication scripts in many different languages in the page: https://ejabberd.im/extauth

Main contribution repository

Check also the contributions hosted in the ejabberd-contrib Github repository .

ejabberd API libraries

Here is a ejabberd API implementations allowing to ease ejabberd integration with your own backends:

Pyejabberd : Client library for ejabberd XMLRPC API, in Python, by Dirkmoors, MIT license. See https://pypi.python.org/pypi/

pyejabberd and https://github.com/dirkmoors/pyejabberd

Old / obsolete contributions

Finally, there is an old list of contributions that were developed for ejabberd 2.x in: https://ejabberd.im/contributions

•

External authentication

- 263/450 - Copyright © 2008 - 2024 ProcessOne

https://ejabberd.im/extauth
https://ejabberd.im/extauth
https://github.com/processone/ejabberd-contrib
https://github.com/processone/ejabberd-contrib
https://pypi.python.org/pypi/pyejabberd
https://pypi.python.org/pypi/pyejabberd
https://pypi.python.org/pypi/pyejabberd
https://pypi.python.org/pypi/pyejabberd
https://github.com/dirkmoors/pyejabberd
https://github.com/dirkmoors/pyejabberd
https://ejabberd.im/contributions
https://ejabberd.im/contributions

Contributing to ejabberd

We'd love for you to contribute to our source code and to make ejabberd even better than it is today! Here are the guidelines

we'd like you to follow:

Code of Conduct

Questions and Problems

Issues and Bugs

Feature Requests

Issue Submission Guidelines

Pull Request Submission Guidelines

Signing the CLA

Code of Conduct

Help us keep ejabberd community open-minded and inclusive. Please read and follow our Code of Conduct.

Questions, Bugs, Features

Got a Question or Problem?

Do not open issues for general support questions as we want to keep GitHub issues for bug reports and feature requests. You've

got much better chances of getting your question answered on dedicated support platforms, the best being Stack Overflow.

Stack Overflow is a much better place to ask questions since:

there are thousands of people willing to help on Stack Overflow

questions and answers stay available for public viewing so your question / answer might help someone else

Stack Overflow's voting system assures that the best answers are prominently visible.

To save your and our time, we will systematically close all issues that are requests for general support and redirect people to the

section you are reading right now.

Other channels for support are: - ejabberd XMPP room: ejabberd@conference.process-one.net - ejabberd XMPP room logs -

ejabberd Mailing List

Found an Issue or Bug?

If you find a bug in the source code, you can help us by submitting an issue to our GitHub Repository. Even better, you can

submit a Pull Request with a fix.

Missing a Feature?

You can request a new feature by submitting an issue to our GitHub Repository.

If you would like to implement a new feature then consider what kind of change it is:

Major Changes that you wish to contribute to the project should be discussed first in an GitHub issue that clearly outlines the

changes and benefits of the feature.

Small Changes can directly be crafted and submitted to the GitHub Repository as a Pull Request. See the section about Pull

Request Submission Guidelines.

•

•

•

•

•

•

•

•

•

•

•

•

Contributing to ejabberd

- 264/450 - Copyright © 2008 - 2024 ProcessOne

https://github.com/processone/ejabberd/blob/master/CODE_OF_CONDUCT.md
https://stackoverflow.com/questions/tagged/ejabberd?sort=newest
xmpp:ejabberd@conference.process-one.net
https://process-one.net/logs/ejabberd@conference.process-one.net/
https://lists.jabber.ru/mailman/listinfo/ejabberd
https://github.com/processone/ejabberd
https://github.com/processone/ejabberd/issues
https://github.com/processone/ejabberd/issues
https://github.com/processone/ejabberd

Issue Submission Guidelines

Before you submit your issue search the archive, maybe your question was already answered.

If your issue appears to be a bug, and hasn't been reported, open a new issue. Help us to maximize the effort we can spend fixing

issues and adding new features, by not reporting duplicate issues.

The "new issue" form contains a number of prompts that you should fill out to make it easier to understand and categorize the

issue.

Pull Request Submission Guidelines

By submitting a pull request for a code or doc contribution, you need to have the right to grant your contribution's copyright

license to ProcessOne. Please check ProcessOne CLA for details.

Before you submit your pull request consider the following guidelines:

Search GitHub for an open or closed Pull Request that relates to your submission. You don't want to duplicate effort.

Create the development environment

Make your changes in a new git branch:

* Test your changes and, if relevant, expand the automated test suite. * Create your patch commit, including appropriate test

cases. * If the changes affect public APIs, change or add relevant documentation. * Commit your changes using a descriptive

commit message.

Note: the optional commit -a command line option will automatically "add" and "rm" edited files.

Push your branch to GitHub:

In GitHub, send a pull request to ejabberd:master . This will trigger the automated testing. We will also notify you if you have

not yet signed the contribution agreement.

If you find that the tests have failed, look into the logs to find out if your changes caused test failures, the commit message was

malformed etc. If you find that the tests failed or times out for unrelated reasons, you can ping a team member so that the

build can be restarted.

If we suggest changes, then:

Make the required updates.

Test your changes and test cases.

Commit your changes to your branch (e.g. my-fix-branch).

Push the changes to your GitHub repository (this will update your Pull Request).

You can also amend the initial commits and force push them to the branch.

This is generally easier to follow, but separate commits are useful if the Pull Request contains iterations that might be

interesting to see side-by-side.

That's it! Thank you for your contribution!

•

•

•

git checkout -b my-fix-branch master

git commit -a

•

git push origin my-fix-branch

•

•

•

•

•

•

•

git rebase master -i
git push origin my-fix-branch -f

Issue Submission Guidelines

- 265/450 - Copyright © 2008 - 2024 ProcessOne

https://github.com/processone/ejabberd/issues/new
https://www.process-one.net/resources/ejabberd-cla.pdf
https://github.com/processone/ejabberd/pulls
https://docs.ejabberd.im/developer/
https://github.com/processone/docs.ejabberd.im
https://www.process-one.net/resources/ejabberd-cla.pdf

Signing the Contributor License Agreement (CLA)

Upon submitting a Pull Request, we will ask you to sign our CLA if you haven't done so before. It's a quick process, we promise,

and you will be able to do it all online

You can read ProcessOne Contribution License Agreement in PDF.

This is part of the legal framework of the open-source ecosystem that adds some red tape, but protects both the contributor and

the company / foundation behind the project. It also gives us the option to relicense the code with a more permissive license in

the future.

Signing the Contributor License Agreement (CLA)

- 266/450 - Copyright © 2008 - 2024 ProcessOne

https://www.process-one.net/resources/ejabberd-cla.pdf

Contributor Covenant Code of Conduct

Our Pledge

In the interest of fostering an open and welcoming environment, we as contributors and maintainers pledge to making

participation in our project and our community a harassment-free experience for everyone, regardless of age, body size,

disability, ethnicity, gender identity and expression, level of experience, nationality, personal appearance, race, religion, or sexual

identity and orientation.

Our Standards

Examples of behavior that contributes to creating a positive environment include:

Using welcoming and inclusive language

Being respectful of differing viewpoints and experiences

Gracefully accepting constructive criticism

Focusing on what is best for the community

Showing empathy towards other community members

Examples of unacceptable behavior by participants include:

The use of sexualized language or imagery and unwelcome sexual attention or advances

Trolling, insulting/derogatory comments, and personal or political attacks

Public or private harassment

Publishing others' private information, such as a physical or electronic address, without explicit permission

Other conduct which could reasonably be considered inappropriate in a professional setting

Guidelines for Respectful and Efficient Communication on Issues, Discussions, and PRs

To ensure that our maintainers can efficiently manage issues and provide timely updates, we kindly ask that all comments on

GitHub tickets remain relevant to the topic of the issue. Please avoid posting comments solely to ping maintainers or ask for

updates. If you need information on the status of an issue, consider the following:

Check the Issue Timeline: Review the existing comments and updates on the issue before posting.

Use Reactions: If you want to show that you are interested in an issue, use GitHub's reaction feature (e.g., thumbs up)

instead of commenting.

Be Patient: Understand that maintainers may be working on multiple tasks and will provide updates as soon as possible.

Additionally, please be aware that:

User Responses: Users who report issues may no longer be using the software, may have switched to other projects, or may

simply be busy. It is their right not to respond to follow-up questions or comments.

Maintainer Priorities: Maintainers have the right to define their own priorities and schedule. They will address issues based

on their availability and the project's needs.

By following these guidelines, you help us maintain a productive and respectful environment for everyone involved.

Our Responsibilities

Project maintainers are responsible for clarifying the standards of acceptable behavior and are expected to take appropriate and

fair corrective action in response to any instances of unacceptable behavior.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Contributor Covenant Code of Conduct

- 267/450 - Copyright © 2008 - 2024 ProcessOne

Project maintainers have the right and responsibility to remove, edit, or reject comments, commits, code, wiki edits, issues, and

other contributions that are not aligned to this Code of Conduct, or to ban temporarily or permanently any contributor for other

behaviors that they deem inappropriate, threatening, offensive, or harmful.

Scope

This Code of Conduct applies both within project spaces and in public spaces when an individual is representing the project or its

community. Examples of representing a project or community include using an official project e-mail address, posting via an

official social media account, or acting as an appointed representative at an online or offline event. Representation of a project

may be further defined and clarified by project maintainers.

Enforcement

Instances of abusive, harassing, or otherwise unacceptable behavior may be reported by contacting the project team at the email

address: conduct AT process-one.net. The project team will review and investigate all complaints, and will respond in a way that

it deems appropriate to the circumstances. The project team is obligated to maintain confidentiality with regard to the reporter

of an incident. Further details of specific enforcement policies may be posted separately.

Project maintainers who do not follow or enforce the Code of Conduct in good faith may face temporary or permanent

repercussions as determined by other members of the project's leadership.

Attribution

This Code of Conduct is adapted from the Contributor Covenant, version 1.4, available at http://contributor-covenant.org/version/

1/4

Scope

- 268/450 - Copyright © 2008 - 2024 ProcessOne

http://contributor-covenant.org
http://contributor-covenant.org/version/1/4/
http://contributor-covenant.org/version/1/4/

Contributors

We would like to thanks official ejabberd source code contributors:

Sergey Abramyan

Badlop

Ludovic Bocquet

Emilio Bustos

Thiago Camargo

Juan Pablo Carlino

Paweł Chmielowski

Gabriel Gatu

Tsukasa Hamano

Konstantinos Kallas

Evgeny Khramtsov

Ben Langfeld

Peter Lemenkov

Anna Mukharram

Johan Oudinet

Pablo Polvorin

Mickaël Rémond

Matthias Rieber

Rafael Roemhild

Christophe Romain

Jérôme Sautret

Sonny Scroggin

Alexey Shchepin

Shelley Shyan

Radoslaw Szymczyszyn

Stu Tomlinson

Christian Ulrich

Holger Weiß

Please, if you think we are missing your contribution, do not hesitate to contact us at ProcessOne. In case you do not want to

appear in this list, please, let us know as well.

Thanks !

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Contributors

- 269/450 - Copyright © 2008 - 2024 ProcessOne

Understanding ejabberd and its dependencies

We wanted to make sure that ejabberd is modular and that parts that can be of interest for other Erlang projects can be reused.

Not only we are massive open source contributors to Erlang community and ecosystem, but we are also trying to help even more

by reviewing your pull requests. Do not hesitate to submit some on any of the many repositories mentioned here.

ejabberd dependencies

ejabberd code based is split among several repositories so effectively ejabberd code is much more than what is in its primary

repository.

Required dependencies

The main ejabberd repository is processone/ejabberd

There is hundreds of forks, but we actively maintain ejabberd to make it the most reliable and up to date version. This is thus

your best starting point.

When you build ejabberd yourself, the build chain will download a few Erlang dependencies:

processone/cache_tab: Flexible in-memory Erlang caching module.

processone/iconv: Native iconv driver for Erlang. This is use for fast character encoding conversion.

processone/fast_xml: Fast native Expat based Erlang XML parsing library. XML is the core of XMPP so we needed to provide

the fast and more robust XML parsing stack as possible. It means that if you are looking for a great XML parser, reusing

p1_xml is probably a great idea.

processone/stringprep: Fast and efficient Erlang Stringprep native driver. Stringprep is heavily used in XMPP to define

encoding rules of various XMPP objects.

processone/fast_yaml: Native Erlang interface to libyaml, for fast robust YAML parsing. This is needed by our new config file

format.

processone/ezlib: Native zlib driver for Erlang. Used for fast / efficient stream compression.

processone/fast_tls: Erlang native driver for TLS / SSL. It is build for performance and is more scalable that Erlang SSL driver.

If your Erlang server is handling heavy load and is using TLS, we strongly recommend you check / compare with this driver.

processone/esip: ProcessOne SIP protocol support to add SIP-based voice capabilities to ejabberd.

processone/stun: Implementation of Session Traversal Utilities for NAT. It is used for XMPP and SIP media capabilities, to help

client discover their visible IP address and allow them to get in touch through NAT. This is basically useful for voice and file

transfers.

processone/p1_utils: This is extra Erlang modules developed for ejabberd but that can be useful in other Erlang applications.

processone/p1_logger: Logger wrapper to allow selecting your preferred logger at build time.

basho/lager: Erlang logger module.

DeadZen/goldrush: Small Erlang app that provides fast event stream processing. It is used by lager.

vaxelfel/eHyperLogLog: HyperLogLog, a distinct values estimator, in Erlang. Used for analytics.

Optional dependencies

Then, we use a few other dependent repositories that may be used if you have enabled support in the configure script.

Here are the dependencies for relational database support:

processone/mysql: Pure Erlang MySQL driver.

processone/pgsql: Pure Erlang PostgreSQL driver

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Understanding ejabberd and its dependencies

- 270/450 - Copyright © 2008 - 2024 ProcessOne

https://github.com/processone/ejabberd
https://github.com/processone/cache_tab
https://github.com/processone/iconv
https://github.com/processone/fast_xml
https://github.com/processone/stringprep
https://github.com/processone/fast_yaml
https://github.com/processone/ezlib
https://github.com/processone/fast_tls
https://github.com/processone/esip
https://github.com/processone/stun
https://en.wikipedia.org/wiki/STUN
https://github.com/processone/p1_utils
https://github.com/processone/p1_logger
https://github.com/basho/lager
https://github.com/DeadZen/goldrush
https://github.com/vaxelfel/eHyperLogLog
https://github.com/processone/mysql
https://github.com/processone/pgsql

Here are the dependencies for Elixir support:

elixir-lang/elixir: Used to write ejabberd modules in Elixir programming language.

yrashk/rebar_elixir_plugin: Plugin for rebar build tool to support Elixir modules compilation.

After you have build ejabberd from source, you will find all the dependencies downloaded and build in the deps directory.

As you see, there is much more Erlang code produce at ProcessOne and contributed to the Erlang community than just ejabberd

repository.

ejabberd contributions

This is not dependencies, but simply modules that you may find nice to add to your ejabberd deployment.

We attempted to gather some of the more useful ejabberd modules in a contribution repository to ease discovery.

This repository is available on Github: ejabberd-contribs

We are thinking about a better approach for ejabberd contributions discovery. More on that soon.

•

•

ejabberd contributions

- 271/450 - Copyright © 2008 - 2024 ProcessOne

https://github.com/elixir-lang/elixir
https://github.com/yrashk/rebar_elixir_plugin
https://github.com/processone/ejabberd-contrib

ejabberd Docs Source Code

The ejabberd Community Server has its source code available in the ejabberd git repository. Its documentation is published in

the ejabberd Docs website, and its source code is available in the docs git repository.

This is a community effort and you are welcome to submit issues or pull requests in order to improve the docs and benefit the

ejabberd community.

This documentation site is built using MkDocs and Material for MkDocs.

Installation

To build the site you need Python 3.6 or later, then install the dependencies:

pip

From now on, remember to run source .venv/bin/activate before running any mkdocs [...] command.

You can freeze the dependencies to a file using pip freeze > requirements.txt .

Debian

You could install most dependencies using APT:

Unfortunately Debian doesn't package mkdocs-with-pdf , so you should remove with-pdf plugin from mkdocs.yml .

Building

Now you can start a small webserver that builds the site dynamically:

or build the site into static html files in the site/ directory:

mkdir -p .venv
python3 -m venv .venv
source .venv/bin/activate
pip install -r requirements.txt

Info

Tip

apt-get install mkdocs \
mkdocs-material \
mkdocs-material-extensions \
mkdocs-redirects \
python3-bs4

Warning

mkdocs serve

mkdocs build

ejabberd Docs Source Code

- 272/450 - Copyright © 2008 - 2024 ProcessOne

http://ejabberd.im/
https://github.com/processone/ejabberd
https://docs.ejabberd.im
https://github.com/processone/docs.ejabberd.im
http://www.mkdocs.org/
https://squidfunk.github.io/mkdocs-material/

Testing

To verify the internal URLs in the site:

To verify the internal URLs and also the external links:

Updating content

Some pages in this documentation are extracted from a running ejabberd node:

admin/configuration/toplevel.md

admin/configuration/modules.md

developer/ejabberd-api/admin-api.md

developer/ejabberd-api/admin-tags.md

To update those pages, install ejabberd, start it and run make all in this repository. This gets documentation from ejabberd,

processes it to obtain markdown content and moves the files to this repository.

Additionally, there are several other pages that are markdown files copied from ejabberd git repository and docker-ejabberd git

repository. Those repositories must be available next to docs.ejabberd.im before running make all .

Markdown Shorthands

When editing ejabberd source code to document top-level options, modules or API commands, there is some additional syntax

supported to generate HTML URLs:

For example, this text in the ejabberd source code:

gets converted into this markdown:

There are example usage of those shorthands in ejabberd, for example in mod_muc.erl .

TEST=true mkdocs serve

TEST=true TEST_EXTERNAL=true mkdocs serve

•

•

•

•

_`mod_muc_admin`_
_`bookmarks_to_pep`_ API
_`default_db`_
`basic.md#captcha|CAPTCHA`
https://xmpp.org/extensions/xep-0045.html[XEP-0045]

[mod_muc_admin](../../admin/configuration/modules.md#mod_muc_admin)
[bookmarks_to_pep](../../developer/ejabberd-api/admin-api.md#bookmarks_to_pep) API
[default_db](toplevel.md#default_db)
[CAPTCHA](basic.md#captcha)
[XEP-0045](https://xmpp.org/extensions/xep-0045.html)

Testing

- 273/450 - Copyright © 2008 - 2024 ProcessOne

ejabberd for Elixir Developers

improved in 21.07

Building ejabberd with Mix

You can build ejabberd with Elixir mix tool. This allows ejabberd to use Elixir libraries and ejabberd modules written in Elixir.

Please note: Elixir 1.10.3 or higher is required to build a release. Also, if using Erlang/OTP 24, then Elixir 1.11.4 or higher is

required.

Make sure you have the requirements installed. On MacOS you need to use Homebrew and set up your environment.

Clone ejabberd project from Github:

Compile ejabberd:

Build a development release:

There are many ways to start ejabberd, using the ejabberdctl or ejabberd scripts:

You should see that ejabberd is properly started:

Now that ejabberd starts correctly, adapt to your needs the default ejabberd configuration file located at _build/dev/rel/ejabberd/

etc/ejabberd/ejabberd.yml For example, enable this example Elixir ejabberd module:

Embed ejabberd in an elixir app

ejabberd is available as an Hex.pm application: ejabberd on hex.pm.

This means you can build a customized XMPP messaging platform with Elixir on top of ejabberd by leveraging ejabberd code

base in your app and providing only your custom modules. This makes the management of your ejabberd plugins easier and

cleaner.

1.

2.

git clone https://github.com/processone/ejabberd.git
cd ejabberd

3.

./autogen.sh

./configure --with-rebar=mix
make

4.

make dev

5.

_build/prod/rel/ejabberd/bin/ejabberdctl iexlive
_build/prod/rel/ejabberd/bin/ejabberdctl live
_build/prod/rel/ejabberd/bin/ejabberd start_iex

6.

Erlang/OTP 23 [erts-11.1.8] [source] [64-bit] [smp:2:2] [ds:2:2:10] [async-threads:1]

2021-08-03 13:37:36.561603+02:00 [info] Loading configuration from /home/bernar/e/git/ejabberd/_build/dev/rel/ejabberd/etc/ejabberd/ejabberd.yml
2021-08-03 13:37:37.541688+02:00 [info] Configuration loaded successfully
...
2021-08-03 13:37:40.201590+02:00 [info] ejabberd 21.7.9 is started in the node ejabberd@atenea in 3.86s
2021-08-03 13:37:40.203678+02:00 [info] Start accepting TCP connections at [::]:5222 for ejabberd_c2s

Interactive Elixir (1.10.3) - press Ctrl+C to exit (type h() ENTER for help)
iex(ejabberd@localhost)1>

7.

modules:
'ModPresenceDemo': {}
mod_adhoc: {}

ejabberd for Elixir Developers

- 274/450 - Copyright © 2008 - 2024 ProcessOne

https://elixir-lang.org/
https://hex.pm/packages/ejabberd

To create your own application depending on ejabberd, you can go through the following steps:

Create a new Elixir app using mix :

Add ejabberd package as a dependency in your mix.exs file:

Get the dependencies and compile them:

Setup runtime options and ejabberd configuration file:

Start your app, ejabberd will be started as a dependency:

You should see that ejabberd is properly started:

Register an account from Elixir console:

You are all set, you can now connect with an XMPP client! Notice that the default configuration doesn't have certificates or

encryption.

Call elixir code in erlang code

It's possible to use Elixir libraries in an Erlang module, both the ones included in Elixir, or any other you add as a dependency.

This simple example invokes Elixir's String.duplicate/2 function as shown in one of its documentation examples, and uses the

result in the ejabberd vCard nickname field:

Notice that the elixir code:

1.

mix new myapp
cd myapp

2.

defp deps do
[
{:ejabberd, "~> 24.6"}
]

end
end

3.

mix deps.get
mix compile

4.

mkdir config
cp deps/ejabberd/config/runtime.exs config/runtime.exs
mkdir conf
cp deps/ejabberd/ejabberd.yml.example conf/ejabberd.yml

5.

iex -S mix # similar to: ejabberdctl iexlive
mix run --no-halt # similar to: ejabberdctl foreground

6.

$ iex -S mix
2024-07-15 13:33:12.087 [info] Loading configuration from conf/ejabberd.yml
2024-07-15 13:33:12.301 [info] Configuration loaded successfully
...
2024-07-15 13:33:12.816 [info] ejabberd 24.6.0 is started in the node :nonode@nohost in 0.75s
2024-07-15 13:33:12.842 [info] Start accepting TCP connections at [::]:5222 for :ejabberd_c2s
Erlang/OTP 26 [erts-14.2.5] [source] [64-bit] [smp:4:4] [ds:4:4:10] [async-threads:1] [jit:ns]

Interactive Elixir (1.16.3) - press Ctrl+C to exit (type h() ENTER for help)
iex(1)>

7.

:ejabberd_auth.try_register("test", "localhost", "passw0rd")

8.

--- a/src/mod_vcard.erl
+++ b/src/mod_vcard.erl
@@ -209,6 +209,7 @@ process_local_iq(#iq{type = get, to = To, lang = Lang} = IQ) ->
 VCard = case mod_vcard_opt:vcard(ServerHost) of
 undefined ->
 #vcard_temp{fn = <<"ejabberd">>,
+ nickname = 'Elixir.String':duplicate(<<"abc">>, 2),
 url = ejabberd_config:get_uri(),
 desc = misc:get_descr(Lang, ?T("Erlang XMPP Server")),
 bday = <<"2002-11-16">>};

Call elixir code in erlang code

- 275/450 - Copyright © 2008 - 2024 ProcessOne

https://hex.pm/packages/ejabberd
https://hexdocs.pm/elixir/1.13.4/String.html#duplicate/2

is written in erlang as:

Check Erlang/Elixir Syntax: A Crash Course for details.

Use elixir library in erlang code

This example demonstrates how to add an elixir library as a dependency in ejabberd, and use it in an ejabberd module written in

erlang.

It will use QRCodeEx elixir library to build a QR code of ejabberd's URI and return it as the server vCard photo.

First add the dependency to mix.exs :

Then call QRCodeEx.encode/2, QRCodeEx.png/2, and provide the result as the photo in the server vcard:

Write ejabberd module in elixir

If you plan to write an ejabberd module that heavily depends on Elixir dependencies, you may want to write it in elixir from

scratch.

The Elixir source code is placed in the ejabberd's lib/ path. Any elixir module placed in lib/ will be compiled by Mix, installed

with all the other erlang modules, and available for you to use.

As you can see, there's a file named mod_presence_demo.ex which defines an ejabberd module written in elixir called

ModPresenceDemo . To enable ModPresenceDemo , add it to ejabberd.yml like this:

String.duplicate("abc", 2)

'Elixir.String':duplicate(<<"abc">>, 2),

--- a/mix.exs
+++ b/mix.exs
@@ -46,7 +46,7 @@ defmodule Ejabberd.MixProject do
 :p1_utils, :stringprep, :yconf],
 included_applications: [:mnesia, :os_mon,
 :cache_tab, :eimp, :mqtree, :p1_acme,
- :p1_oauth2, :pkix, :xmpp]
+ :p1_oauth2, :pkix, :xmpp, :qrcode_ex]
 ++ cond_apps()]
 end

@@ -113,6 +113,7 @@ defmodule Ejabberd.MixProject do
 {:p1_oauth2, "~> 0.6"},
 {:p1_utils, "~> 1.0"},
 {:pkix, "~> 1.0"},
+ {:qrcode_ex, "~> 0.1.1"},
 {:stringprep, ">= 1.0.26"},
 {:xmpp, "~> 1.5"},
 {:yconf, "~> 1.0"}]

--- a/src/mod_vcard.erl
+++ b/src/mod_vcard.erl
@@ -206,9 +206,13 @@ process_local_iq(#iq{type = set, lang = Lang} = IQ) ->
 xmpp:make_error(IQ, xmpp:err_not_allowed(Txt, Lang));
process_local_iq(#iq{type = get, to = To, lang = Lang} = IQ) ->
 ServerHost = ejabberd_router:host_of_route(To#jid.lserver),
+ PhotoEncoded = 'Elixir.QRCodeEx':encode(ejabberd_config:get_uri()),
+ PhotoBin = 'Elixir.QRCodeEx':png(PhotoEncoded, [{color, <<17, 120, 0>>}]),
+ PhotoEl = #vcard_photo{type = <<"image/png">>, binval = PhotoBin},
 VCard = case mod_vcard_opt:vcard(ServerHost) of
 undefined ->
 #vcard_temp{fn = <<"ejabberd">>,
+ photo = PhotoEl,
 url = ejabberd_config:get_uri(),
 desc = misc:get_descr(Lang, ?T("Erlang XMPP Server")),
 bday = <<"2002-11-16">>};

modules:
'Elixir.ModPresenceDemo': {}

Use elixir library in erlang code

- 276/450 - Copyright © 2008 - 2024 ProcessOne

https://elixir-lang.org/crash-course.html
https://hex.pm/packages/qrcode_ex
https://hexdocs.pm/qrcode_ex/QRCodeEx.Encode.html#encode/2
https://hexdocs.pm/qrcode_ex/QRCodeEx.PNG.html#png/2
https://github.com/processone/ejabberd/tree/master/lib
https://github.com/processone/ejabberd/blob/master/lib/mod_presence_demo.ex

Let's write a new ejabberd module in elixir, add it to ejabberd's source code, compile and install it. This example module requires

the QRCodeEx Elixir library, and adds a simple web page that generates QR code of any given JID.

Copy the mod_qrcode.ex source code to ejabberd's lib/ path:

Recompile and reinstall ejabberd.

Enable the module in ejabberd.yml :

When restarting ejabberd, it will show in the logs:

Now the ejabberd internal web server provides QR codes of any given JID. Try visiting an URL like http://localhost:5280/qrcode/

anyusername/somedomain/

Elixir module in ejabberd-contrib

Using ejabberd-contrib it's possible to install additional ejabberd modules without compiling ejabberd, or requiring ejabberd

source code. This is useful if you install ejabberd using binary installers or a container image.

And it's possible to write a custom module and Add your module to an existing ejabberd installation...

1.

lib/mod_qrcode.ex

2.

3.

listen:
-
port: 5280
request_handlers:
/qrcode: 'Elixir.ModQrcode'

modules:
'Elixir.ModQrcode': {}

4.

2022-07-06 13:14:35.363081+02:00 [info] Starting ejabberd module Qrcode

5.

Elixir module in ejabberd-contrib

- 277/450 - Copyright © 2008 - 2024 ProcessOne

Let's write a new ejabberd module in elixir, compile and install in an existing ejabberd deployment without requiring its source

code. This example module adds a simple section listing PIDs in the users page in ejabberd WebAdmin.

First, create this path

and copy the mod_webadmin_pid.ex source code to:

Create a specification file in YAML format as mod_webadmin_pid.spec (see examples from ejabberd-contrib). So, create the file

with this content:

From that point you should see it as available module:

Now you can compile and install that module:

Enable the module in ejabberd.yml :

When restarting ejabberd, it will show in the logs:

Finally, go to ejabberd WebAdmin -> Virtual Hosts -> your vhost -> Users -> some online user -> and there will be a new section

"PIDs".

Record definition

To use an erlang record defined in ejabberd's header file, use Elixir's Record to extract the fields and define an Elixir record with

its usage macros.

For example, add this to the beginning of mod_presence_demo.ex:

Later you can use those macros, named like your record, see the examples.

In our example, let's improve the on_presence function and use the presence macros to get the to field:

1.

$HOME/.ejabberd-modules/sources/mod_webadmin_pid/lib/

2.

$HOME/.ejabberd-modules/sources/mod_webadmin_pid/lib/mod_webadmin_pid.ex

3.

$HOME/.ejabberd-modules/sources/mod_webadmin_pid/mod_webadmin_pid.spec

summary: "Display PIDs in User page in Web Admin"

4.

ejabberdctl modules_available
mod_webadmin_pid Display PIDs in User page in Web Admin

5.

ejabberdctl module_install mod_webadmin_pid

6.

modules:
'Elixir.ModWebAdminPid': {}

7.

2022-07-06 13:14:35.363081+02:00 [info] Starting ejabberd module WebAdminPid

8.

require Record

Record.defrecord(:presence,
Record.extract(:presence, from_lib: "xmpp/include/xmpp.hrl"))

def on_presence(_user, _server, _resource, packet) do
to_jid = presence(packet, :to)
to_str = :jid.to_string(to_jid)
info('Received presence for #{to_str}:~n~p', [packet])
:none

end

Record definition

- 278/450 - Copyright © 2008 - 2024 ProcessOne

https://hexdocs.pm/elixir/Record.html
https://github.com/processone/ejabberd/blob/master/lib/mod_presence_demo.ex
https://hexdocs.pm/elixir/Record.html#defrecord/3-examples

mod_qrcode.ex

Example ejabberd module written in elixir:

mod_webadmin_pid.ex

Example ejabberd module written in elixir:

mod_qrcode.ex

defmodule ModQrcode do
use Ejabberd.Module

def start(host, _opts) do
info('Starting ejabberd module Qrcode')
:ok

end

def stop(host) do
info('Stopping ejabberd module Qrcode')
:ok

end

def process([username, hostname] = _path, _query) do
uri = <<"xmpp:", username::binary, "@", hostname::binary>>
qr = QRCodeEx.svg(QRCodeEx.encode(uri), [{:color, "#3fb0d2"}])
qxmlel = :fxml_stream.parse_element(qr)
{200,
[{<<"Server">>, <<"ejabberd">>},
{<<"Content-Type">>, <<"image/svg+xml">>}],
:ejabberd_web.make_xhtml([], [qxmlel])}

end

def process(path, _query) do
info('Received HTTP query with path: ~p', [path])
{404, [], "Not Found"}

end

def depends(_host, _opts) do
[]

end

def mod_options(_host) do
[]

end

def mod_doc() do
%{:desc => 'This is just a demonstration.'}

end

end

mod_webadmin_pid.ex

defmodule ModWebAdminPid do
use Ejabberd.Module

require Record

Record.defrecord(:xmlel,
Record.extract(:xmlel, from_lib: "xmpp/include/xmpp.hrl"))

Record.defrecord(:request,
Record.extract(:request, from: "include/ejabberd_http.hrl"))

##==
gen_mod callbacks
##==

def start(host, _opts) do
info('Starting ejabberd module WebAdminPid')
:ejabberd_hooks.add(:webadmin_user, host, __MODULE__, :webadmin_user, 60)
:ejabberd_hooks.add(:webadmin_page_host, host, __MODULE__, :webadmin_page, 60)
:ok

end

def stop(host) do
info('Stopping ejabberd module WebAdminPid')
:ejabberd_hooks.delete(:webadmin_user, host, __MODULE__, :webadmin_user, 60)
:ejabberd_hooks.delete(:webadmin_page_host, host, __MODULE__, :webadmin_page, 60)
:ok

end

def depends(_host, _opts) do
[]

end

mod_qrcode.ex

- 279/450 - Copyright © 2008 - 2024 ProcessOne

def mod_options(_host) do
[]

end

def mod_doc() do
%{:desc => 'This is just a demonstration.'}

end

##==
Web Admin
##==

def webadmin_user(acc, user, server, _lang) do
resources = :ejabberd_sm.get_user_resources(user, server)

pids_elements = Enum.map(resources,
fn resource ->
pid = :ejabberd_sm.get_session_pid(user, server, resource)
pid_string = :erlang.pid_to_list(pid)
xmlel(name: "a", attrs: [{"href", "pid/#{pid_string}"}], children: [xmlcdata: pid_string])

end)

pids_separated = Enum.intersperse(pids_elements, {:xmlcdata, ", "})

new_element = xmlel(name: "h3", children: [xmlcdata: "PIDs:"])

acc ++ [new_element] ++ pids_separated
end

def webadmin_page(_acc, host, request(path: ["user", user, "pid", pid])) do
res = webadmin_pid(user, host, pid)
{:stop, res}

end

def webadmin_page(acc, _host, _request) do
acc

end

def webadmin_pid(user, host, pid_string) do
us = :jid.to_string(:jid.make(user, host))
page_title = 'Pid #{pid_string} of #{us}'

pid = :erlang.list_to_pid(String.to_charlist(pid_string))
pid_info = Process.info(pid)
pid_info_string = :io_lib.format("~p", [pid_info])

[xmlel(name: "h1", children: [xmlcdata: page_title]),
xmlel(name: "pre", children: [xmlcdata: pid_info_string])]

end

end

mod_webadmin_pid.ex

- 280/450 - Copyright © 2008 - 2024 ProcessOne

The ejabberd Developer Livebook

This page is designed to run interactively using Livebook. Of course, you could simply reproduce the instructions manually yourself.

But, if possible, install Livebook in your machine and get the full experience clicking on the button:

Setup ejabberd inside livebook

This Livebook will download, compile and install ejabberd:

If you want to use a specific ejabberd.yml configuration file, copy it to your Livebook folder.

On top of this page, click Setup .

If ejabberd.yml is not found, it will be downloaded from ejabberd git repository.

Click Reconnect and setup to download ejabberd and all its dependencies. It will be compiled and started... it may take a pair of

minutes.

Alternatively, if you already have ejabberd installed and running in your system, you can connect livebook to your ejabberd node

Execute some Erlang code

Now that Livebook is connected a running ejabberd node, you can run Erlang and Elixir code from this page directly in your

node.

For example, to run some erlang code, put your mouse over the new lines and click on Evaluate :

Let's define the details of an account, we will later register it. You may change those values:

Now let's execute an Erlang function to register the account:

Info

filename = "ejabberd.yml"

if File.exists?(filename) do
Mix.install([
{:ejabberd, "~> 24.2"},
{:kino, "~> 0.12.3"}

])
else
url = "https://raw.githubusercontent.com/processone/ejabberd/master/ejabberd.yml.example"

Mix.install([:req]) &&
File.write!(
filename,
String.replace(Req.get!(url).body, "starttls_required: true", "")

)

IO.puts("ejabberd.yml downloaded correctly, click 'Reconnect and setup' to download ejabberd.")
end

1.

2.

3.

4.

ejabberd_admin:registered_vhosts().

Username = <<"user1">>,
Server = <<"localhost">>,
Password = <<"somepass123">>,
{Username, Server, Password}.

ejabberd_auth:try_register(Username, Server, Password).

The ejabberd Developer Livebook

- 281/450 - Copyright © 2008 - 2024 ProcessOne

https://livebook.dev/
https://livebook.dev/run?url=https-3A-2F-2Fprocessone.github.io-2Fmkdocs-2Flivebooks-2Fejabberd-developer-livebook.livemd
https://livebook.dev/run?url=https-3A-2F-2Fprocessone.github.io-2Fmkdocs-2Flivebooks-2Fejabberd-developer-livebook.livemd

Let's check the account was registered:

And is the account's password the one we introduced?

Ok, enough for now, let's remove the account:

Execute some Elixir code

The same code of the previous section can be executed using Elixir:

Run API commands

Let's run some ejabberd API commands using the ejabberd_ctl frontend (there is is also mod_http_api and ejabberd_xmlrpc).

For example, the status API command:

How to register an account using ejabberd_ctl to call the API command

If you have ejabberd installed in the the system, and the ejabberdctl command-line script is available in your PATH, then you

could also try to execute with:

Draw process structure

Let's view the ejabberd process tree:

Let's view the erlang processes that handle XMPP client connections. If this graph is empty, login to ejabberd with a client and

reevaluate this code:

ejabberd_auth:get_users(<<"localhost">>).

Password == ejabberd_auth:get_password(Username, Server).

ejabberd_auth:remove_user(Username, Server).

:ejabberd_admin.registered_vhosts()

username = <<"user1">>
server = <<"localhost">>
password = <<"somepass123">>
{username, server, password}

:ejabberd_auth.try_register(username, server, password)

:ejabberd_auth.get_users(server)

password == :ejabberd_auth.get_password(username, server)

:ejabberd_auth.remove_user(username, server)

ejabberd_ctl:process(["status"]).

command = ~c"register"
:ejabberd_ctl.process([command, username, server, password])

os:cmd("ejabberdctl status").

:os.cmd(~c"ejabberdctl status")

Kino.Process.render_app_tree(:ejabberd, direction: :left_right)

Kino.Process.render_sup_tree(:ejabberd_c2s_sup, direction: :left_right)

Execute some Elixir code

- 282/450 - Copyright © 2008 - 2024 ProcessOne

https://docs.ejabberd.im/developer/ejabberd-api/
https://docs.ejabberd.im/admin/configuration/modules/#mod_http_api
https://docs.ejabberd.im/admin/configuration/listen/#ejabberd-xmlrpc
https://docs.ejabberd.im/developer/ejabberd-api/admin-api/#status

And some information about the erlang process that handles the XMPP client session:

Connect Livebook to your ejabberd node

By default this livebook downloads, compiles and starts ejabberd by setting up ejabberd sinde livebook. If you already have

ejabberd installed and would like to connect this livebook to your existing ejabberd node, follow those steps:

Get erlang node name

To connect Livebook to your running ejabberd node, you must know its erlang node name and its cookie.

The erlang node name is by default ejabberd@localhost . You can check this in many places, for example:

Using ejabberdctl status :

In the ejabberd.log file, which contains a line like:

Setup ejabberd node

A Livebook can only connect to an Erlang node that has Elixir support. So, make sure you install not only Erlang, but also Elixir.

When compiling ejabberd, make sure to enable Elixir support. It should get enabled by default, but you can ensure this: either by

./configure --with-rebar=mix or by ./configure --enable-elixir .

Then start ejabberd with IEx shell: ejabberdctl iexlive

Get erlang cookie

The erlang cookie is a random string of capital letters required to connect to an existing erlang node.

You can get it in a running node, simply call:

Connect this livebook to your ejabberd node

Now that you have ejabberd running, and you know the information required to connect to it:

go to Livebook

in the left side bar, click the Runtime settings icon, or press sr keyboard shortcut

click the Configure button

click the Attached node button

introduce the erlang node name (ejabberd@localhost) and cookie (XQFOPGGPSNEZNUWKRZJU) of your ejabberd node

click the Connect button (it may say Reconnect)

If it connected successfully, it will now show memory consumption of that node

[resource] = :ejabberd_sm.get_user_resources(username, server)
Elixir.Process.info(:ejabberd_sm.get_session_pid(username, server, resource))

•

$ ejabberdctl status
The node ejabberd@localhost is started with status: started
ejabberd 24.2.52 is running in that node

•

2024-03-26 13:18:35.019288+01:00 [info] <0.216.0>@ejabberd_app:start/2:63
ejabberd 24.2.52 is started in the node ejabberd@localhost in 0.91s

:erlang.get_cookie()
:XQFOPGGPSNEZNUWKRZJU

1.

2.

3.

4.

5.

6.

7.

Connect Livebook to your ejabberd node

- 283/450 - Copyright © 2008 - 2024 ProcessOne

Test the connection

Now that Livebook is connected to your running ejabberd node, you can run Erlang and Elixir code from this page directly in

your node.

For example, to run some erlang code, put your mouse over the new lines and click on Evaluate :

The same code can be executed using Elixir:

Stop ejabberd

Let' stop ejabberd insie livebook

ejabberd_admin:registered_vhosts().

:ejabberd_admin.registered_vhosts()

:ejabberd.stop()

Stop ejabberd

- 284/450 - Copyright © 2008 - 2024 ProcessOne

Internationalization and Localization

The source code of ejabberd supports localization: all built-in modules support the xml:lang attribute inside IQ queries, and the

Web Admin supports the Accept-Language HTTP header.

There are two ways to improve the translation of a language:

Edit the corresponding .po file in ejabberd-po git repository with a gettext-compatible program (Poedit, KBabel, Lokalize, ...).

Then submit a Pull Request.

Using the ejabberd-po Weblate online service.

Once the translators have improved the po files, you can run make translations . With that command, the translatable strings are

extracted from source code to generate the file ejabberd.pot . This file is merged with each .po file to produce updated .po files.

Finally those .po files are exported to .msg files, that have a format easily readable by ejabberd .

•

•

Internationalization and Localization

- 285/450 - Copyright © 2008 - 2024 ProcessOne

https://github.com/processone/ejabberd-po
https://hosted.weblate.org/projects/ejabberd/ejabberd-po/

ejabberd Modules Development

Introduction

ejabberd is based on a modular architecture that makes it highly customizable and infinitely extensible.

Here is an overview of ejabberd internal architecture:

What is a module ?

Outside of a few infrastructure core components most of ejabberd features are developed as modules. Modules are used to

extend the features of ejabberd (plugins).

How to write a custom module ?

Ejabberd comes with a lot of modules, but sometimes you may need an unsupported feature from the official sources or maybe

you need to write your own custom implementation for your very special needs.

Each modules is written in either Erlang or Elixir. To use them, you typically declare them in ejabberd configuration file. That's

also the place where you can configure the module, by passing supported options to overload its default behaviour.

On ejabberd launch, the server will start all the declared modules. You can start (or stop) them manually from Erlang shell as

well.

As a convention, module names starts with "mod_", but you can actually call them as you want.

The gen_mod behaviour

All ejabberd modules are implementing the gen_mod behaviour. It means that a module must provide the following API:

start(Host, Opts) -> ok
stop(Host) -> ok
depends(Host, Opts) -> []
mod_options(Host) -> []

ejabberd Modules Development

- 286/450 - Copyright © 2008 - 2024 ProcessOne

Parameters are:

Host = string()

Opts = [{Name, Value}]

Name = Value = string()

Host is the name of the virtual host running the module. The start/2 and stop/1 functions are called for each virtual host at

start and stop time of the server.

Opts is a lists of options as defined in the configuration file for the module. They can be retrieved with the gen_mod:get_opt/3

function.

mod_hello_world

The following code shows the simplest possible module.

Now you have two ways to compile and install the module: If you compiled ejabberd from source code, you can copy that source

code file with all the other ejabberd source code files, so it will be compiled and installed with them. If you installed some

compiled ejabberd package, you can create your own module dir, see Add Your Module.

You can enable your new module by adding it in the ejabberd config file. Adding the following snippet in the config file will

integrate the module in ejabberd module lifecycle management. It means the module will be started at ejabberd launch and

stopped during ejabberd shutdown process:

Or you can start / stop it manually by typing the following commands in an Erlang shell running ejabberd:

To manually start your module:

To manually stop your module:

•

•

•

mod_hello_world.erl

-module(mod_hello_world).

-behaviour(gen_mod).

%% Required by ?INFO_MSG macros
-include("logger.hrl").

%% Required by ?T macro
-include("translate.hrl").

%% gen_mod API callbacks
-export([start/2, stop/1, depends/2, mod_options/1, mod_doc/0]).

start(_Host, _Opts) ->
?INFO_MSG("Hello, ejabberd world!", []),
ok.

stop(_Host) ->
?INFO_MSG("Bye bye, ejabberd world!", []),
ok.

depends(_Host, _Opts) ->
[].

mod_options(_Host) ->
[].

mod_doc() ->
#{desc =>

?T("This is an example module.")}.

modules:
...
mod_hello_world: {}

•

gen_mod:start_module(<<"localhost">>, mod_hello_world, []).

•

gen_mod:stop_module(<<"localhost">>, mod_hello_world).

mod_hello_world

- 287/450 - Copyright © 2008 - 2024 ProcessOne

When the module is started, either on ejabberd start or manually, you should see the following message in ejabberd log file:

Add module to ejabberd-modules

If you install ejabberd using the official ProcessOne installer, it includes everything needed to build ejabberd modules on its own.

First, create this path

and copy your source code to this location:

Create a specification file in YAML format as mod_hello_world.spec (see examples from ejabberd-contrib). So, create the file

with this content:

From that point you should see it as available module:

Now you can install and uninstall that module like any other, as described in the previous section.

If you plan to publish your module, you should check if your module follows the policy and if it compiles correctly:

If all is OK, your’re done ! Else, just follow the warning/error messages to fix the issues.

You may consider publishing your module as a tgz/zip archive or git repository, and send your spec file for integration in

ejabberd-contrib repository. ejabberd-contrib will only host a copy of your spec file and does not need your code to make it

available to all ejabberd users.

19:13:29.717 [info] Hello, ejabberd world!

1.

$HOME/.ejabberd-modules/sources/mod_hello_world/src/

2.

$HOME/.ejabberd-modules/sources/mod_hello_world/src/mod_hello_world.erl

3.

$HOME/.ejabberd-modules/sources/mod_hello_world/mod_hello_world.spec

mod_hello_world.spec

summary: "Hello World example module"

4.

ejabberdctl modules_available
mod_hello_world Hello World example module

5.

6.

ejabberdctl module_check mod_mysupermodule
ok

Add module to ejabberd-modules

- 288/450 - Copyright © 2008 - 2024 ProcessOne

Your module in ejabberd-modules with ejabberd container

If you installed ejabberd using the Docker image, these specific instructions allow you to use your module with your Docker

image:

Create a local directory for ejabberd-modules :

Then create the directory structure for your custom module:

Grant ownership of that directory to the UID that ejabberd will use inside the Docker image:

Start ejabberd in Docker:

Check the module is available for installing, and then install it:

If the module works correctly, you will see the Hello string in the ejabberd logs when it starts:

Next steps

From there, you know how to package a module to integrate it inside ejabberd environment. Packaging a module allows you to:

Integrate in ejabberd overall application life cycle, i.e. with the start and stop mechanism.

Get data from ejabberd configuration file.

Now, to do useful stuff, you need to integrate with ejabberd data flow. You have two mechanisms available from ejabberd

modules:

Events and Hooks: This is to handle internal ejabberd triggers and subscribe to them to perform actions or provide data.

IQ Handlers: This is a way to register ejabberd module to handle XMPP Info Queries. This is the XMPP way to provide new

services.

1.

mkdir docker-modules

2.

cd docker-modules

mkdir -p sources/mod_hello_world/
touch sources/mod_hello_world/mod_hello_world.spec

mkdir sources/mod_hello_world/src/
mv mod_hello_world.erl sources/mod_hello_world/src/

mkdir sources/mod_hello_world/conf/
echo -e "modules:\n mod_hello_world: {}" > sources/mod_hello_world/conf/mod_hello_world.yml

cd ..

3.

sudo chown 9000 -R docker-modules/

4.

sudo docker run \
--name hellotest \
-d \
--volume "$(pwd)/docker-modules:/home/ejabberd/.ejabberd-modules/" \
-p 5222:5222 \
-p 5280:5280 \
ejabberd/ecs

5.

sudo docker exec -it hellotest bin/ejabberdctl modules_available
mod_hello_world []

sudo docker exec -it hellotest bin/ejabberdctl module_install mod_hello_world

6.

sudo docker exec -it hellotest grep Hello logs/ejabberd.log
2020-10-06 13:40:13.154335+00:00 [info]
<0.492.0>@mod_hello_world:start/2:15 Hello, ejabberd world!

•

•

•

•

Your module in ejabberd-modules with ejabberd container

- 289/450 - Copyright © 2008 - 2024 ProcessOne

MucSub: Multi-User Chat Subscriptions

Motivation

In XMPP, Multi-User Chat rooms design rely on presence. To participate in a MUC room, you need to send a presence to the

room. When you get disconnected, you leave the room and stopped being part of the room. User involvement in MUC rooms is

not permanent.

This is an issue with the rise of mobile applications. Chatting with friends in a room is a big part of messaging usage on mobile.

However, to save battery life, mobile devices will freeze mobile XMPP application after a while when they get to background. It

means that the connection is lost and that the session is usually terminated.

Some workaround have been used to try letting user keep on receiving messages from MUC room when the app is in

background. The most common one is to keep the session open for a while until a timeout happens. This is the approach

promoted on mobile by XEP-0198 - Stream Management. When messages are received and no TCP/IP connection is attached,

server usually fallback sending the message to the user using mobile push notification service to warn the user that a message

has been received.

This approach has many drawbacks:

It is not permanent. The idea of having the session kept into memory for a while is interesting but it is just a long timeout. After

that timeout, the session is closed and the user will leave the room. No message will be received anymore.

It does not play well with normal server / cluster operations. If you restart the service where the user session is kept, it will

disappear. You can dump them to disk and recreate them on start, but it means that if the node crashes, your session will be lost

and user will stop receiving messages.

It does not change the fundamental nature of MUC chat room. They are still presence-based. It means that if you need to restart

the MUC service, or if it crashes, presence are lost. For connected clients, they are expected to join the MUC room again. However,

for mobile clients, it cannot happens until user reopens the app. Moreover, it means that on new session start, user client is

expected to join all the MUC rooms they want to keep track of on connect.

This specification tries to solve those issues by keeping most of the logic of the MUC room intact. There is attempt to rewrite

XMPP Multi-User chat rooms by splitting presence from ability to receive and send messages (XEP-0369: Mediated Information

eXchange (MIX)). However, the features covered by the MUC protocol are quite comprehensive and the MIX protocol is not yet

ready to cover all the MUC use cases yet. The goal is to produce an intermediate state that is compliant with MUC and leverage

most of the MUC features, while adding the most basic feature possible to implement the MUC/Sub extension.

This specifications tries to merge ideas to produce a MUC extension that make MUC rooms mobile clients friendly.

To play well with mobile, MUC room need to support the following features:

Add the ability to send and receive messages to a room without having to send presence to the room. More generally allow

other type of interaction with the room (like configuration changes for example or kick and ban). We will leverage existing

publish and subscribe approach.

Add the ability to resync the client for missed messages on reconnect. We will leverage Message Archive Management service

for MUC.

Finally, ensure that a server can implement push notification service to ensure alerting of offline users when MUC messages

are received.

The goal is to learn from real life working implementation to help feeding MIX with feedback from the field, without having to

reinvent a complete new protocol.

General principle

The core idea is to expose MUC rooms as PubSub nodes and to introduce the concept of MUC rooms subscribers.

1.

2.

3.

•

•

•

MucSub: Multi-User Chat Subscriptions

- 290/450 - Copyright © 2008 - 2024 ProcessOne

A user affiliated to a MUC room should be able to subscribe to MUC node events and have them routed to their JID, even if they

are not a participant in the room. It means that a user can receive messages without having to send presence to the room. In that

sense, "joining the room" in XEP-0045 becomes more "Being available in the MUC room".

Discovering support

Discovering support on MUC service

You can check if MUC/Sub feature is available on MUC service by sending Disco Info IQ:

MUC service will show a feature of type 'urn:xmpp:mucsub:0' to the response if the feature is supported and enabled:

Discovering support on a specific MUC

A user can discover support for MUC/Sub feature on a MUC room as follow:

A conference MUST add 'urn:xmpp:mucsub:0' to the response if the feature is supported and enabled:

Option MUC room support for subscriptions

Even if MUC room supports MUC/Sub feature, it MAY be explicitly enabled or disabled thanks to a new configuration option:

Allow subscription: Users can subscribe to MUC/Sub events.

<iq from='hag66@shakespeare.example/pda'
to='muc.shakespeare.example'
type='get'
id='ik3vs715'>

<query xmlns='http://jabber.org/protocol/disco#info'/>
</iq>

<iq from="muc.shakespeare.example"
to="hag66@shakespeare.example/pda"
type="result"
id="ik3vs715">

<query xmlns="http://jabber.org/protocol/disco#info">
<identity category="conference"

type="text"
name="Chatrooms" />

...
<feature var="urn:xmpp:mucsub:0" />
...

</query>
</iq>

<iq from='hag66@shakespeare.example/pda'
to='coven@muc.shakespeare.example'
type='get'
id='ik3vs715'>

<query xmlns='http://jabber.org/protocol/disco#info'/>
</iq>

<iq from='coven@muc.shakespeare.example'
to='hag66@shakespeare.example/pda'
type='result'
id='ik3vs715'>

<query xmlns='http://jabber.org/protocol/disco#info'>
<identity category='conference'

name='A Dark Cave'
type='text' />

<feature var='http://jabber.org/protocol/muc' />
...
<feature var='urn:xmpp:mucsub:0' />
...

</query>
</iq>

•

Discovering support

- 291/450 - Copyright © 2008 - 2024 ProcessOne

Subscriber role

Until a subscriber is not joined a conference (see Joining a MUC Room), a subscriber role MUST be 'none'. When a subscriber is

joined a conference its role is changed according to XEP-0045 rules, that is, it becomes either 'visitor', 'participant' or

'moderator'.

Subscribing to MUC/Sub events

User can subscribe to the following events, by subscribing to specific nodes:

urn:xmpp:mucsub:nodes:presence

urn:xmpp:mucsub:nodes:messages

urn:xmpp:mucsub:nodes:affiliations

urn:xmpp:mucsub:nodes:subscribers

urn:xmpp:mucsub:nodes:config

urn:xmpp:mucsub:nodes:subject

urn:xmpp:mucsub:nodes:system

Example: User Subscribes to MUC/Sub events

If user is allowed to subscribe, server replies with success. The password attribute can be provided when subscribing to a

password-protected room.

Example: Server replies with success

Subscription is associated with a nick. It will implicitly register the nick. Server should otherwise make sure that subscription

match the user registered nickname in that room. In order to change the nick and/or subscription nodes, the same request MUST

be sent with a different nick or nodes information.

Example: User changes subscription data

•

•

•

•

•

•

•

<iq from='hag66@shakespeare.example'
to='coven@muc.shakespeare.example'
type='set'
id='E6E10350-76CF-40C6-B91B-1EA08C332FC7'>

<subscribe xmlns='urn:xmpp:mucsub:0'
nick='mynick'
password='roompassword'>

<event node='urn:xmpp:mucsub:nodes:messages' />
<event node='urn:xmpp:mucsub:nodes:affiliations' />
<event node='urn:xmpp:mucsub:nodes:subject' />
<event node='urn:xmpp:mucsub:nodes:config' />

</subscribe>
</iq>

<iq from='coven@muc.shakespeare.example'
to='hag66@shakespeare.example'
type='result'
id='E6E10350-76CF-40C6-B91B-1EA08C332FC7'>

<subscribe xmlns='urn:xmpp:mucsub:0'>
<event node='urn:xmpp:mucsub:nodes:messages' />
<event node='urn:xmpp:mucsub:nodes:affiliations' />
<event node='urn:xmpp:mucsub:nodes:subject' />
<event node='urn:xmpp:mucsub:nodes:config' />

</subscribe>
</iq>

<iq from='hag66@shakespeare.example'
to='coven@muc.shakespeare.example'
type='set'
id='E6E10350-76CF-40C6-B91B-1EA08C332FC7'>

<subscribe xmlns='urn:xmpp:mucsub:0'
nick='newnick'>

<event node='urn:xmpp:mucsub:nodes:messages' />
<event node='urn:xmpp:mucsub:nodes:presence' />

</subscribe>
</iq>

Subscriber role

- 292/450 - Copyright © 2008 - 2024 ProcessOne

https://xmpp.org/extensions/xep-0045.html

A room moderator can subscribe another user to MUC Room events by providing the user JID as an attribute in the <subscribe/>

element.

Example: Room moderator subscribes another user

Unsubscribing from a MUC Room

At any time a user can unsubscribe from MUC Room events.

Example: User unsubscribes from a MUC Room

Example: A MUC Room responds to unsubscribe request

A room moderator can unsubscribe another room user from MUC Room events by providing the user JID as an attribute in the

<unsubscribe/> element.

Example: Room moderator unsubscribes another room user

Subscriber actions

If not stated otherwise in this document, a subscriber MUST perform any actions in the conference as described in XEP-0045.

For example, it MUST send messages to all occupants according to 7.4 Sending a Message to All Occupants, it MUST configure a

conference according to 10.2 Subsequent Room Configuration and so on.

Here are a few examples:

Sending a message

Sending a message is like sending a standard groupchat message in MUC room:

<iq from='king@shakespeare.example'
to='coven@muc.shakespeare.example'
type='set'
id='E6E10350-76CF-40C6-B91B-1EA08C332FC7'>

<subscribe xmlns='urn:xmpp:mucsub:0'
jid='hag66@shakespeare.example'
nick='mynick'
password='roompassword'>

<event node='urn:xmpp:mucsub:nodes:messages' />
<event node='urn:xmpp:mucsub:nodes:affiliations' />
<event node='urn:xmpp:mucsub:nodes:subject' />
<event node='urn:xmpp:mucsub:nodes:config' />

</subscribe>
</iq>

<iq from='hag66@shakespeare.example'
to='coven@muc.shakespeare.example'
type='set'
id='E6E10350-76CF-40C6-B91B-1EA08C332FC7'>

<unsubscribe xmlns='urn:xmpp:mucsub:0' />
</iq>

<iq from='coven@muc.shakespeare.example'
to='hag66@shakespeare.example'
type='result'
id='E6E10350-76CF-40C6-B91B-1EA08C332FC7' />

<iq from='king@shakespeare.example'
to='coven@muc.shakespeare.example'
type='set'
id='E6E10350-76CF-40C6-B91B-1EA08C332FC7'>

<unsubscribe xmlns='urn:xmpp:mucsub:0'
jid='hag66@shakespeare.example'/>

</iq>

<message from="hag66@shakespeare.example"
to="coven@muc.shakespeare.example"
type="groupchat">

<body>Test</body>
</message>

Unsubscribing from a MUC Room

- 293/450 - Copyright © 2008 - 2024 ProcessOne

https://xmpp.org/extensions/xep-0045.html
https://xmpp.org/extensions/xep-0045.html#message
https://xmpp.org/extensions/xep-0045.html#roomconfig

No need to join it after you connect. As a subscriber, you can send messages at any time.

Joining a MUC Room

If a user wants to be present in the room, they just have to join the room as defined in XEP-0045.

A subscriber MAY decide to join a conference (in the XEP-0045 sense). In this case a conference MUST behave as described in

XEP-0045 7.2 Entering a Room. A conference MUST process events as described under XEP-0045 7.1 Order of Events except it

MUST not send room history. When a subscriber is joined, a conference MUST stop sending subscription events and MUST

switch to a regular groupchat protocol (as described in XEP-0045) until a subscriber leaves.

Receiving events

Here is as an example message received by a subscriber when a message is posted to a MUC room when subscriber is

subscribed to node urn:xmpp:mucsub:nodes:messages:

Presence changes in the MUC room are received wrapped in the same way by subscribers which subscribed to node

urn:xmpp:mucsub:nodes:presence:

If subscriber is subscribed to node urn:xmpp:mucsub:nodes:subscribers, message will ne sent for every mucsub subscription

change. When a user becomes a subscriber:

<message from="coven@muc.shakespeare.example"
to="hag66@shakespeare.example/pda">

<event xmlns="http://jabber.org/protocol/pubsub#event">
<items node="urn:xmpp:mucsub:nodes:messages">
<item id="18277869892147515942">
<message from="coven@muc.shakespeare.example/secondwitch"

to="hag66@shakespeare.example/pda"
type="groupchat"
xmlns="jabber:client">

<archived xmlns="urn:xmpp:mam:tmp"
by="muc.shakespeare.example"
id="1467896732929849" />

<stanza-id xmlns="urn:xmpp:sid:0"
by="muc.shakespeare.example"
id="1467896732929849" />

<body>Hello from the MUC room !</body>
</message>

</item>
</items>

</event>
</message>

<message from="coven@muc.shakespeare.example"
to="hag66@shakespeare.example/pda">

<event xmlns="http://jabber.org/protocol/pubsub#event">
<items node="urn:xmpp:mucsub:nodes:presences">
<item id="8170705750417052518">
<presence xmlns="jabber:client"

from="coven@muc.shakespeare.example/secondwitch"
type="unavailable"
to="hag66@shakespeare.example/pda">

<x xmlns="http://jabber.org/protocol/muc#user">
<item affiliation="none"

role="none" />
</x>

</presence>
</item>

</items>
</event>

</message>

<message from="coven@muc.shakespeare.example"
to="hag66@shakespeare.example/pda">

<event xmlns="http://jabber.org/protocol/pubsub#event">
<items node="urn:xmpp:mucsub:nodes:subscribers">
<item id="17895981155977588737">
<subscribe xmlns="urn:xmpp:mucsub:0"

jid="bob@server.com"
nick="bob"/>

</item>
</items>

</event>
</message>

Receiving events

- 294/450 - Copyright © 2008 - 2024 ProcessOne

https://xmpp.org/extensions/xep-0045.html
https://xmpp.org/extensions/xep-0045.html#enter-muc
https://xmpp.org/extensions/xep-0045.html#order
https://xmpp.org/extensions/xep-0045.html

When a user lost its subscription:

Note: Sometimes jid in subscribe/unsubscribe event may be missing if room is set to anonymous and user is not moderator.

Getting List of subscribed rooms

A user can query the MUC service to get their list of subscriptions.

Example: User asks for subscriptions list

Example: Server replies with subscriptions list

Getting list of subscribers of a room

A subscriber or room moderator can get the list of subscribers by sending <subscriptions/> request directly to the room JID.

Example: Asks for subscribers list

Example: Server replies with subscribers list

<message from="coven@muc.shakespeare.example"
to="hag66@shakespeare.example/pda">

<event xmlns="http://jabber.org/protocol/pubsub#event">
<items node="urn:xmpp:mucsub:nodes:subscribers">
<item id="10776102417321261057">
<unsubscribe xmlns="urn:xmpp:mucsub:0"

jid="bob@server.com"
nick="bob"/>

</item>
</items>

</event>
</message>

<iq from='hag66@shakespeare.example'
to='muc.shakespeare.example'
type='get'
id='E6E10350-76CF-40C6-B91B-1EA08C332FC7'>

<subscriptions xmlns='urn:xmpp:mucsub:0' />
</iq>

<iq from='muc.shakespeare.example'
to='hag66@shakespeare.example'
type='result'
id='E6E10350-76CF-40C6-B91B-1EA08C332FC7'>

<subscriptions xmlns='urn:xmpp:mucsub:0'>
<subscription nick='mynick'

jid='coven@muc.shakespeare.example'>
<event node='urn:xmpp:mucsub:nodes:messages'/>
<event node='urn:xmpp:mucsub:nodes:affiliations'/>
<event node='urn:xmpp:mucsub:nodes:subject'/>
<event node='urn:xmpp:mucsub:nodes:config'/>

</subscription>
<subscription nick='MyNick'

jid='chat@muc.shakespeare.example'>
<event node='urn:xmpp:mucsub:nodes:messages'/>

</subscription>
</subscriptions>

</iq>

<iq from='hag66@shakespeare.example'
to='coven@muc.shakespeare.example'
type='get'
id='E6E10350-76CF-40C6-B91B-1EA08C332FC7'>

<subscriptions xmlns='urn:xmpp:mucsub:0' />
</iq>

<iq from='coven@muc.shakespeare.example'
to='hag66@shakespeare.example'
type='result'
id='E6E10350-76CF-40C6-B91B-1EA08C332FC7'>

<subscriptions xmlns='urn:xmpp:mucsub:0'>
<subscription nick='Juliet'

jid='juliet@shakespeare.example'>
<event node='urn:xmpp:mucsub:nodes:messages'/>
<event node='urn:xmpp:mucsub:nodes:affiliations'/>

</subscription>
<subscription nick='Romeo'

jid='romeo@shakespeare.example'>
<event node='urn:xmpp:mucsub:nodes:messages'/>

Getting List of subscribed rooms

- 295/450 - Copyright © 2008 - 2024 ProcessOne

Compliance with existing MUC clients

MUC/Sub approach is compliant with existing MUC service and MUC clients. MUC clients compliant with XEP-0045 will receive

messages posted by subscribers. They may not see the user's presence, but it should not be an issue for most clients. Most

clients already support receiving messages from users that are not currently in the MUC room through history retrieval.

This approach should also help most clients to support better integration with third-party services posting to MUC room through

API (as)

However, a server could choose to send presence on behalf of subscribers when a user joins the room (in the XEP-0045 sense) so

that the subscriber will be shown in MUC roster of legacy clients.

Synchronization of MUC messages: Leveraging MAM support

To be friendly with mobile, the MAM service should allow a user to connect and easily resync their history for all MUC

subscriptions. For details about MAM, see XEP-0313 Message Archive Management and your software's documentation, for

instance ejabberd's mod_mam.

Thanks to ability to get the list of all the existing subscription, client can get a starting point to interact with MAM service to

resync history and get the messages that were missed while the user was offline.

If you subscribe to MucSub, MAM will add the message to your own user JID on new messages. You will simply be able to query

them using your own JID from the standard MAM service.

It means, you can get all new MUC message in subscribed room thanks to MucSub, with a single query. For example, if you ask

for all messages sent since a specific date, the result will contain both normal chat and MucSub messages.

You would only need to query MUC for MAM for rooms for which you do not use MucSub as with MucSub you will be "delivered"

each message (in that case, each message is added your MAM archive).

Push support compliance

Subscriptions are compliant with push mechanism. It is supported out of the box when using ProcessOne p1:push

implementation (deployed on ejabberd SaaS for example).

More generally, it is straightforward to handle them through ejabberd developer API to implement custom mechanisms.

Subscriptions are delivered to online users. If the user has no active session, the server can choose to broadcast to the user

through a push notification.

When a session is opened, if the server detects that the user has not been recently active, or for any other reason, the server can

still forward the message to a push notification service to warn the user that new messages are available in a MUC room.

</subscription>
</subscriptions>

</iq>

Compliance with existing MUC clients

- 296/450 - Copyright © 2008 - 2024 ProcessOne

https://xmpp.org/extensions/xep-0313.html

ejabberd Test Suites

ejabberd comes with a comprehensive test suite to cover various part of the software platform.

XMPP end-to-end protocol test suite

Running ejabberd test suite

This test suite is a set of end-2-end integration tests that act like XMPP clients connecting with the server and is testing ejabberd

at the protocol level. It also contains tests for the various backends that ejabberd supports.

The test suite is modular and can be run in parts (to focus on a group of features) or run for a specific backend.

The CT_BACKENDS environment variable specifies which backend tests to run. Current CT_BACKENDS values:

extauth

ldap

mnesia

mssql

mysql

odbc

pgsql

redis

sqlite

Note: You must build ejabberd with proper backend support for the tests to work. If the tests fail and you aren't sure why, check

the configure build options to make sure ejabberd is compiled with adequate backend support.

Note: these tests are e2e tests that operate a full ejabberd instance. So the ports that ejabberd needs must be available for

testing. So you can't run an ejabberd instance at the same time you test.

Other options you can use to limit the tests that will be run is to pass a list of groups to test. Some groups examples:

no_db : Runs subgroups generic and test_proxy65 .

component

extauth

ldap

mnesia

mssql

mysql

pgsql

redis

s2s

sqlite

Usually, it is enough to just limit tests with CT_BACKENDS and let the test suite decide which relevant tests to run. Sometimes you

may want to only focus on a specific backend, skipping the generic no_db tests.

Some example commands for running the XMPP end-to-end test suite using rebar and rebar3 ct:

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

CT_BACKENDS=mnesia rebar ct suites=ejabberd
CT_BACKENDS=mnesia rebar ct suites=ejabberd groups=mnesia
CT_BACKENDS=mnesia rebar ct suites=ejabberd groups=generic

ejabberd Test Suites

- 297/450 - Copyright © 2008 - 2024 ProcessOne

https://rebar3.org/docs/testing/ct/

If you have every backend configured, you can run all the tests with:

Test suite conventions

The records used in test suite are autogenerated and come from tools/xmpp_codec.hrl . This is handy to match packets/results

against expected values.

Dependency tests

ejabberd depends on a lot of dependent modules. The dependencies can be tested independently by checking them out and

running their test suites directly.

Build test status

We run tests for ejabberd and dependencies automatically via Github Actions. We have a Dashboard available on Github to check

the overall test status for all projects: ProcessOne Github Dashboard

CT_BACKENDS=mnesia rebar3 ct --suite=test/ejabberd_SUITE --group=offline_flex,offline_send_all
CT_BACKENDS=redis rebar3 ct --suite=test/ejabberd_SUITE --group=offline_flex,offline_send_all

make test

Dependency tests

- 298/450 - Copyright © 2008 - 2024 ProcessOne

https://processone.github.io/

Developing ejabberd with VSCode

added in 23.01

The ejabberd git repository includes basic configuration and a few scripts to get started with ejabberd development using Visual

Studio Code.

There are several Visual Studio Code flavours suitable for ejabberd development:

Visual Studio Code desktop app – local development with no dependencies

VSCodium desktop app – local development installing dependencies

Coder's code-server container image – local or remote development

GitHub Codespaces service – quick and short remote development

Visual Studio Code

The official Visual Studio Code installers provided by Microsoft can use the official marketplace. That allows to install the Dev

Container extension to compile and run ejabberd inside a prepared container, which includes Erlang/OTP and all the required

libraries, so you don't need to install them in your machine.

However that installer is licensed under a not-FLOSS license and contains telemetry/tracking.

Once installed: install Git as suggested, clone the ejabberd git repository locally, let it install the Dev Container extension, then

let it reopen the path inside the devcontainer.

VSCodium

VSCodium provides Free/Libre Open Source Software Binaries of VSCode. This is a great alternative to the official VSCode

installer.

However, it can't use the official marketplace, uses instead the open-vsx.com marketplace, and the Dev Containers extension is

not available. This means that you must install the ejabberd dependencies in your system to compile and debug ejabberd.

Once installed: open your local ejabberd git clone. It's highly recommended to go the EXTENSIONS tab and install the Erlang LS

extension.

Coder's code-server

An easy, zero-cost, way to use VSCode in a web browser is through the ejabberd's code-server container image. This image is

based in the Debian docker image and includes Coder's code-server, Erlang/OTP, Elixir, and all the required libraries.

Download and start the container, and provide as volume the path of your local ejabberd git clone:

Now open in your web browser: http://0.0.0.0:5208/

The next time it can be started with docker start -i coder

GitHub Codespaces

The ejabberd git repository contains default configuration to use it in the GitHub Codespaces service.

•

•

•

•

docker run \
--name coder \
-it \
-p 5208:5208 \
-v $(pwd)/ejabberd:/workspaces/ejabberd \
ghcr.io/processone/code-server

Developing ejabberd with VSCode

- 299/450 - Copyright © 2008 - 2024 ProcessOne

https://code.visualstudio.com/
https://github.com/VSCodium/vscodium
https://github.com/erlang-ls/vscode
https://github.com/erlang-ls/vscode
https://hub.docker.com/_/debian
https://github.com/coder/code-server

This can be used remotely over a web browser, no need to install anything. Notice this is a service that can be used for free

several hours each month, and later requires a subscription.

To start using it:

Go to https://github.com/codespaces

Click "New codespace"

Select ejabberd repository, desired branch, click "Create codespace"

Basic Usage

Once you have VSCode running and ejabberd git repository opened, open some erlang file, so Erlang LS extension gets started,

and now you can go to RUN and run ejabberd for the first time. The first time it will take some time to compile, be patient.

Now you can:

In RUN click ▷ Relive to compile and start ejabberd

In EXPLORER open any source code, and add a breakpoint

In TERMINAL you can call: ejabberdctl register admin localhost somepass

In PORTS you can view the addresses you can use to connect to the running ejabberd

The ejabberd configuration file is in _build/relive/conf/ejabberd.yml .

You can connect to ejabberd using a XMPP client using HTTPS BOSH or WS on port 5443. Webadmin is on port 5280, if it

complains 404, add admin/ to the URL.

1.

2.

3.

•

•

•

•

Basic Usage

- 300/450 - Copyright © 2008 - 2024 ProcessOne

https://github.com/codespaces

Getting Started with XMPPFramework

Introduction

XMPP development on smartphone has always been challenging given the constraints on mobile platform.

This area will help you understand the challenges and help you get started with XMPP development on Apple iOS platform.

The main library to support XMPP on iOS is XMPPFramework.

XMPPFramework

XMPPFramework is a large framework relying on several dependencies. The easiest way to get started is to use Cocoapods to

integrate XMPPFramework in your own project. It will take care of adding all dependencies and perform all the required

configuration steps.

Here are the steps needed to get started:

Create a new iOS project in Xcode, if you do not have one.

If you do not yet have a Podfile , create it if pod init command from the project root directory.

Edit your Podfile to use XMPPFramework as a target. It may looks like:

Run pod install command. It should download, install and configure three pods.

Open your XCode project with the newly created workspace file instead of the project file. This is required by Cocoapods so that

you can use the installed Pods.

At this stage, you should be able to build your project successfully with the XMPP framework setup.

1.

2.

3.

platform :ios, '6.0'
use_frameworks!

target 'projectname' do
pod 'XMPPFramework'

end

1.

2.

3.

Getting Started with XMPPFramework

- 301/450 - Copyright © 2008 - 2024 ProcessOne

https://github.com/robbiehanson/XMPPFramework

API

ejabberd Rest API

Introduction

ejabberd comes with a powerful API serving two goals:

Manage the XMPP service and integrate the platform with back-end platforms and script tools.

Allow users to perform tasks via the client, allowing simple basic clients that do not need to use XMPP protocol. This can be handy,

for example to send a message from your smartwatch, or show the number of offline messages.

The system is powerful and very versatile and you can configure it very finely, but it can be quite daunting to set up.

This section is written to demystify ejabberd API configuration and help you integrate ejabberd with your other back-ends or

script through an HTTP / HTTPS ReST API.

Understanding ejabberd "commands"

ejabberd operations are organised around the concept of commands. ejabberd standard modules already provide many

commands, but the mechanism is generic and any module can provide its own set of commands. This exposition of commands for

third-party modules make it very powerful.

All commands can be exposed through interfaces. Available interfaces are:

ejabberdctl command-line tool,

mod_http_api for ReST calls using JSON data,

ejabberd_xmlrpc for XML-RPC calls,

WebAdmin uses most commands to build the web pages,

mod_configure includes support for a few administrative tasks (using XMPP protocol itself through discovery and adhoc

commands)

The ejabberd-contrib Github repository provides other interfaces that can be installed to execute ejabberd commands in different

ways: mod_rest (HTTP POST service), mod_shcommands (ejabberd WebAdmin page).

Any module in ejabberd can add its own command(s) through ejabberd Erlang/Elixir API, making the whole system totally

extensible. A third-party module can expose its own command(s) and feel like a real part of the system. A module that exposes

commands allows server admins to expose it the way they want.

ejabberd commands are universal, extensible and widely available through various configurable entrypoints.

Note: The XML-RPC API still works but is deprecated in favor of the ReST API. You should migrate to ReST if you are using it.

The role of ejabberd API

As we have seen, ejabberd API role is to provide and control access to ejabberd commands over HTTP/HTTPS.

Thus, ejabberd API primary goal is to grant access to some or all ejabberd "commands".

1.

2.

•

•

•

•

•

API

- 302/450 - Copyright © 2008 - 2024 ProcessOne

https://github.com/processone/ejabberd-contrib

An admin ejabberd ReST API requires:

At least one admin user, if you plan to check credentials for command access (You can alternatively rely on originating IP

addresses).

HTTP/HTTPS handlers configured to expose the desired commands.

The selection of authentication mechanisms that can be used to access the API. Two mechanisms are available to access the

HTTP API:

Basic authentication. This mechanism is enabled by default.

OAuth 2.0 token based authentication. It has to be explicitly added to the config file.

Learning the basics

The first resources to read to learn about ejabberd ReST API configuration are the following:

Simple API configuration

Using ejabberd client API libraries and tools

The list of available commands is available in the API Reference section. Additionally, you can check at runtime what commands

are available in your installed server using ejabberdctl:

Next steps

You can dig deeper into ejabberd ReST API configuration on the following pages:

API Permissions

OAuth Support

Administration API Commands

•

•

•

•

•

•

•

❯ ejabberdctl
Usage: ejabberdctl [--no-timeout] [--node nodename] [--version api_version] command [arguments]

Available commands in this ejabberd node:
backup file

Store internal Mnesia database to binary backup file
ban_account user host reason

Ban an account: kick sessions and set random password
...

❯ ejabberdctl help
...

❯ ejabberdctl help ban_account
...

•

•

•

Learning the basics

- 303/450 - Copyright © 2008 - 2024 ProcessOne

API Reference

This section describes API commands of ejabberd 24.10. If you are using an old ejabberd release, please refer to the

corresponding archived version of this page in the Archive. The commands that changed in this version are marked with 🟤.

abort_delete_old_mam_messages

added in 22.05

Abort currently running delete old MAM messages operation

Arguments:

host :: string : Name of host where operation should be aborted

Result:

status :: string : Status text

Tags: mam, purge

Module: mod_mam

Examples:

abort_delete_old_messages

added in 22.05

Abort currently running delete old offline messages operation

Arguments:

host :: string : Name of host where operation should be aborted

Result:

status :: string : Status text

Tags: offline, purge

Examples:

add_rosteritem

updated in 24.02

•

•

POST /api/abort_delete_old_mam_messages
{
"host": "localhost"

}

HTTP/1.1 200 OK
"Operation aborted"

•

•

POST /api/abort_delete_old_messages
{
"host": "localhost"

}

HTTP/1.1 200 OK
"Operation aborted"

API Reference

- 304/450 - Copyright © 2008 - 2024 ProcessOne

Add an item to a user's roster (supports ODBC)

Arguments:

localuser :: string : User name

localhost :: string : Server name

user :: string : Contact user name

host :: string : Contact server name

nick :: string : Nickname

groups :: [group::string] : Groups

subs :: string : Subscription

Result:

res :: integer : Status code (0 on success, 1 otherwise)

Tags: roster, v1

Module: mod_admin_extra

Examples:

backup

Backup the Mnesia database to a binary file

Arguments:

file :: string : Full path for the destination backup file

Result:

res :: string : Raw result string

Tags: mnesia

Examples:

ban_account

improved in 24.06

•

•

•

•

•

•

•

•

POST /api/add_rosteritem
{
"localuser": "user1",
"localhost": "myserver.com",
"user": "user2",
"host": "myserver.com",
"nick": "User 2",
"groups": [
"Friends",
"Team 1"

],
"subs": "both"

}

HTTP/1.1 200 OK
""

•

•

POST /api/backup
{
"file": "/var/lib/ejabberd/database.backup"

}

HTTP/1.1 200 OK
"Success"

backup

- 305/450 - Copyright © 2008 - 2024 ProcessOne

Ban an account

This command kicks the account sessions, sets a random password, and stores ban details in the account private storage. This

command requires mod_private to be enabled. Check also get_ban_details API and _unban_account _ API.

Arguments:

user :: string : User name to ban

host :: string : Server name

reason :: string : Reason for banning user

Result:

res :: integer : Status code (0 on success, 1 otherwise)

Tags: accounts, v2

Module: mod_admin_extra

Examples:

bookmarks_to_pep

Export private XML storage bookmarks to PEP

Arguments:

user :: string : Username

host :: string : Server

Result:

res :: string : Raw result string

Tags: private

Module: mod_private

Examples:

change_password

Change the password of an account

•

•

•

•

POST /api/ban_account
{
"user": "attacker",
"host": "myserver.com",
"reason": "Spaming other users"

}

HTTP/1.1 200 OK
""

•

•

•

POST /api/bookmarks_to_pep
{
"user": "bob",
"host": "example.com"

}

HTTP/1.1 200 OK
"Bookmarks exported"

bookmarks_to_pep

- 306/450 - Copyright © 2008 - 2024 ProcessOne

Arguments:

user :: string : User name

host :: string : Server name

newpass :: string : New password for user

Result:

res :: integer : Status code (0 on success, 1 otherwise)

Tags: accounts

Module: mod_admin_extra

Examples:

change_room_option

Change an option in a MUC room

Arguments:

name :: string : Room name

service :: string : MUC service

option :: string : Option name

value :: string : Value to assign

Result:

res :: integer : Status code (0 on success, 1 otherwise)

Tags: muc_room

Module: mod_muc_admin

Examples:

check_account

Check if an account exists or not

•

•

•

•

POST /api/change_password
{
"user": "peter",
"host": "myserver.com",
"newpass": "blank"

}

HTTP/1.1 200 OK
""

•

•

•

•

•

POST /api/change_room_option
{
"name": "room1",
"service": "conference.example.com",
"option": "members_only",
"value": "true"

}

HTTP/1.1 200 OK
""

change_room_option

- 307/450 - Copyright © 2008 - 2024 ProcessOne

Arguments:

user :: string : User name to check

host :: string : Server to check

Result:

res :: integer : Status code (0 on success, 1 otherwise)

Tags: accounts

Module: mod_admin_extra

Examples:

check_password

Check if a password is correct

Arguments:

user :: string : User name to check

host :: string : Server to check

password :: string : Password to check

Result:

res :: integer : Status code (0 on success, 1 otherwise)

Tags: accounts

Module: mod_admin_extra

Examples:

check_password_hash

Check if the password hash is correct

Allows hash methods from the Erlang/OTP crypto application.

•

•

•

POST /api/check_account
{
"user": "peter",
"host": "myserver.com"

}

HTTP/1.1 200 OK
""

•

•

•

•

POST /api/check_password
{
"user": "peter",
"host": "myserver.com",
"password": "secret"

}

HTTP/1.1 200 OK
""

check_password

- 308/450 - Copyright © 2008 - 2024 ProcessOne

https://www.erlang.org/doc/man/crypto

Arguments:

user :: string : User name to check

host :: string : Server to check

passwordhash :: string : Password's hash value

hashmethod :: string : Name of hash method

Result:

res :: integer : Status code (0 on success, 1 otherwise)

Tags: accounts

Module: mod_admin_extra

Examples:

clear_cache

Clear database cache on all nodes

Arguments:

Result:

res :: integer : Status code (0 on success, 1 otherwise)

Tags: server

Examples:

compile

Recompile and reload Erlang source code file

Arguments:

file :: string : Filename of erlang source file to compile

Result:

res :: integer : Status code (0 on success, 1 otherwise)

Tags: erlang

Module: mod_admin_extra

•

•

•

•

•

POST /api/check_password_hash
{
"user": "peter",
"host": "myserver.com",
"passwordhash": "5ebe2294ecd0e0f08eab7690d2a6ee69",
"hashmethod": "md5"

}

HTTP/1.1 200 OK
""

•

POST /api/clear_cache
{

}

HTTP/1.1 200 OK
""

•

•

clear_cache

- 309/450 - Copyright © 2008 - 2024 ProcessOne

Examples:

connected_users

List all established sessions

Arguments:

Result:

connected_users :: [sessions::string] : List of users sessions

Tags: session

Examples:

connected_users_info

List all established sessions and their information

Arguments:

Result:

connected_users_info :: [{jid::string, connection::string, ip::string, port::integer, priority::integer, node::string, uptime::integer,

status::string, resource::string, statustext::string}]

Tags: session

Module: mod_admin_extra

Examples:

POST /api/compile
{
"file": "/home/me/srcs/ejabberd/mod_example.erl"

}

HTTP/1.1 200 OK
""

•

POST /api/connected_users
{

}

HTTP/1.1 200 OK
[
"user1@example.com",
"user2@example.com"

]

•

POST /api/connected_users_info
{

}

HTTP/1.1 200 OK
[
{
"jid": "user1@myserver.com/tka",
"connection": "c2s",
"ip": "127.0.0.1",
"port": 42656,
"priority": 8,
"node": "ejabberd@localhost",
"uptime": 231,
"status": "dnd",
"resource": "tka",
"statustext": ""

}
]

connected_users

- 310/450 - Copyright © 2008 - 2024 ProcessOne

connected_users_number

Get the number of established sessions

Arguments:

Result:

num_sessions :: integer

Tags: session, statistics

Examples:

connected_users_vhost

Get the list of established sessions in a vhost

Arguments:

host :: string : Server name

Result:

connected_users_vhost :: [sessions::string]

Tags: session

Module: mod_admin_extra

Examples:

convert_to_scram

Convert the passwords of users to SCRAM

Arguments:

host :: string : Vhost which users' passwords will be scrammed

Result:

res :: integer : Status code (0 on success, 1 otherwise)

Tags: sql

Examples:

•

POST /api/connected_users_number
{

}

HTTP/1.1 200 OK
2

•

•

POST /api/connected_users_vhost
{
"host": "myexample.com"

}

HTTP/1.1 200 OK
[
"user1@myserver.com/tka",
"user2@localhost/tka"

]

•

•

connected_users_number

- 311/450 - Copyright © 2008 - 2024 ProcessOne

convert_to_yaml

Convert the input file from Erlang to YAML format

Arguments:

in :: string : Full path to the original configuration file

out :: string : And full path to final file

Result:

res :: integer : Status code (0 on success, 1 otherwise)

Tags: config

Examples:

create_room

Create a MUC room name@service in host

Arguments:

name :: string : Room name

service :: string : MUC service

host :: string : Server host

Result:

res :: integer : Status code (0 on success, 1 otherwise)

Tags: muc_room

Module: mod_muc_admin

Examples:

POST /api/convert_to_scram
{
"host": "example.com"

}

HTTP/1.1 200 OK
""

•

•

•

POST /api/convert_to_yaml
{
"in": "/etc/ejabberd/ejabberd.cfg",
"out": "/etc/ejabberd/ejabberd.yml"

}

HTTP/1.1 200 OK
""

•

•

•

•

POST /api/create_room
{
"name": "room1",
"service": "conference.example.com",
"host": "example.com"

}

HTTP/1.1 200 OK
""

convert_to_yaml

- 312/450 - Copyright © 2008 - 2024 ProcessOne

create_room_with_opts

Create a MUC room name@service in host with given options

The syntax of affiliations is: Type:JID,Type:JID . The syntax of subscribers is: JID:Nick:Node:Node2:Node3,JID:Nick:Node .

Arguments:

name :: string : Room name

service :: string : MUC service

host :: string : Server host

options :: [{name::string, value::string}] : List of options

Result:

res :: integer : Status code (0 on success, 1 otherwise)

Tags: muc_room, muc_sub

Module: mod_muc_admin

Examples:

create_rooms_file

Create the rooms indicated in file

Provide one room JID per line. Rooms will be created after restart.

Arguments:

file :: string : Path to the text file with one room JID per line

Result:

res :: integer : Status code (0 on success, 1 otherwise)

Tags: muc

Module: mod_muc_admin

Examples:

•

•

•

•

•

POST /api/create_room_with_opts
{
"name": "room1",
"service": "conference.example.com",
"host": "localhost",
"options": [
{
"name": "members_only",
"value": "true"

},
{
"name": "affiliations",
"value": "owner:bob@example.com,member:peter@example.com"

},
{
"name": "subscribers",
"value": "bob@example.com:Bob:messages:subject,anne@example.com:Anne:messages"

}
]

}

HTTP/1.1 200 OK
""

•

•

POST /api/create_rooms_file
{
"file": "/home/ejabberd/rooms.txt"

}

create_room_with_opts

- 313/450 - Copyright © 2008 - 2024 ProcessOne

delete_expired_messages

Delete expired offline messages from database

Arguments:

Result:

res :: integer : Status code (0 on success, 1 otherwise)

Tags: offline, purge

Examples:

delete_expired_pubsub_items

added in 21.12

Delete expired PubSub items

Arguments:

Result:

res :: integer : Status code (0 on success, 1 otherwise)

Tags: purge

Module: mod_pubsub

Examples:

delete_mnesia

Delete elements in Mnesia database for a given vhost

Arguments:

host :: string : Vhost which content will be deleted in Mnesia database

Result:

res :: integer : Status code (0 on success, 1 otherwise)

Tags: mnesia

HTTP/1.1 200 OK
""

•

POST /api/delete_expired_messages
{

}

HTTP/1.1 200 OK
""

•

POST /api/delete_expired_pubsub_items
{

}

HTTP/1.1 200 OK
""

•

•

delete_expired_messages

- 314/450 - Copyright © 2008 - 2024 ProcessOne

Examples:

delete_old_mam_messages

Delete MAM messages older than DAYS

Valid message TYPEs: chat , groupchat , all .

Arguments:

type :: string : Type of messages to delete (chat , groupchat , all)

days :: integer : Days to keep messages

Result:

res :: integer : Status code (0 on success, 1 otherwise)

Tags: mam, purge

Module: mod_mam

Examples:

delete_old_mam_messages_batch

added in 22.05

Delete MAM messages older than DAYS

Valid message TYPEs: chat , groupchat , all .

Arguments:

host :: string : Name of host where messages should be deleted

type :: string : Type of messages to delete (chat , groupchat , all)

days :: integer : Days to keep messages

batch_size :: integer : Number of messages to delete per batch

rate :: integer : Desired rate of messages to delete per minute

Result:

res :: string : Raw result string

Tags: mam, purge

Module: mod_mam

POST /api/delete_mnesia
{
"host": "example.com"

}

HTTP/1.1 200 OK
""

•

•

•

POST /api/delete_old_mam_messages
{
"type": "all",
"days": 31

}

HTTP/1.1 200 OK
""

•

•

•

•

•

•

delete_old_mam_messages

- 315/450 - Copyright © 2008 - 2024 ProcessOne

Examples:

delete_old_mam_messages_status

added in 22.05

Status of delete old MAM messages operation

Arguments:

host :: string : Name of host where messages should be deleted

Result:

status :: string : Status test

Tags: mam, purge

Module: mod_mam

Examples:

delete_old_messages

Delete offline messages older than DAYS

Arguments:

days :: integer : Number of days

Result:

res :: integer : Status code (0 on success, 1 otherwise)

Tags: offline, purge

Examples:

POST /api/delete_old_mam_messages_batch
{
"host": "localhost",
"type": "all",
"days": 31,
"batch_size": 1000,
"rate": 10000

}

HTTP/1.1 200 OK
"Removal of 5000 messages in progress"

•

•

POST /api/delete_old_mam_messages_status
{
"host": "localhost"

}

HTTP/1.1 200 OK
"Operation in progress, delete 5000 messages"

•

•

POST /api/delete_old_messages
{
"days": 31

}

HTTP/1.1 200 OK
""

delete_old_mam_messages_status

- 316/450 - Copyright © 2008 - 2024 ProcessOne

delete_old_messages_batch

added in 22.05

Delete offline messages older than DAYS

Arguments:

host :: string : Name of host where messages should be deleted

days :: integer : Days to keep messages

batch_size :: integer : Number of messages to delete per batch

rate :: integer : Desired rate of messages to delete per minute

Result:

res :: string : Raw result string

Tags: offline, purge

Examples:

delete_old_messages_status

added in 22.05

Status of delete old offline messages operation

Arguments:

host :: string : Name of host where messages should be deleted

Result:

status :: string : Status test

Tags: offline, purge

Examples:

delete_old_pubsub_items

added in 21.12

Keep only NUMBER of PubSub items per node

•

•

•

•

•

POST /api/delete_old_messages_batch
{
"host": "localhost",
"days": 31,
"batch_size": 1000,
"rate": 10000

}

HTTP/1.1 200 OK
"Removal of 5000 messages in progress"

•

•

POST /api/delete_old_messages_status
{
"host": "localhost"

}

HTTP/1.1 200 OK
"Operation in progress, delete 5000 messages"

delete_old_messages_batch

- 317/450 - Copyright © 2008 - 2024 ProcessOne

Arguments:

number :: integer : Number of items to keep per node

Result:

res :: integer : Status code (0 on success, 1 otherwise)

Tags: purge

Module: mod_pubsub

Examples:

delete_old_push_sessions

Remove push sessions older than DAYS

Arguments:

days :: integer

Result:

res :: integer : Status code (0 on success, 1 otherwise)

Tags: purge

Module: mod_push

Examples:

delete_old_users

Delete users that didn't log in last days, or that never logged

To protect admin accounts, configure this for example:

Arguments:

days :: integer : Last login age in days of accounts that should be removed

Result:

res :: string : Raw result string

Tags: accounts, purge

•

•

POST /api/delete_old_pubsub_items
{
"number": 1000

}

HTTP/1.1 200 OK
""

•

•

POST /api/delete_old_push_sessions
{
"days": 1

}

HTTP/1.1 200 OK
""

access_rules:
protect_old_users:
- allow: admin
- deny: all

•

•

delete_old_push_sessions

- 318/450 - Copyright © 2008 - 2024 ProcessOne

Module: mod_admin_extra

Examples:

delete_old_users_vhost

Delete users that didn't log in last days in vhost, or that never logged

To protect admin accounts, configure this for example:

Arguments:

host :: string : Server name

days :: integer : Last login age in days of accounts that should be removed

Result:

res :: string : Raw result string

Tags: accounts, purge

Module: mod_admin_extra

Examples:

delete_rosteritem

Delete an item from a user's roster (supports ODBC)

Arguments:

localuser :: string : User name

localhost :: string : Server name

user :: string : Contact user name

host :: string : Contact server name

Result:

res :: integer : Status code (0 on success, 1 otherwise)

Tags: roster

Module: mod_admin_extra

POST /api/delete_old_users
{
"days": 30

}

HTTP/1.1 200 OK
"Deleted 2 users: ["oldman@myserver.com", "test@myserver.com"]"

access_rules:
delete_old_users:
- deny: admin
- allow: all

•

•

•

POST /api/delete_old_users_vhost
{
"host": "myserver.com",
"days": 30

}

HTTP/1.1 200 OK
"Deleted 2 users: ["oldman@myserver.com", "test@myserver.com"]"

•

•

•

•

•

delete_old_users_vhost

- 319/450 - Copyright © 2008 - 2024 ProcessOne

Examples:

destroy_room

Destroy a MUC room

Arguments:

name :: string : Room name

service :: string : MUC service

Result:

res :: integer : Status code (0 on success, 1 otherwise)

Tags: muc_room

Module: mod_muc_admin

Examples:

destroy_rooms_file

Destroy the rooms indicated in file

Provide one room JID per line.

Arguments:

file :: string : Path to the text file with one room JID per line

Result:

res :: integer : Status code (0 on success, 1 otherwise)

Tags: muc

Module: mod_muc_admin

Examples:

POST /api/delete_rosteritem
{
"localuser": "user1",
"localhost": "myserver.com",
"user": "user2",
"host": "myserver.com"

}

HTTP/1.1 200 OK
""

•

•

•

POST /api/destroy_room
{
"name": "room1",
"service": "conference.example.com"

}

HTTP/1.1 200 OK
""

•

•

POST /api/destroy_rooms_file
{
"file": "/home/ejabberd/rooms.txt"

}

HTTP/1.1 200 OK
""

destroy_room

- 320/450 - Copyright © 2008 - 2024 ProcessOne

dump

Dump the Mnesia database to a text file

Arguments:

file :: string : Full path for the text file

Result:

res :: string : Raw result string

Tags: mnesia

Examples:

dump_config

Dump configuration in YAML format as seen by ejabberd

Arguments:

out :: string : Full path to output file

Result:

res :: integer : Status code (0 on success, 1 otherwise)

Tags: config

Examples:

dump_table

Dump a Mnesia table to a text file

Arguments:

file :: string : Full path for the text file

table :: string : Table name

Result:

res :: string : Raw result string

Tags: mnesia

Examples:

•

•

POST /api/dump
{
"file": "/var/lib/ejabberd/database.txt"

}

HTTP/1.1 200 OK
"Success"

•

•

POST /api/dump_config
{
"out": "/tmp/ejabberd.yml"

}

HTTP/1.1 200 OK
""

•

•

•

POST /api/dump_table
{

dump

- 321/450 - Copyright © 2008 - 2024 ProcessOne

export2sql

Export virtual host information from Mnesia tables to SQL file

Configure the modules to use SQL, then call this command. After correctly exported the database of a vhost, you may want to

delete from mnesia with the delete_mnesia API.

Arguments:

host :: string : Vhost

file :: string : Full path to the destination SQL file

Result:

res :: integer : Status code (0 on success, 1 otherwise)

Tags: mnesia

Examples:

export_piefxis

Export data of all users in the server to PIEFXIS files (XEP-0227)

Arguments:

dir :: string : Full path to a directory

Result:

res :: integer : Status code (0 on success, 1 otherwise)

Tags: mnesia

Examples:

export_piefxis_host

Export data of users in a host to PIEFXIS files (XEP-0227)

"file": "/var/lib/ejabberd/table-muc-registered.txt",
"table": "muc_registered"

}

HTTP/1.1 200 OK
"Success"

•

•

•

POST /api/export2sql
{
"host": "example.com",
"file": "/var/lib/ejabberd/example.com.sql"

}

HTTP/1.1 200 OK
""

•

•

POST /api/export_piefxis
{
"dir": "/var/lib/ejabberd/"

}

HTTP/1.1 200 OK
""

export2sql

- 322/450 - Copyright © 2008 - 2024 ProcessOne

Arguments:

dir :: string : Full path to a directory

host :: string : Vhost to export

Result:

res :: integer : Status code (0 on success, 1 otherwise)

Tags: mnesia

Examples:

gc

added in 20.01

Force full garbage collection

Arguments:

Result:

res :: integer : Status code (0 on success, 1 otherwise)

Tags: server

Examples:

gen_html_doc_for_commands

Generates html documentation for ejabberd_commands

Arguments:

file :: string : Path to file where generated documentation should be stored

regexp :: string : Regexp matching names of commands or modules that will be included inside generated document

examples :: string : Comma separated list of languages (chosen from java , perl , xmlrpc , json) that will have example

invocation include in markdown document

Result:

res :: integer : Status code (0 on success, 1 otherwise)

Tags: documentation

Examples:

•

•

•

POST /api/export_piefxis_host
{
"dir": "/var/lib/ejabberd/",
"host": "example.com"

}

HTTP/1.1 200 OK
""

•

POST /api/gc
{

}

HTTP/1.1 200 OK
""

•

•

•

•

POST /api/gen_html_doc_for_commands
{

gc

- 323/450 - Copyright © 2008 - 2024 ProcessOne

gen_markdown_doc_for_commands

Generates markdown documentation for ejabberd_commands

Arguments:

file :: string : Path to file where generated documentation should be stored

regexp :: string : Regexp matching names of commands or modules that will be included inside generated document, or

runtime to get commands registered at runtime

examples :: string : Comma separated list of languages (chosen from java , perl , xmlrpc , json) that will have example

invocation include in markdown document

Result:

res :: integer : Status code (0 on success, 1 otherwise)

Tags: documentation

Examples:

gen_markdown_doc_for_tags

added in 21.12

Generates markdown documentation for ejabberd_commands

Arguments:

file :: string : Path to file where generated documentation should be stored

Result:

res :: integer : Status code (0 on success, 1 otherwise)

Tags: documentation

Examples:

"file": "/home/me/docs/api.html",
"regexp": "mod_admin",
"examples": "java,json"

}

HTTP/1.1 200 OK
""

•

•

•

•

POST /api/gen_markdown_doc_for_commands
{
"file": "/home/me/docs/api.html",
"regexp": "mod_admin",
"examples": "java,json"

}

HTTP/1.1 200 OK
""

•

•

POST /api/gen_markdown_doc_for_tags
{
"file": "/home/me/docs/tags.md"

}

HTTP/1.1 200 OK
""

gen_markdown_doc_for_commands

- 324/450 - Copyright © 2008 - 2024 ProcessOne

get_ban_details

added in 24.06

Get ban details about an account

Check ban_account API.

Arguments:

user :: string : User name to unban

host :: string : Server name

Result:

ban_details :: [{name::string, value::string}]

Tags: accounts, v2

Module: mod_admin_extra

Examples:

get_cookie

Get the Erlang cookie of this node

Arguments:

Result:

cookie :: string : Erlang cookie used for authentication by ejabberd

Tags: erlang

Module: mod_admin_extra

Examples:

•

•

•

POST /api/get_ban_details
{
"user": "attacker",
"host": "myserver.com"

}

HTTP/1.1 200 OK
[
{
"name": "reason",
"value": "Spamming other users"

},
{
"name": "bandate",
"value": "2024-04-22T09:16:47.975312Z"

},
{
"name": "lastdate",
"value": "2024-04-22T08:39:12Z"

},
{
"name": "lastreason",
"value": "Connection reset by peer"

}
]

•

POST /api/get_cookie
{

}

HTTP/1.1 200 OK
"MWTAVMODFELNLSMYXPPD"

get_ban_details

- 325/450 - Copyright © 2008 - 2024 ProcessOne

get_last

Get last activity information

Timestamp is UTC and XEP-0082 format, for example: 2017-02-23T22:25:28.063062Z ONLINE

Arguments:

user :: string : User name

host :: string : Server name

Result:

last_activity :: {timestamp::string, status::string} : Last activity timestamp and status

Tags: last

Module: mod_admin_extra

Examples:

get_loglevel

Get the current loglevel

Arguments:

Result:

levelatom :: string : Tuple with the log level number, its keyword and description

Tags: logs

Examples:

get_mam_count 🟤

added in 24.10

Get number of MAM messages in a local user archive

Arguments:

user :: string

host :: string

•

•

•

POST /api/get_last
{
"user": "user1",
"host": "myserver.com"

}

HTTP/1.1 200 OK
{
"timestamp": "2017-06-30T14:32:16.060684Z",
"status": "ONLINE"

}

•

POST /api/get_loglevel
{

}

HTTP/1.1 200 OK
"warning"

•

•

get_last

- 326/450 - Copyright © 2008 - 2024 ProcessOne

https://xmpp.org/extensions/xep-0082.html

Result:

value :: integer : Number

Tags: mam

Module: mod_mam

Examples:

get_master

added in 24.06

Get master node of the clustered Mnesia tables

If there is no master, returns none .

Arguments:

Result:

nodename :: string

Tags: cluster

Examples:

get_offline_count

Get the number of unread offline messages

Arguments:

user :: string

host :: string

Result:

value :: integer : Number

Tags: offline

Module: mod_admin_extra

Examples:

•

POST /api/get_mam_count
{
"user": "aaaaa",
"host": "bbbbb"

}

HTTP/1.1 200 OK
5

•

POST /api/get_master
{

}

HTTP/1.1 200 OK
"aaaaa"

•

•

•

POST /api/get_offline_count
{
"user": "aaaaa",
"host": "bbbbb"

get_master

- 327/450 - Copyright © 2008 - 2024 ProcessOne

get_presence

Retrieve the resource with highest priority, and its presence (show and status message) for a given user.

The jid value contains the user JID with resource.

The show value contains the user presence flag. It can take limited values:

available

chat (Free for chat)

away

dnd (Do not disturb)

xa (Not available, extended away)

unavailable (Not connected)

status is a free text defined by the user client.

Arguments:

user :: string : User name

host :: string : Server name

Result:

presence :: {jid::string, show::string, status::string}

Tags: session

Module: mod_admin_extra

Examples:

get_room_affiliation

Get affiliation of a user in MUC room

Arguments:

name :: string : Room name

service :: string : MUC service

jid :: string : User JID

Result:

affiliation :: string : Affiliation of the user

}

HTTP/1.1 200 OK
5

•

•

•

•

•

•

•

•

•

POST /api/get_presence
{
"user": "peter",
"host": "myexample.com"

}

HTTP/1.1 200 OK
{
"jid": "user1@myserver.com/tka",
"show": "dnd",
"status": "Busy"

}

•

•

•

•

get_presence

- 328/450 - Copyright © 2008 - 2024 ProcessOne

Tags: muc_room

Module: mod_muc_admin

Examples:

get_room_affiliations

Get the list of affiliations of a MUC room

Arguments:

name :: string : Room name

service :: string : MUC service

Result:

affiliations :: [{username::string, domain::string, affiliation::string, reason::string}] : The list of affiliations with username,

domain, affiliation and reason

Tags: muc_room

Module: mod_muc_admin

Examples:

get_room_history

added in 23.04

Get history of messages stored inside MUC room state

Arguments:

name :: string : Room name

service :: string : MUC service

Result:

history :: [{timestamp::string, message::string}]

Tags: muc_room

POST /api/get_room_affiliation
{
"name": "room1",
"service": "conference.example.com",
"jid": "user1@example.com"

}

HTTP/1.1 200 OK
"member"

•

•

•

POST /api/get_room_affiliations
{
"name": "room1",
"service": "conference.example.com"

}

HTTP/1.1 200 OK
[
{
"username": "user1",
"domain": "example.com",
"affiliation": "member",
"reason": "member"

}
]

•

•

•

get_room_affiliations

- 329/450 - Copyright © 2008 - 2024 ProcessOne

Module: mod_muc_admin

Examples:

get_room_occupants

Get the list of occupants of a MUC room

Arguments:

name :: string : Room name

service :: string : MUC service

Result:

occupants :: [{jid::string, nick::string, role::string}] : The list of occupants with JID, nick and affiliation

Tags: muc_room

Module: mod_muc_admin

Examples:

get_room_occupants_number

Get the number of occupants of a MUC room

Arguments:

name :: string : Room name

service :: string : MUC service

Result:

occupants :: integer : Number of room occupants

Tags: muc_room

POST /api/get_room_history
{
"name": "room1",
"service": "conference.example.com"

}

HTTP/1.1 200 OK
[
{
"timestamp": "aaaaa",
"message": "bbbbb"

},
{
"timestamp": "ccccc",
"message": "ddddd"

}
]

•

•

•

POST /api/get_room_occupants
{
"name": "room1",
"service": "conference.example.com"

}

HTTP/1.1 200 OK
[
{
"jid": "user1@example.com/psi",
"nick": "User 1",
"role": "owner"

}
]

•

•

•

get_room_occupants

- 330/450 - Copyright © 2008 - 2024 ProcessOne

Module: mod_muc_admin

Examples:

get_room_options

Get options from a MUC room

Arguments:

name :: string : Room name

service :: string : MUC service

Result:

options :: [{name::string, value::string}] : List of room options tuples with name and value

Tags: muc_room

Module: mod_muc_admin

Examples:

get_roster

improved in 23.10

Get list of contacts in a local user roster

subscription can be: none , from , to , both .

pending can be: in , out , none .

Arguments:

user :: string

host :: string

Result:

contacts :: [{jid::string, nick::string, subscription::string, pending::string, groups::[group::string]}]

Tags: roster

Module: mod_admin_extra

POST /api/get_room_occupants_number
{
"name": "room1",
"service": "conference.example.com"

}

HTTP/1.1 200 OK
7

•

•

•

POST /api/get_room_options
{
"name": "room1",
"service": "conference.example.com"

}

HTTP/1.1 200 OK
[
{
"name": "members_only",
"value": "true"

}
]

•

•

•

get_room_options

- 331/450 - Copyright © 2008 - 2024 ProcessOne

Examples:

get_roster_count

added in 24.06

Get number of contacts in a local user roster

Arguments:

user :: string

host :: string

Result:

value :: integer : Number

Tags: roster

Module: mod_admin_extra

Examples:

get_subscribers

List subscribers of a MUC conference

Arguments:

name :: string : Room name

service :: string : MUC service

POST /api/get_roster
{
"user": "aaaaa",
"host": "bbbbb"

}

HTTP/1.1 200 OK
[
{
"jid": "aaaaa",
"nick": "bbbbb",
"subscription": "ccccc",
"pending": "ddddd",
"groups": [
"eeeee",
"fffff"

]
},
{
"jid": "ggggg",
"nick": "hhhhh",
"subscription": "iiiii",
"pending": "jjjjj",
"groups": [
"kkkkk",
"lllll"

]
}

]

•

•

•

POST /api/get_roster_count
{
"user": "aaaaa",
"host": "bbbbb"

}

HTTP/1.1 200 OK
5

•

•

get_roster_count

- 332/450 - Copyright © 2008 - 2024 ProcessOne

Result:

subscribers :: [jid::string] : The list of users that are subscribed to that room

Tags: muc_room, muc_sub

Module: mod_muc_admin

Examples:

get_user_rooms

Get the list of rooms where this user is occupant

Arguments:

user :: string : Username

host :: string : Server host

Result:

rooms :: [room::string]

Tags: muc

Module: mod_muc_admin

Examples:

get_user_subscriptions

added in 21.04

Get the list of rooms where this user is subscribed

Arguments:

user :: string : Username

host :: string : Server host

Result:

rooms :: [{roomjid::string, usernick::string, nodes::[node::string]}]

•

POST /api/get_subscribers
{
"name": "room1",
"service": "conference.example.com"

}

HTTP/1.1 200 OK
[
"user2@example.com",
"user3@example.com"

]

•

•

•

POST /api/get_user_rooms
{
"user": "tom",
"host": "example.com"

}

HTTP/1.1 200 OK
[
"room1@conference.example.com",
"room2@conference.example.com"

]

•

•

•

get_user_rooms

- 333/450 - Copyright © 2008 - 2024 ProcessOne

Tags: muc, muc_sub

Module: mod_muc_admin

Examples:

get_vcard

Get content from a vCard field

Some vcard field names in get / set_vcard are:

FN - Full Name

NICKNAME - Nickname

BDAY - Birthday

TITLE - Work: Position

ROLE - Work: Role

For a full list of vCard fields check XEP-0054: vcard-temp

Arguments:

user :: string : User name

host :: string : Server name

name :: string : Field name

Result:

content :: string : Field content

Tags: vcard

Module: mod_admin_extra

Examples:

get_vcard2

Get content from a vCard subfield

POST /api/get_user_subscriptions
{
"user": "tom",
"host": "example.com"

}

HTTP/1.1 200 OK
[
{
"roomjid": "room1@conference.example.com",
"usernick": "Tommy",
"nodes": [
"mucsub:config"

]
}

]

•

•

•

•

•

•

•

•

•

POST /api/get_vcard
{
"user": "user1",
"host": "myserver.com",
"name": "NICKNAME"

}

HTTP/1.1 200 OK
"User 1"

get_vcard

- 334/450 - Copyright © 2008 - 2024 ProcessOne

https://xmpp.org/extensions/xep-0054.html

Some vcard field names and subnames in get / set_vcard2 are:

N FAMILY - Family name

N GIVEN - Given name

N MIDDLE - Middle name

ADR CTRY - Address: Country

ADR LOCALITY - Address: City

TEL HOME - Telephone: Home

TEL CELL - Telephone: Cellphone

TEL WORK - Telephone: Work

TEL VOICE - Telephone: Voice

EMAIL USERID - E-Mail Address

ORG ORGNAME - Work: Company

ORG ORGUNIT - Work: Department

For a full list of vCard fields check XEP-0054: vcard-temp

Arguments:

user :: string : User name

host :: string : Server name

name :: string : Field name

subname :: string : Subfield name

Result:

content :: string : Field content

Tags: vcard

Module: mod_admin_extra

Examples:

get_vcard2_multi

Get multiple contents from a vCard field

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

POST /api/get_vcard2
{
"user": "user1",
"host": "myserver.com",
"name": "N",
"subname": "FAMILY"

}

HTTP/1.1 200 OK
"Schubert"

get_vcard2_multi

- 335/450 - Copyright © 2008 - 2024 ProcessOne

https://xmpp.org/extensions/xep-0054.html

Some vcard field names and subnames in get / set_vcard2 are:

N FAMILY - Family name

N GIVEN - Given name

N MIDDLE - Middle name

ADR CTRY - Address: Country

ADR LOCALITY - Address: City

TEL HOME - Telephone: Home

TEL CELL - Telephone: Cellphone

TEL WORK - Telephone: Work

TEL VOICE - Telephone: Voice

EMAIL USERID - E-Mail Address

ORG ORGNAME - Work: Company

ORG ORGUNIT - Work: Department

For a full list of vCard fields check XEP-0054: vcard-temp

Arguments:

user :: string

host :: string

name :: string

subname :: string

Result:

contents :: [value::string]

Tags: vcard

Module: mod_admin_extra

Examples:

halt

added in 23.10

Halt ejabberd abruptly with status code 1

Arguments:

Result:

res :: integer : Status code (0 on success, 1 otherwise)

Tags: server

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

POST /api/get_vcard2_multi
{
"user": "aaaaa",
"host": "bbbbb",
"name": "ccccc",
"subname": "ddddd"

}

HTTP/1.1 200 OK
[
"aaaaa",
"bbbbb"

]

•

halt

- 336/450 - Copyright © 2008 - 2024 ProcessOne

https://xmpp.org/extensions/xep-0054.html

Examples:

help

Get list of commands, or help of a command (only ejabberdctl)

This command is exclusive for the ejabberdctl command-line script, don't attempt to execute it using any other API frontend.

Arguments:

Result:

res :: integer : Status code (0 on success, 1 otherwise)

Tags: ejabberdctl

Examples:

import_dir

Import users data from jabberd14 spool dir

Arguments:

file :: string : Full path to the jabberd14 spool directory

Result:

res :: string : Raw result string

Tags: mnesia

Examples:

import_file

Import user data from jabberd14 spool file

Arguments:

file :: string : Full path to the jabberd14 spool file

POST /api/halt
{

}

HTTP/1.1 200 OK
""

•

POST /api/help
{

}

HTTP/1.1 200 OK
""

•

•

POST /api/import_dir
{
"file": "/var/lib/ejabberd/jabberd14/"

}

HTTP/1.1 200 OK
"Success"

•

help

- 337/450 - Copyright © 2008 - 2024 ProcessOne

Result:

res :: string : Raw result string

Tags: mnesia

Examples:

import_piefxis

Import users data from a PIEFXIS file (XEP-0227)

Arguments:

file :: string : Full path to the PIEFXIS file

Result:

res :: integer : Status code (0 on success, 1 otherwise)

Tags: mnesia

Examples:

import_prosody

Import data from Prosody

Note: this requires ejabberd to be compiled with ./configure --enable-lua (which installs the luerl library).

Arguments:

dir :: string : Full path to the Prosody data directory

Result:

res :: integer : Status code (0 on success, 1 otherwise)

Tags: mnesia, sql

Examples:

•

POST /api/import_file
{
"file": "/var/lib/ejabberd/jabberd14.spool"

}

HTTP/1.1 200 OK
"Success"

•

•

POST /api/import_piefxis
{
"file": "/var/lib/ejabberd/example.com.xml"

}

HTTP/1.1 200 OK
""

•

•

POST /api/import_prosody
{
"dir": "/var/lib/prosody/datadump/"

}

HTTP/1.1 200 OK
""

import_piefxis

- 338/450 - Copyright © 2008 - 2024 ProcessOne

incoming_s2s_number

Number of incoming s2s connections on the node

Arguments:

Result:

s2s_incoming :: integer

Tags: statistics, s2s

Examples:

install_fallback

Install Mnesia database from a binary backup file

The binary backup file is installed as fallback: it will be used to restore the database at the next ejabberd start. This means that,

after running this command, you have to restart ejabberd. This command requires less memory than restore API.

Arguments:

file :: string : Full path to the fallback file

Result:

res :: string : Raw result string

Tags: mnesia

Examples:

join_cluster

improved in 24.06

Join our local node into the cluster handled by Node

Arguments:

node :: string : Nodename of the node to join

Result:

res :: string : Raw result string

Tags: cluster

Examples:

•

POST /api/incoming_s2s_number
{

}

HTTP/1.1 200 OK
1

•

•

POST /api/install_fallback
{
"file": "/var/lib/ejabberd/database.fallback"

}

HTTP/1.1 200 OK
"Success"

•

•

incoming_s2s_number

- 339/450 - Copyright © 2008 - 2024 ProcessOne

join_cluster_here

added in 24.06

Join a remote Node here, into our cluster

Arguments:

node :: string : Nodename of the node to join here

Result:

res :: string : Raw result string

Tags: cluster

Examples:

kick_session

Kick a user session

Arguments:

user :: string : User name

host :: string : Server name

resource :: string : User's resource

reason :: string : Reason for closing session

Result:

res :: integer : Status code (0 on success, 1 otherwise)

Tags: session

Module: mod_admin_extra

Examples:

POST /api/join_cluster
{
"node": "ejabberd1@machine7"

}

HTTP/1.1 200 OK
"Success"

•

•

POST /api/join_cluster_here
{
"node": "ejabberd1@machine7"

}

HTTP/1.1 200 OK
"Success"

•

•

•

•

•

POST /api/kick_session
{
"user": "peter",
"host": "myserver.com",
"resource": "Psi",
"reason": "Stuck connection"

}

HTTP/1.1 200 OK
""

join_cluster_here

- 340/450 - Copyright © 2008 - 2024 ProcessOne

kick_user

modified in 24.06

Disconnect user's active sessions

Arguments:

user :: string : User name

host :: string : Server name

Result:

res :: string : Raw result string

Tags: session, v2

Examples:

leave_cluster

Remove and shutdown Node from the running cluster

This command can be run from any running node of the cluster, even the node to be removed. In the removed node, this

command works only when using ejabberdctl, not mod_http_api or other code that runs inside the same ejabberd node that will

leave.

Arguments:

node :: string : Nodename of the node to kick from the cluster

Result:

res :: integer : Status code (0 on success, 1 otherwise)

Tags: cluster

Examples:

list_certificates

Lists all ACME certificates

Arguments:

Result:

certificates :: [{domain::string, file::string, used::string}]

•

•

•

POST /api/kick_user
{
"user": "user1",
"host": "example.com"

}

HTTP/1.1 200 OK
"Kicked sessions: 2"

•

•

POST /api/leave_cluster
{
"node": "ejabberd1@machine8"

}

HTTP/1.1 200 OK
""

•

kick_user

- 341/450 - Copyright © 2008 - 2024 ProcessOne

Tags: acme

Examples:

list_cluster

List running nodes that are part of this cluster

Arguments:

Result:

nodes :: [node::string]

Tags: cluster

Examples:

list_cluster_detailed

added in 24.06

List nodes (both running and known) and some stats

Arguments:

Result:

nodes :: [{name::string, running::string, status::string, online_users::integer, processes::integer, uptime_seconds::integer,

master_node::string}]

Tags: cluster

Examples:

POST /api/list_certificates
{

}

HTTP/1.1 200 OK
[
{
"domain": "aaaaa",
"file": "bbbbb",
"used": "ccccc"

},
{
"domain": "ddddd",
"file": "eeeee",
"used": "fffff"

}
]

•

POST /api/list_cluster
{

}

HTTP/1.1 200 OK
[
"ejabberd1@machine7",
"ejabberd1@machine8"

]

•

POST /api/list_cluster_detailed
{

}

HTTP/1.1 200 OK
[
{

list_cluster

- 342/450 - Copyright © 2008 - 2024 ProcessOne

load

Restore Mnesia database from a text dump file

Restore immediately. This is not recommended for big databases, as it will consume much time, memory and processor. In that

case it's preferable to use backup API and install_fallback API.

Arguments:

file :: string : Full path to the text file

Result:

res :: string : Raw result string

Tags: mnesia

Examples:

man

added in 20.01

Generate Unix manpage for current ejabberd version

Arguments:

Result:

res :: string : Raw result string

Tags: documentation

Examples:

mnesia_change_nodename

Change the erlang node name in a backup file

"name": "ejabberd@localhost",
"running": "true",
"status": "The node ejabberd is started. Status...",
"online_users": 7,
"processes": 348,
"uptime_seconds": 60,
"master_node": "none"

}
]

•

•

POST /api/load
{
"file": "/var/lib/ejabberd/database.txt"

}

HTTP/1.1 200 OK
"Success"

•

POST /api/man
{

}

HTTP/1.1 200 OK
"Success"

load

- 343/450 - Copyright © 2008 - 2024 ProcessOne

Arguments:

oldnodename :: string : Name of the old erlang node

newnodename :: string : Name of the new node

oldbackup :: string : Path to old backup file

newbackup :: string : Path to the new backup file

Result:

res :: string : Raw result string

Tags: mnesia

Examples:

mnesia_info

Dump info on global Mnesia state

Arguments:

Result:

res :: string

Tags: mnesia

Examples:

mnesia_info_ctl

renamed in 24.02

Show information of Mnesia system (only ejabberdctl)

This command is exclusive for the ejabberdctl command-line script, don't attempt to execute it using any other API frontend.

Arguments:

Result:

res :: integer : Status code (0 on success, 1 otherwise)

Tags: ejabberdctl, mnesia

Examples:

•

•

•

•

•

POST /api/mnesia_change_nodename
{
"oldnodename": "ejabberd@machine1",
"newnodename": "ejabberd@machine2",
"oldbackup": "/var/lib/ejabberd/old.backup",
"newbackup": "/var/lib/ejabberd/new.backup"

}

HTTP/1.1 200 OK
"Success"

•

POST /api/mnesia_info
{

}

HTTP/1.1 200 OK
"aaaaa"

•

mnesia_info

- 344/450 - Copyright © 2008 - 2024 ProcessOne

mnesia_table_info

Dump info on Mnesia table state

Arguments:

table :: string : Mnesia table name

Result:

res :: string

Tags: mnesia

Examples:

module_check

Check the contributed module repository compliance

Arguments:

module :: string : Module name

Result:

res :: integer : Status code (0 on success, 1 otherwise)

Tags: modules

Examples:

module_install

Compile, install and start an available contributed module

Arguments:

module :: string : Module name

Result:

res :: integer : Status code (0 on success, 1 otherwise)

POST /api/mnesia_info_ctl
{

}

HTTP/1.1 200 OK
""

•

•

POST /api/mnesia_table_info
{
"table": "roster"

}

HTTP/1.1 200 OK
"aaaaa"

•

•

POST /api/module_check
{
"module": "mod_rest"

}

HTTP/1.1 200 OK
""

•

•

mnesia_table_info

- 345/450 - Copyright © 2008 - 2024 ProcessOne

Tags: modules

Examples:

module_uninstall

Uninstall a contributed module

Arguments:

module :: string : Module name

Result:

res :: integer : Status code (0 on success, 1 otherwise)

Tags: modules

Examples:

module_upgrade

Upgrade the running code of an installed module

In practice, this uninstalls and installs the module

Arguments:

module :: string : Module name

Result:

res :: integer : Status code (0 on success, 1 otherwise)

Tags: modules

Examples:

modules_available

List the contributed modules available to install

Arguments:

POST /api/module_install
{
"module": "mod_rest"

}

HTTP/1.1 200 OK
""

•

•

POST /api/module_uninstall
{
"module": "mod_rest"

}

HTTP/1.1 200 OK
""

•

•

POST /api/module_upgrade
{
"module": "mod_rest"

}

HTTP/1.1 200 OK
""

module_uninstall

- 346/450 - Copyright © 2008 - 2024 ProcessOne

Result:

modules :: [{name::string, summary::string}] : List of tuples with module name and description

Tags: modules

Examples:

modules_installed

List the contributed modules already installed

Arguments:

Result:

modules :: [{name::string, summary::string}] : List of tuples with module name and description

Tags: modules

Examples:

modules_update_specs

Update the module source code from Git

A connection to Internet is required

Arguments:

Result:

res :: integer : Status code (0 on success, 1 otherwise)

Tags: modules

Examples:

•

POST /api/modules_available
{

}

HTTP/1.1 200 OK
{
"mod_cron": "Execute scheduled commands",
"mod_rest": "ReST frontend"

}

•

POST /api/modules_installed
{

}

HTTP/1.1 200 OK
{
"mod_cron": "Execute scheduled commands",
"mod_rest": "ReST frontend"

}

•

POST /api/modules_update_specs
{

}

HTTP/1.1 200 OK
""

modules_installed

- 347/450 - Copyright © 2008 - 2024 ProcessOne

muc_online_rooms

List existing rooms

Ask for a specific host, or global to use all vhosts.

Arguments:

service :: string : MUC service, or global for all

Result:

rooms :: [room::string] : List of rooms

Tags: muc

Module: mod_muc_admin

Examples:

muc_online_rooms_by_regex

List existing rooms filtered by regexp

Ask for a specific host, or global to use all vhosts.

Arguments:

service :: string : MUC service, or global for all

regex :: string : Regex pattern for room name

Result:

rooms :: [{jid::string, public::string, participants::integer}] : List of rooms with summary

Tags: muc

Module: mod_muc_admin

Examples:

•

•

POST /api/muc_online_rooms
{
"service": "conference.example.com"

}

HTTP/1.1 200 OK
[
"room1@conference.example.com",
"room2@conference.example.com"

]

•

•

•

POST /api/muc_online_rooms_by_regex
{
"service": "conference.example.com",
"regex": "^prefix"

}

HTTP/1.1 200 OK
[
{
"jid": "room1@conference.example.com",
"public": "true",
"participants": 10

},
{
"jid": "room2@conference.example.com",
"public": "false",
"participants": 10

}
]

muc_online_rooms

- 348/450 - Copyright © 2008 - 2024 ProcessOne

muc_register_nick

Register a nick to a User JID in a MUC service

Arguments:

nick :: string : Nick

jid :: string : User JID

service :: string : Service

Result:

res :: integer : Status code (0 on success, 1 otherwise)

Tags: muc

Module: mod_muc_admin

Examples:

muc_unregister_nick

Unregister the nick registered by that account in the MUC service

Arguments:

jid :: string : User JID

service :: string : MUC service

Result:

res :: integer : Status code (0 on success, 1 otherwise)

Tags: muc

Module: mod_muc_admin

Examples:

num_resources

Get the number of resources of a user

Arguments:

user :: string : User name

host :: string : Server name

•

•

•

•

POST /api/muc_register_nick
{
"nick": "Tim",
"jid": "tim@example.org",
"service": "conference.example.org"

}

HTTP/1.1 200 OK
""

•

•

•

POST /api/muc_unregister_nick
{
"jid": "tim@example.org",
"service": "conference.example.org"

}

HTTP/1.1 200 OK
""

•

•

muc_register_nick

- 349/450 - Copyright © 2008 - 2024 ProcessOne

Result:

resources :: integer : Number of active resources for a user

Tags: session

Module: mod_admin_extra

Examples:

oauth_add_client_implicit

Add OAuth client_id with implicit grant type

Arguments:

client_id :: string

client_name :: string

redirect_uri :: string

Result:

res :: string : Raw result string

Tags: oauth

Examples:

oauth_add_client_password

Add OAuth client_id with password grant type

Arguments:

client_id :: string

client_name :: string

secret :: string

Result:

res :: string : Raw result string

Tags: oauth

Examples:

•

POST /api/num_resources
{
"user": "peter",
"host": "myserver.com"

}

HTTP/1.1 200 OK
5

•

•

•

•

POST /api/oauth_add_client_implicit
{
"client_id": "aaaaa",
"client_name": "bbbbb",
"redirect_uri": "ccccc"

}

HTTP/1.1 200 OK
"Success"

•

•

•

•

oauth_add_client_implicit

- 350/450 - Copyright © 2008 - 2024 ProcessOne

oauth_issue_token

updated in 24.02

Issue an OAuth optionredir token for the given jid

Arguments:

jid :: string : Jid for which issue token

ttl :: integer : Time to live of generated token in seconds

scopes :: [scope::string] : List of scopes to allow

Result:

result :: {token::string, scopes::[scope::string], expires_in::string}

Tags: oauth, v1

Examples:

oauth_list_tokens

List OAuth tokens, user, scope, and seconds to expire (only Mnesia)

List OAuth tokens, their user and scope, and how many seconds remain until expirity

Arguments:

Result:

tokens :: [{token::string, user::string, scope::string, expires_in::string}]

Tags: oauth

Examples:

POST /api/oauth_add_client_password
{
"client_id": "aaaaa",
"client_name": "bbbbb",
"secret": "ccccc"

}

HTTP/1.1 200 OK
"Success"

•

•

•

•

POST /api/oauth_issue_token
{
"jid": "user@server.com",
"ttl": 3600,
"scopes": [
"connected_users_number",
"muc_online_rooms"

]
}

HTTP/1.1 200 OK
{
"token": "aaaaa",
"scopes": [
"bbbbb",
"ccccc"

],
"expires_in": "ddddd"

}

•

POST /api/oauth_list_tokens
{

}

HTTP/1.1 200 OK

oauth_issue_token

- 351/450 - Copyright © 2008 - 2024 ProcessOne

oauth_remove_client

Remove OAuth client_id

Arguments:

client_id :: string

Result:

res :: string : Raw result string

Tags: oauth

Examples:

oauth_revoke_token

changed in 22.05

Revoke authorization for an OAuth token

Arguments:

token :: string

Result:

res :: string : Raw result string

Tags: oauth

Examples:

outgoing_s2s_number

Number of outgoing s2s connections on the node

[
{
"token": "aaaaa",
"user": "bbbbb",
"scope": "ccccc",
"expires_in": "ddddd"

},
{
"token": "eeeee",
"user": "fffff",
"scope": "ggggg",
"expires_in": "hhhhh"

}
]

•

•

POST /api/oauth_remove_client
{
"client_id": "aaaaa"

}

HTTP/1.1 200 OK
"Success"

•

•

POST /api/oauth_revoke_token
{
"token": "aaaaa"

}

HTTP/1.1 200 OK
"Success"

oauth_remove_client

- 352/450 - Copyright © 2008 - 2024 ProcessOne

Arguments:

Result:

s2s_outgoing :: integer

Tags: statistics, s2s

Examples:

print_sql_schema

added in 24.02

Print SQL schema for the given RDBMS (only ejabberdctl)

This command is exclusive for the ejabberdctl command-line script, don't attempt to execute it using any other API frontend.

Arguments:

db_type :: string : Database type: pgsql | mysql | sqlite

db_version :: string : Your database version: 16.1, 8.2.0...

new_schema :: string : Use new schema: 0, false, 1 or true

Result:

res :: integer : Status code (0 on success, 1 otherwise)

Tags: ejabberdctl, sql

Examples:

privacy_set

Send a IQ set privacy stanza for a local account

Arguments:

user :: string : Username

host :: string : Server name

xmlquery :: string : Query XML element

Result:

res :: integer : Status code (0 on success, 1 otherwise)

Tags: stanza

•

POST /api/outgoing_s2s_number
{

}

HTTP/1.1 200 OK
1

•

•

•

•

POST /api/print_sql_schema
{
"db_type": "pgsql",
"db_version": "16.1",
"new_schema": "true"

}

HTTP/1.1 200 OK
""

•

•

•

•

print_sql_schema

- 353/450 - Copyright © 2008 - 2024 ProcessOne

Module: mod_admin_extra

Examples:

private_get

Get some information from a user private storage

Arguments:

user :: string : User name

host :: string : Server name

element :: string : Element name

ns :: string : Namespace

Result:

res :: string

Tags: private

Module: mod_admin_extra

Examples:

private_set

Set to the user private storage

Arguments:

user :: string : User name

host :: string : Server name

element :: string : XML storage element

Result:

res :: integer : Status code (0 on success, 1 otherwise)

Tags: private

Module: mod_admin_extra

Examples:

POST /api/privacy_set
{
"user": "user1",
"host": "myserver.com",
"xmlquery": "<query xmlns='jabber:iq:privacy'>..."

}

HTTP/1.1 200 OK
""

•

•

•

•

•

POST /api/private_get
{
"user": "user1",
"host": "myserver.com",
"element": "storage",
"ns": "storage:rosternotes"

}

HTTP/1.1 200 OK
"aaaaa"

•

•

•

•

private_get

- 354/450 - Copyright © 2008 - 2024 ProcessOne

process_rosteritems

List/delete rosteritems that match filter

Explanation of each argument:

action : what to do with each rosteritem that matches all the filtering options

subs : subscription type

asks : pending subscription

users : the JIDs of the local user

contacts : the JIDs of the contact in the roster

Mnesia backend:

Allowed values in the arguments:

action = list | delete

subs = any | SUB[:SUB]*

asks = any | ASK[:ASK]*

users = any | JID[:JID]*

contacts = any | JID[:JID]*

where

SUB = none | from | to | both

ASK = none | out | in

JID = characters valid in a JID, and can use the globs: * , ? , ! and [...]

This example will list roster items with subscription none , from or to that have any ask property, of local users which JID is in

the virtual host example.org and that the contact JID is either a bare server name (without user part) or that has a user part and

the server part contains the word icq : list none:from:to any *@example.org *:*@*icq*

SQL backend:

Allowed values in the arguments:

action = list | delete

subs = any | SUB

asks = any | ASK

users = JID

contacts = JID

where

SUB = none | from | to | both

ASK = none | out | in

JID = characters valid in a JID, and can use the globs: _ and %

POST /api/private_set
{
"user": "user1",
"host": "myserver.com",
"element": "<storage xmlns='storage:rosternotes'/>"

}

HTTP/1.1 200 OK
""

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

process_rosteritems

- 355/450 - Copyright © 2008 - 2024 ProcessOne

This example will list roster items with subscription to that have any ask property, of local users which JID is in the virtual host

example.org and that the contact JID's server part contains the word icq : list to any %@example.org %@%icq%

Arguments:

action :: string

subs :: string

asks :: string

users :: string

contacts :: string

Result:

response :: [{user::string, contact::string}]

Tags: roster

Module: mod_admin_extra

Examples:

push_alltoall

Add all the users to all the users of Host in Group

Arguments:

host :: string : Server name

group :: string : Group name

Result:

res :: integer : Status code (0 on success, 1 otherwise)

Tags: roster

Module: mod_admin_extra

Examples:

•

•

•

•

•

•

POST /api/process_rosteritems
{
"action": "aaaaa",
"subs": "bbbbb",
"asks": "ccccc",
"users": "ddddd",
"contacts": "eeeee"

}

HTTP/1.1 200 OK
[
{
"user": "aaaaa",
"contact": "bbbbb"

},
{
"user": "ccccc",
"contact": "ddddd"

}
]

•

•

•

POST /api/push_alltoall
{
"host": "myserver.com",
"group": "Everybody"

}

HTTP/1.1 200 OK
""

push_alltoall

- 356/450 - Copyright © 2008 - 2024 ProcessOne

push_roster

Push template roster from file to a user

The text file must contain an erlang term: a list of tuples with username, servername, group and nick. For example: [{"user1",

"localhost", "Workers", "User 1"},

 {"user2", "localhost", "Workers", "User 2"}].

If there are problems parsing UTF8 character encoding, provide the corresponding string with the <<"STRING"/utf8>> syntax, for

example: [{"user2", "localhost", "Workers", <<"User 2"/utf8>>}] .

Arguments:

file :: string : File path

user :: string : User name

host :: string : Server name

Result:

res :: integer : Status code (0 on success, 1 otherwise)

Tags: roster

Module: mod_admin_extra

Examples:

push_roster_all

Push template roster from file to all those users

The text file must contain an erlang term: a list of tuples with username, servername, group and nick. Example: [{"user1",

"localhost", "Workers", "User 1"},

 {"user2", "localhost", "Workers", "User 2"}].

Arguments:

file :: string : File path

Result:

res :: integer : Status code (0 on success, 1 otherwise)

Tags: roster

Module: mod_admin_extra

Examples:

•

•

•

•

POST /api/push_roster
{
"file": "/home/ejabberd/roster.txt",
"user": "user1",
"host": "localhost"

}

HTTP/1.1 200 OK
""

•

•

POST /api/push_roster_all
{
"file": "/home/ejabberd/roster.txt"

}

HTTP/1.1 200 OK
""

push_roster

- 357/450 - Copyright © 2008 - 2024 ProcessOne

register

Register a user

Arguments:

user :: string : Username

host :: string : Local vhost served by ejabberd

password :: string : Password

Result:

res :: string : Raw result string

Tags: accounts

Examples:

registered_users

List all registered users in HOST

Arguments:

host :: string : Local vhost

Result:

users :: [username::string] : List of registered accounts usernames

Tags: accounts

Examples:

registered_vhosts

List all registered vhosts in SERVER

Arguments:

Result:

vhosts :: [vhost::string] : List of available vhosts

Tags: server

•

•

•

•

POST /api/register
{
"user": "bob",
"host": "example.com",
"password": "SomEPass44"

}

HTTP/1.1 200 OK
"Success"

•

•

POST /api/registered_users
{
"host": "example.com"

}

HTTP/1.1 200 OK
[
"user1",
"user2"

]

•

register

- 358/450 - Copyright © 2008 - 2024 ProcessOne

Examples:

reload_config

Reload config file in memory

Arguments:

Result:

res :: integer : Status code (0 on success, 1 otherwise)

Tags: config

Examples:

remove_mam_for_user

Remove mam archive for user

Arguments:

user :: string : Username

host :: string : Server

Result:

res :: string : Raw result string

Tags: mam

Module: mod_mam

Examples:

remove_mam_for_user_with_peer

Remove mam archive for user with peer

POST /api/registered_vhosts
{

}

HTTP/1.1 200 OK
[
"example.com",
"anon.example.com"

]

•

POST /api/reload_config
{

}

HTTP/1.1 200 OK
""

•

•

•

POST /api/remove_mam_for_user
{
"user": "bob",
"host": "example.com"

}

HTTP/1.1 200 OK
"MAM archive removed"

reload_config

- 359/450 - Copyright © 2008 - 2024 ProcessOne

Arguments:

user :: string : Username

host :: string : Server

with :: string : Peer

Result:

res :: string : Raw result string

Tags: mam

Module: mod_mam

Examples:

reopen_log

Reopen maybe the log files after being renamed

Has no effect on ejabberd main log files, only on log files generated by some modules. This can be useful when an external tool is

used for log rotation. See Log Files.

Arguments:

Result:

res :: integer : Status code (0 on success, 1 otherwise)

Tags: logs

Examples:

request_certificate

Requests certificates for all or some domains

Domains can be all , or a list of domains separared with comma characters

Arguments:

domains :: string : Domains for which to acquire a certificate

Result:

res :: string : Raw result string

Tags: acme

•

•

•

•

POST /api/remove_mam_for_user_with_peer
{
"user": "bob",
"host": "example.com",
"with": "anne@example.com"

}

HTTP/1.1 200 OK
"MAM archive removed"

•

POST /api/reopen_log
{

}

HTTP/1.1 200 OK
""

•

•

reopen_log

- 360/450 - Copyright © 2008 - 2024 ProcessOne

Examples:

resource_num

Resource string of a session number

Arguments:

user :: string : User name

host :: string : Server name

num :: integer : ID of resource to return

Result:

resource :: string : Name of user resource

Tags: session

Module: mod_admin_extra

Examples:

restart

Restart ejabberd gracefully

Arguments:

Result:

res :: integer : Status code (0 on success, 1 otherwise)

Tags: server

Examples:

restart_module

Stop an ejabberd module, reload code and start

POST /api/request_certificate
{
"domains": "example.com,domain.tld,conference.domain.tld"

}

HTTP/1.1 200 OK
"Success"

•

•

•

•

POST /api/resource_num
{
"user": "peter",
"host": "myserver.com",
"num": 2

}

HTTP/1.1 200 OK
"Psi"

•

POST /api/restart
{

}

HTTP/1.1 200 OK
""

resource_num

- 361/450 - Copyright © 2008 - 2024 ProcessOne

Arguments:

host :: string : Server name

module :: string : Module to restart

Result:

res :: integer : Returns integer code:

0 : code reloaded, module restarted

1 : error: module not loaded

2 : code not reloaded, but module restarted

Tags: erlang

Module: mod_admin_extra

Examples:

restore

Restore the Mnesia database from a binary backup file

This restores immediately from a binary backup file the internal Mnesia database. This will consume a lot of memory if you have

a large database, you may prefer install_fallback API.

Arguments:

file :: string : Full path to the backup file

Result:

res :: string : Raw result string

Tags: mnesia

Examples:

revoke_certificate

Revokes the selected ACME certificate

Arguments:

file :: string : Filename of the certificate

Result:

res :: string : Raw result string

•

•

•

•

•

•

POST /api/restart_module
{
"host": "myserver.com",
"module": "mod_admin_extra"

}

HTTP/1.1 200 OK
0

•

•

POST /api/restore
{
"file": "/var/lib/ejabberd/database.backup"

}

HTTP/1.1 200 OK
"Success"

•

•

restore

- 362/450 - Copyright © 2008 - 2024 ProcessOne

Tags: acme

Examples:

rooms_empty_destroy

modified in 24.06

Destroy the rooms that have no messages in archive

The MUC service argument can be global to get all hosts.

Arguments:

service :: string : MUC service, or global for all

Result:

res :: string : Raw result string

Tags: muc, v2

Module: mod_muc_admin

Examples:

rooms_empty_list

List the rooms that have no messages in archive

The MUC service argument can be global to get all hosts.

Arguments:

service :: string : MUC service, or global for all

Result:

rooms :: [room::string] : List of empty rooms

Tags: muc

Module: mod_muc_admin

Examples:

POST /api/revoke_certificate
{
"file": "aaaaa"

}

HTTP/1.1 200 OK
"Success"

•

•

POST /api/rooms_empty_destroy
{
"service": "conference.example.com"

}

HTTP/1.1 200 OK
"Destroyed rooms: 2"

•

•

POST /api/rooms_empty_list
{
"service": "conference.example.com"

}

HTTP/1.1 200 OK
[
"room1@conference.example.com",

rooms_empty_destroy

- 363/450 - Copyright © 2008 - 2024 ProcessOne

rooms_unused_destroy

Destroy the rooms that are unused for many days in the service

The room recent history is used, so it's recommended to wait a few days after service start before running this. The MUC service

argument can be global to get all hosts.

Arguments:

service :: string : MUC service, or global for all

days :: integer : Number of days

Result:

rooms :: [room::string] : List of unused rooms that has been destroyed

Tags: muc

Module: mod_muc_admin

Examples:

rooms_unused_list

List the rooms that are unused for many days in the service

The room recent history is used, so it's recommended to wait a few days after service start before running this. The MUC service

argument can be global to get all hosts.

Arguments:

service :: string : MUC service, or global for all

days :: integer : Number of days

Result:

rooms :: [room::string] : List of unused rooms

Tags: muc

Module: mod_muc_admin

Examples:

"room2@conference.example.com"
]

•

•

•

POST /api/rooms_unused_destroy
{
"service": "conference.example.com",
"days": 31

}

HTTP/1.1 200 OK
[
"room1@conference.example.com",
"room2@conference.example.com"

]

•

•

•

POST /api/rooms_unused_list
{
"service": "conference.example.com",
"days": 31

}

HTTP/1.1 200 OK
[
"room1@conference.example.com",

rooms_unused_destroy

- 364/450 - Copyright © 2008 - 2024 ProcessOne

rotate_log

Rotate maybe log file of some module

Has no effect on ejabberd main log files, only on log files generated by some modules.

Arguments:

Result:

res :: integer : Status code (0 on success, 1 otherwise)

Tags: logs

Examples:

send_direct_invitation

updated in 24.02

Send a direct invitation to several destinations

Since ejabberd 20.12, this command is asynchronous: the API call may return before the server has send all the invitations.

password and message can be set to none .

Arguments:

name :: string : Room name

service :: string : MUC service

password :: string : Password, or none

reason :: string : Reason text, or none

users :: [jid::string] : List of users JIDs

Result:

res :: integer : Status code (0 on success, 1 otherwise)

Tags: muc_room, v1

Module: mod_muc_admin

Examples:

"room2@conference.example.com"
]

•

POST /api/rotate_log
{

}

HTTP/1.1 200 OK
""

•

•

•

•

•

•

POST /api/send_direct_invitation
{
"name": "room1",
"service": "conference.example.com",
"password": "",
"reason": "Check this out!",
"users": [
"user2@localhost",
"user3@example.com"

]
}

rotate_log

- 365/450 - Copyright © 2008 - 2024 ProcessOne

send_message

Send a message to a local or remote bare of full JID

When sending a groupchat message to a MUC room, from must be the full JID of a room occupant, or the bare JID of a MUC

service admin, or the bare JID of a MUC/Sub subscribed user.

Arguments:

type :: string : Message type: normal , chat , headline , groupchat

from :: string : Sender JID

to :: string : Receiver JID

subject :: string : Subject, or empty string

body :: string : Body

Result:

res :: integer : Status code (0 on success, 1 otherwise)

Tags: stanza

Module: mod_admin_extra

Examples:

send_stanza

Send a stanza; provide From JID and valid To JID

Arguments:

from :: string : Sender JID

to :: string : Destination JID

stanza :: string : Stanza

Result:

res :: integer : Status code (0 on success, 1 otherwise)

Tags: stanza

Module: mod_admin_extra

Examples:

HTTP/1.1 200 OK
""

•

•

•

•

•

•

POST /api/send_message
{
"type": "headline",
"from": "admin@localhost",
"to": "user1@localhost",
"subject": "Restart",
"body": "In 5 minutes"

}

HTTP/1.1 200 OK
""

•

•

•

•

POST /api/send_stanza
{
"from": "admin@localhost",
"to": "user1@localhost",
"stanza": "<message><ext attr='value'/></message>"

send_message

- 366/450 - Copyright © 2008 - 2024 ProcessOne

send_stanza_c2s

Send a stanza from an existing C2S session

user @ host / resource must be an existing C2S session. As an alternative, use send_stanza API instead.

Arguments:

user :: string : Username

host :: string : Server name

resource :: string : Resource

stanza :: string : Stanza

Result:

res :: integer : Status code (0 on success, 1 otherwise)

Tags: stanza

Module: mod_admin_extra

Examples:

set_last

Set last activity information

Timestamp is the seconds since 1970-01-01 00:00:00 UTC . For example value see date +%s

Arguments:

user :: string : User name

host :: string : Server name

timestamp :: integer : Number of seconds since epoch

status :: string : Status message

Result:

res :: integer : Status code (0 on success, 1 otherwise)

Tags: last

Module: mod_admin_extra

Examples:

}

HTTP/1.1 200 OK
""

•

•

•

•

•

POST /api/send_stanza_c2s
{
"user": "admin",
"host": "myserver.com",
"resource": "bot",
"stanza": "<message to='user1@localhost'><ext attr='value'/></message>"

}

HTTP/1.1 200 OK
""

•

•

•

•

•

POST /api/set_last
{
"user": "user1",

send_stanza_c2s

- 367/450 - Copyright © 2008 - 2024 ProcessOne

set_loglevel

Set the loglevel

Possible loglevels: none , emergency , alert , critical , error , warning , notice , info , debug .

Arguments:

loglevel :: string : Desired logging level

Result:

res :: integer : Status code (0 on success, 1 otherwise)

Tags: logs

Examples:

set_master

Set master node of the clustered Mnesia tables

If nodename is set to self , then this node will be set as its own master.

Arguments:

nodename :: string : Name of the erlang node that will be considered master of this node

Result:

res :: string : Raw result string

Tags: cluster

Examples:

set_nickname

Set nickname in a user's vCard

"host": "myserver.com",
"timestamp": 1500045311,
"status": "GoSleeping"

}

HTTP/1.1 200 OK
""

•

•

POST /api/set_loglevel
{
"loglevel": "debug"

}

HTTP/1.1 200 OK
""

•

•

POST /api/set_master
{
"nodename": "ejabberd@machine7"

}

HTTP/1.1 200 OK
"Success"

set_loglevel

- 368/450 - Copyright © 2008 - 2024 ProcessOne

Arguments:

user :: string : User name

host :: string : Server name

nickname :: string : Nickname

Result:

res :: integer : Status code (0 on success, 1 otherwise)

Tags: vcard

Module: mod_admin_extra

Examples:

set_presence

updated in 24.02

Set presence of a session

Arguments:

user :: string : User name

host :: string : Server name

resource :: string : Resource

type :: string : Type: available , error , probe ...

show :: string : Show: away , chat , dnd , xa .

status :: string : Status text

priority :: integer : Priority, provide this value as an integer

Result:

res :: integer : Status code (0 on success, 1 otherwise)

Tags: session, v1

Module: mod_admin_extra

Examples:

•

•

•

•

POST /api/set_nickname
{
"user": "user1",
"host": "myserver.com",
"nickname": "User 1"

}

HTTP/1.1 200 OK
""

•

•

•

•

•

•

•

•

POST /api/set_presence
{
"user": "user1",
"host": "myserver.com",
"resource": "tka1",
"type": "available",
"show": "away",
"status": "BB",
"priority": 7

}

HTTP/1.1 200 OK
""

set_presence

- 369/450 - Copyright © 2008 - 2024 ProcessOne

set_room_affiliation

Change an affiliation in a MUC room

Arguments:

name :: string : Room name

service :: string : MUC service

jid :: string : User JID

affiliation :: string : Affiliation to set

Result:

res :: integer : Status code (0 on success, 1 otherwise)

Tags: muc_room

Module: mod_muc_admin

Examples:

set_vcard

Set content in a vCard field

Some vcard field names in get / set_vcard are:

FN - Full Name

NICKNAME - Nickname

BDAY - Birthday

TITLE - Work: Position

ROLE - Work: Role

For a full list of vCard fields check XEP-0054: vcard-temp

Arguments:

user :: string : User name

host :: string : Server name

name :: string : Field name

content :: string : Value

Result:

res :: integer : Status code (0 on success, 1 otherwise)

Tags: vcard

Module: mod_admin_extra

Examples:

•

•

•

•

•

POST /api/set_room_affiliation
{
"name": "room1",
"service": "conference.example.com",
"jid": "user2@example.com",
"affiliation": "member"

}

HTTP/1.1 200 OK
""

•

•

•

•

•

•

•

•

•

•

set_room_affiliation

- 370/450 - Copyright © 2008 - 2024 ProcessOne

https://xmpp.org/extensions/xep-0054.html

set_vcard2

Set content in a vCard subfield

Some vcard field names and subnames in get / set_vcard2 are:

N FAMILY - Family name

N GIVEN - Given name

N MIDDLE - Middle name

ADR CTRY - Address: Country

ADR LOCALITY - Address: City

TEL HOME - Telephone: Home

TEL CELL - Telephone: Cellphone

TEL WORK - Telephone: Work

TEL VOICE - Telephone: Voice

EMAIL USERID - E-Mail Address

ORG ORGNAME - Work: Company

ORG ORGUNIT - Work: Department

For a full list of vCard fields check XEP-0054: vcard-temp

Arguments:

user :: string : User name

host :: string : Server name

name :: string : Field name

subname :: string : Subfield name

content :: string : Value

Result:

res :: integer : Status code (0 on success, 1 otherwise)

Tags: vcard

Module: mod_admin_extra

Examples:

POST /api/set_vcard
{
"user": "user1",
"host": "myserver.com",
"name": "URL",
"content": "www.example.com"

}

HTTP/1.1 200 OK
""

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

POST /api/set_vcard2
{
"user": "user1",
"host": "myserver.com",
"name": "TEL",
"subname": "NUMBER",
"content": "123456"

}

HTTP/1.1 200 OK
""

set_vcard2

- 371/450 - Copyright © 2008 - 2024 ProcessOne

https://xmpp.org/extensions/xep-0054.html

set_vcard2_multi

Set multiple contents in a vCard subfield

Some vcard field names and subnames in get / set_vcard2 are:

N FAMILY - Family name

N GIVEN - Given name

N MIDDLE - Middle name

ADR CTRY - Address: Country

ADR LOCALITY - Address: City

TEL HOME - Telephone: Home

TEL CELL - Telephone: Cellphone

TEL WORK - Telephone: Work

TEL VOICE - Telephone: Voice

EMAIL USERID - E-Mail Address

ORG ORGNAME - Work: Company

ORG ORGUNIT - Work: Department

For a full list of vCard fields check XEP-0054: vcard-temp

Arguments:

user :: string

host :: string

name :: string

subname :: string

contents :: [value::string]

Result:

res :: integer : Status code (0 on success, 1 otherwise)

Tags: vcard

Module: mod_admin_extra

Examples:

srg_add

added in 24.06

Add/Create a Shared Roster Group (without details)

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

POST /api/set_vcard2_multi
{
"user": "aaaaa",
"host": "bbbbb",
"name": "ccccc",
"subname": "ddddd",
"contents": [
"eeeee",
"fffff"

]
}

HTTP/1.1 200 OK
""

set_vcard2_multi

- 372/450 - Copyright © 2008 - 2024 ProcessOne

https://xmpp.org/extensions/xep-0054.html

Arguments:

group :: string : Group identifier

host :: string : Group server name

Result:

res :: integer : Status code (0 on success, 1 otherwise)

Tags: shared_roster_group

Module: mod_admin_extra

Examples:

srg_add_displayed

added in 24.06

Add a group to displayed_groups of a Shared Roster Group

Arguments:

group :: string : Group identifier

host :: string : Group server name

add :: string : Group to add to displayed_groups

Result:

res :: integer : Status code (0 on success, 1 otherwise)

Tags: shared_roster_group

Module: mod_admin_extra

Examples:

srg_create

updated in 24.02

Create a Shared Roster Group

•

•

•

POST /api/srg_add
{
"group": "group3",
"host": "myserver.com"

}

HTTP/1.1 200 OK
""

•

•

•

•

POST /api/srg_add_displayed
{
"group": "group3",
"host": "myserver.com",
"add": "group1"

}

HTTP/1.1 200 OK
""

srg_add_displayed

- 373/450 - Copyright © 2008 - 2024 ProcessOne

Arguments:

group :: string : Group identifier

host :: string : Group server name

label :: string : Group name

description :: string : Group description

display :: [group::string] : List of groups to display

Result:

res :: integer : Status code (0 on success, 1 otherwise)

Tags: shared_roster_group, v1

Module: mod_admin_extra

Examples:

srg_del_displayed

added in 24.06

Delete a group from displayed_groups of a Shared Roster Group

Arguments:

group :: string : Group identifier

host :: string : Group server name

del :: string : Group to delete from displayed_groups

Result:

res :: integer : Status code (0 on success, 1 otherwise)

Tags: shared_roster_group

Module: mod_admin_extra

Examples:

•

•

•

•

•

•

POST /api/srg_create
{
"group": "group3",
"host": "myserver.com",
"label": "Group3",
"description": "Third group",
"display": [
"group1",
"group2"

]
}

HTTP/1.1 200 OK
""

•

•

•

•

POST /api/srg_del_displayed
{
"group": "group3",
"host": "myserver.com",
"del": "group1"

}

HTTP/1.1 200 OK
""

srg_del_displayed

- 374/450 - Copyright © 2008 - 2024 ProcessOne

srg_delete

Delete a Shared Roster Group

Arguments:

group :: string : Group identifier

host :: string : Group server name

Result:

res :: integer : Status code (0 on success, 1 otherwise)

Tags: shared_roster_group

Module: mod_admin_extra

Examples:

srg_get_displayed

added in 24.06

Get displayed groups of a Shared Roster Group

Arguments:

group :: string : Group identifier

host :: string : Group server name

Result:

display :: [group::string] : List of groups to display

Tags: shared_roster_group

Module: mod_admin_extra

Examples:

srg_get_info

Get info of a Shared Roster Group

•

•

•

POST /api/srg_delete
{
"group": "group3",
"host": "myserver.com"

}

HTTP/1.1 200 OK
""

•

•

•

POST /api/srg_get_displayed
{
"group": "group3",
"host": "myserver.com"

}

HTTP/1.1 200 OK
[
"group1",
"group2"

]

srg_delete

- 375/450 - Copyright © 2008 - 2024 ProcessOne

Arguments:

group :: string : Group identifier

host :: string : Group server name

Result:

informations :: [{key::string, value::string}] : List of group information, as key and value

Tags: shared_roster_group

Module: mod_admin_extra

Examples:

srg_get_members

Get members of a Shared Roster Group

Arguments:

group :: string : Group identifier

host :: string : Group server name

Result:

members :: [member::string] : List of group identifiers

Tags: shared_roster_group

Module: mod_admin_extra

Examples:

srg_list

List the Shared Roster Groups in Host

•

•

•

POST /api/srg_get_info
{
"group": "group3",
"host": "myserver.com"

}

HTTP/1.1 200 OK
[
{
"key": "name",
"value": "Group 3"

},
{
"key": "displayed_groups",
"value": "group1"

}
]

•

•

•

POST /api/srg_get_members
{
"group": "group3",
"host": "myserver.com"

}

HTTP/1.1 200 OK
[
"user1@localhost",
"user2@localhost"

]

srg_get_members

- 376/450 - Copyright © 2008 - 2024 ProcessOne

Arguments:

host :: string : Server name

Result:

groups :: [id::string] : List of group identifiers

Tags: shared_roster_group

Module: mod_admin_extra

Examples:

srg_set_info

added in 24.06

Set info of a Shared Roster Group

Arguments:

group :: string : Group identifier

host :: string : Group server name

key :: string : Information key: label, description

value :: string : Information value

Result:

res :: integer : Status code (0 on success, 1 otherwise)

Tags: shared_roster_group

Module: mod_admin_extra

Examples:

srg_user_add

Add the JID user@host to the Shared Roster Group

•

•

POST /api/srg_list
{
"host": "myserver.com"

}

HTTP/1.1 200 OK
[
"group1",
"group2"

]

•

•

•

•

•

POST /api/srg_set_info
{
"group": "group3",
"host": "myserver.com",
"key": "label",
"value": "Family"

}

HTTP/1.1 200 OK
""

srg_set_info

- 377/450 - Copyright © 2008 - 2024 ProcessOne

Arguments:

user :: string : Username

host :: string : User server name

group :: string : Group identifier

grouphost :: string : Group server name

Result:

res :: integer : Status code (0 on success, 1 otherwise)

Tags: shared_roster_group

Module: mod_admin_extra

Examples:

srg_user_del

Delete this JID user@host from the Shared Roster Group

Arguments:

user :: string : Username

host :: string : User server name

group :: string : Group identifier

grouphost :: string : Group server name

Result:

res :: integer : Status code (0 on success, 1 otherwise)

Tags: shared_roster_group

Module: mod_admin_extra

Examples:

stats

Get some statistical value for the whole ejabberd server

Allowed statistics name are: registeredusers , onlineusers , onlineusersnode , uptimeseconds , processes .

•

•

•

•

•

POST /api/srg_user_add
{
"user": "user1",
"host": "myserver.com",
"group": "group3",
"grouphost": "myserver.com"

}

HTTP/1.1 200 OK
""

•

•

•

•

•

POST /api/srg_user_del
{
"user": "user1",
"host": "myserver.com",
"group": "group3",
"grouphost": "myserver.com"

}

HTTP/1.1 200 OK
""

srg_user_del

- 378/450 - Copyright © 2008 - 2024 ProcessOne

Arguments:

name :: string : Statistic name

Result:

stat :: integer : Integer statistic value

Tags: statistics

Module: mod_admin_extra

Examples:

stats_host

Get some statistical value for this host

Allowed statistics name are: registeredusers , onlineusers .

Arguments:

name :: string : Statistic name

host :: string : Server JID

Result:

stat :: integer : Integer statistic value

Tags: statistics

Module: mod_admin_extra

Examples:

status

Get status of the ejabberd server

Arguments:

Result:

res :: string : Raw result string

Tags: server

Examples:

•

•

POST /api/stats
{
"name": "registeredusers"

}

HTTP/1.1 200 OK
6

•

•

•

POST /api/stats_host
{
"name": "registeredusers",
"host": "example.com"

}

HTTP/1.1 200 OK
6

•

POST /api/status
{

stats_host

- 379/450 - Copyright © 2008 - 2024 ProcessOne

status_list

List of logged users with this status

Arguments:

status :: string : Status type to check

Result:

users :: [{user::string, host::string, resource::string, priority::integer, status::string}]

Tags: session

Module: mod_admin_extra

Examples:

status_list_host

List of users logged in host with their statuses

Arguments:

host :: string : Server name

status :: string : Status type to check

Result:

users :: [{user::string, host::string, resource::string, priority::integer, status::string}]

Tags: session

Module: mod_admin_extra

Examples:

}

HTTP/1.1 200 OK
"The node ejabberd@localhost is started with status: startedejabberd X.X is running in that node"

•

•

POST /api/status_list
{
"status": "dnd"

}

HTTP/1.1 200 OK
[
{
"user": "peter",
"host": "myserver.com",
"resource": "tka",
"priority": 6,
"status": "Busy"

}
]

•

•

•

POST /api/status_list_host
{
"host": "myserver.com",
"status": "dnd"

}

HTTP/1.1 200 OK
[
{
"user": "peter",
"host": "myserver.com",
"resource": "tka",
"priority": 6,
"status": "Busy"

status_list

- 380/450 - Copyright © 2008 - 2024 ProcessOne

status_num

Number of logged users with this status

Arguments:

status :: string : Status type to check

Result:

users :: integer : Number of connected sessions with given status type

Tags: session, statistics

Module: mod_admin_extra

Examples:

status_num_host

Number of logged users with this status in host

Arguments:

host :: string : Server name

status :: string : Status type to check

Result:

users :: integer : Number of connected sessions with given status type

Tags: session, statistics

Module: mod_admin_extra

Examples:

stop

Stop ejabberd gracefully

Arguments:

Result:

res :: integer : Status code (0 on success, 1 otherwise)

}
]

•

•

POST /api/status_num
{
"status": "dnd"

}

HTTP/1.1 200 OK
23

•

•

•

POST /api/status_num_host
{
"host": "myserver.com",
"status": "dnd"

}

HTTP/1.1 200 OK
23

•

status_num

- 381/450 - Copyright © 2008 - 2024 ProcessOne

Tags: server

Examples:

stop_kindly

Inform users and rooms, wait, and stop the server

Provide the delay in seconds, and the announcement quoted, for example: ejabberdctl stop_kindly 60 \"The server will stop in

one minute.\"

Arguments:

delay :: integer : Seconds to wait

announcement :: string : Announcement to send, with quotes

Result:

res :: integer : Status code (0 on success, 1 otherwise)

Tags: server

Examples:

stop_s2s_connections

Stop all s2s outgoing and incoming connections

Arguments:

Result:

res :: integer : Status code (0 on success, 1 otherwise)

Tags: s2s

Examples:

subscribe_room

updated in 24.02

POST /api/stop
{

}

HTTP/1.1 200 OK
""

•

•

•

POST /api/stop_kindly
{
"delay": 60,
"announcement": "Server will stop now."

}

HTTP/1.1 200 OK
""

•

POST /api/stop_s2s_connections
{

}

HTTP/1.1 200 OK
""

stop_kindly

- 382/450 - Copyright © 2008 - 2024 ProcessOne

Subscribe to a MUC conference

Arguments:

user :: string : User JID

nick :: string : a user's nick

room :: string : the room to subscribe

nodes :: [node::string] : list of nodes

Result:

nodes :: [node::string] : The list of nodes that has subscribed

Tags: muc_room, muc_sub, v1

Module: mod_muc_admin

Examples:

subscribe_room_many

updated in 24.02

Subscribe several users to a MUC conference

This command accepts up to 50 users at once (this is configurable with the mod_muc_admin option

subscribe_room_many_max_users)

Arguments:

users :: [{jid::string, nick::string}] : Users JIDs and nicks

room :: string : the room to subscribe

nodes :: [node::string] : nodes separated by commas: ,

Result:

res :: integer : Status code (0 on success, 1 otherwise)

Tags: muc_room, muc_sub, v1

Module: mod_muc_admin

Examples:

•

•

•

•

•

POST /api/subscribe_room
{
"user": "tom@localhost",
"nick": "Tom",
"room": "room1@conference.localhost",
"nodes": [
"urn:xmpp:mucsub:nodes:messages",
"urn:xmpp:mucsub:nodes:affiliations"

]
}

HTTP/1.1 200 OK
[
"urn:xmpp:mucsub:nodes:messages",
"urn:xmpp:mucsub:nodes:affiliations"

]

•

•

•

•

POST /api/subscribe_room_many
{
"users": [
{
"jid": "tom@localhost",
"nick": "Tom"

},
{

subscribe_room_many

- 383/450 - Copyright © 2008 - 2024 ProcessOne

unban_account

added in 24.06

Revert the ban from an account: set back the old password

Check ban_account API.

Arguments:

user :: string : User name to unban

host :: string : Server name

Result:

res :: integer : Status code (0 on success, 1 otherwise)

Tags: accounts, v2

Module: mod_admin_extra

Examples:

unban_ip

Remove banned IP addresses from the fail2ban table

Accepts an IP address with a network mask. Returns the number of unbanned addresses, or a negative integer if there were any

error.

Arguments:

address :: string : IP address, optionally with network mask.

Result:

unbanned :: integer : Amount of unbanned entries, or negative in case of error.

Tags: accounts

Module: mod_fail2ban

Examples:

"jid": "jerry@localhost",
"nick": "Jerry"

}
],
"room": "room1@conference.localhost",
"nodes": [
"urn:xmpp:mucsub:nodes:messages",
"urn:xmpp:mucsub:nodes:affiliations"

]
}

HTTP/1.1 200 OK
""

•

•

•

POST /api/unban_account
{
"user": "gooduser",
"host": "myserver.com"

}

HTTP/1.1 200 OK
""

•

•

POST /api/unban_ip
{
"address": "::FFFF:127.0.0.1/128"

unban_account

- 384/450 - Copyright © 2008 - 2024 ProcessOne

unregister

Unregister a user

This deletes the authentication and all the data associated to the account (roster, vcard...).

Arguments:

user :: string : Username

host :: string : Local vhost served by ejabberd

Result:

res :: string : Raw result string

Tags: accounts

Examples:

unsubscribe_room

Unsubscribe from a MUC conference

Arguments:

user :: string : User JID

room :: string : the room to subscribe

Result:

res :: integer : Status code (0 on success, 1 otherwise)

Tags: muc_room, muc_sub

Module: mod_muc_admin

Examples:

update 🟤

improved in 24.10

Update the given module

}

HTTP/1.1 200 OK
3

•

•

•

POST /api/unregister
{
"user": "bob",
"host": "example.com"

}

HTTP/1.1 200 OK
"Success"

•

•

•

POST /api/unsubscribe_room
{
"user": "tom@localhost",
"room": "room1@conference.localhost"

}

HTTP/1.1 200 OK
""

unregister

- 385/450 - Copyright © 2008 - 2024 ProcessOne

To update all the possible modules, use all .

Arguments:

module :: string

Result:

res :: string : Raw result string

Tags: server

Examples:

update_list

List modified modules that can be updated

Arguments:

Result:

modules :: [module::string]

Tags: server

Examples:

user_resources

List user's connected resources

Arguments:

user :: string : User name

host :: string : Server name

Result:

resources :: [resource::string]

Tags: session

Examples:

•

•

POST /api/update
{
"module": "all"

}

HTTP/1.1 200 OK
"Updated modules: mod_configure, mod_vcard"

•

POST /api/update_list
{

}

HTTP/1.1 200 OK
[
"mod_configure",
"mod_vcard"

]

•

•

•

POST /api/user_resources
{
"user": "user1",
"host": "example.com"

}

update_list

- 386/450 - Copyright © 2008 - 2024 ProcessOne

user_sessions_info

Get information about all sessions of a user

Arguments:

user :: string : User name

host :: string : Server name

Result:

sessions_info :: [{connection::string, ip::string, port::integer, priority::integer, node::string, uptime::integer, status::string,

resource::string, statustext::string}]

Tags: session

Module: mod_admin_extra

Examples:

HTTP/1.1 200 OK
[
"tka1",
"Gajim",
"mobile-app"

]

•

•

•

POST /api/user_sessions_info
{
"user": "peter",
"host": "myserver.com"

}

HTTP/1.1 200 OK
[
{
"connection": "c2s",
"ip": "127.0.0.1",
"port": 42656,
"priority": 8,
"node": "ejabberd@localhost",
"uptime": 231,
"status": "dnd",
"resource": "tka",
"statustext": ""

}
]

user_sessions_info

- 387/450 - Copyright © 2008 - 2024 ProcessOne

API Tags

This section enumerates the API tags of ejabberd 24.10. If you are using an old ejabberd release, please refer to the

corresponding archived version of this page in the Archive.

accounts

ban_account

change_password

check_account

check_password

check_password_hash

delete_old_users

delete_old_users_vhost

get_ban_details

register

registered_users

unban_account

unban_ip

unregister

acme

list_certificates

request_certificate

revoke_certificate

cluster

get_master

join_cluster

join_cluster_here

leave_cluster

list_cluster

list_cluster_detailed

set_master

config

convert_to_yaml

dump_config

reload_config

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

API Tags

- 388/450 - Copyright © 2008 - 2024 ProcessOne

documentation

gen_html_doc_for_commands

gen_markdown_doc_for_commands

gen_markdown_doc_for_tags

man

ejabberdctl

help

mnesia_info_ctl

print_sql_schema

erlang

compile

get_cookie

restart_module

last

get_last

set_last

logs

get_loglevel

reopen_log

rotate_log

set_loglevel

mam

abort_delete_old_mam_messages

delete_old_mam_messages

delete_old_mam_messages_batch

delete_old_mam_messages_status

get_mam_count

remove_mam_for_user

remove_mam_for_user_with_peer

mnesia

backup

delete_mnesia

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

documentation

- 389/450 - Copyright © 2008 - 2024 ProcessOne

dump

dump_table

export2sql

export_piefxis

export_piefxis_host

import_dir

import_file

import_piefxis

import_prosody

install_fallback

load

mnesia_change_nodename

mnesia_info

mnesia_info_ctl

mnesia_table_info

restore

modules

module_check

module_install

module_uninstall

module_upgrade

modules_available

modules_installed

modules_update_specs

muc

create_rooms_file

destroy_rooms_file

get_user_rooms

get_user_subscriptions

muc_online_rooms

muc_online_rooms_by_regex

muc_register_nick

muc_unregister_nick

rooms_empty_destroy

rooms_empty_list

rooms_unused_destroy

rooms_unused_list

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

modules

- 390/450 - Copyright © 2008 - 2024 ProcessOne

muc_room

change_room_option

create_room

create_room_with_opts

destroy_room

get_room_affiliation

get_room_affiliations

get_room_history

get_room_occupants

get_room_occupants_number

get_room_options

get_subscribers

send_direct_invitation

set_room_affiliation

subscribe_room

subscribe_room_many

unsubscribe_room

muc_sub

create_room_with_opts

get_subscribers

get_user_subscriptions

subscribe_room

subscribe_room_many

unsubscribe_room

oauth

oauth_add_client_implicit

oauth_add_client_password

oauth_issue_token

oauth_list_tokens

oauth_remove_client

oauth_revoke_token

offline

abort_delete_old_messages

delete_expired_messages

delete_old_messages

delete_old_messages_batch

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

muc_room

- 391/450 - Copyright © 2008 - 2024 ProcessOne

delete_old_messages_status

get_offline_count

private

bookmarks_to_pep

private_get

private_set

purge

abort_delete_old_mam_messages

abort_delete_old_messages

delete_expired_messages

delete_expired_pubsub_items

delete_old_mam_messages

delete_old_mam_messages_batch

delete_old_mam_messages_status

delete_old_messages

delete_old_messages_batch

delete_old_messages_status

delete_old_pubsub_items

delete_old_push_sessions

delete_old_users

delete_old_users_vhost

roster

add_rosteritem

delete_rosteritem

get_roster

get_roster_count

process_rosteritems

push_alltoall

push_roster

push_roster_all

s2s

incoming_s2s_number

outgoing_s2s_number

stop_s2s_connections

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

private

- 392/450 - Copyright © 2008 - 2024 ProcessOne

server

clear_cache

gc

halt

registered_vhosts

restart

status

stop

stop_kindly

update

update_list

session

connected_users

connected_users_info

connected_users_number

connected_users_vhost

get_presence

kick_session

kick_user

num_resources

resource_num

set_presence

status_list

status_list_host

status_num

status_num_host

user_resources

user_sessions_info

shared_roster_group

srg_add

srg_add_displayed

srg_create

srg_del_displayed

srg_delete

srg_get_displayed

srg_get_info

srg_get_members

srg_list

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

server

- 393/450 - Copyright © 2008 - 2024 ProcessOne

srg_set_info

srg_user_add

srg_user_del

sql

convert_to_scram

import_prosody

print_sql_schema

stanza

privacy_set

send_message

send_stanza

send_stanza_c2s

statistics

connected_users_number

incoming_s2s_number

outgoing_s2s_number

stats

stats_host

status_num

status_num_host

v1

add_rosteritem

oauth_issue_token

send_direct_invitation

set_presence

srg_create

subscribe_room

subscribe_room_many

v2

ban_account

get_ban_details

kick_user

rooms_empty_destroy

unban_account

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

sql

- 394/450 - Copyright © 2008 - 2024 ProcessOne

vcard

get_vcard

get_vcard2

get_vcard2_multi

set_nickname

set_vcard

set_vcard2

set_vcard2_multi

•

•

•

•

•

•

•

vcard

- 395/450 - Copyright © 2008 - 2024 ProcessOne

Simple ejabberd Rest API Configuration

Restrict to Local network

If you are planning to use ejabberd API for admin purpose, it is often enough to configure it to be available local commands.

Access is thus generally limited by IP addresses, either restricted to localhost only, or restricted to one of your platform back-

end.

Make sure an ejabberd_http listener is using mod_http_api on a given root URL and on a desired port:

The ip option ensures it listens only on the local interface (127.0.0.1) instead of listening on all interface (0.0.0.0).

By defining api_permissions , you can then allow HTTP request from a specific IP to trigger API commands execution without user

credentials:

Note: stop and start commands are disabled in that example as they are usually restricted to ejabberdctl command-line tool. They

are consider too sensitive to be exposed through API.

Now you can query the API, for example:

Encryption

If you already defined certificates and your connection is not on a local network, you may want to use encryption.

Setup encryption like this:

Now you can query using HTTPS:

If you are using a self-signed certificate, you can bypass the corresponding error message:

1.

listen:
-
port: 5281
module: ejabberd_http
ip: 127.0.0.1
request_handlers:
/api: mod_http_api

2.

api_permissions:
"API used from localhost allows all calls":
who:
ip: 127.0.0.1/8

what:
- "*"
- "!stop"
- "!start"

3.

curl '127.0.0.1:5281/api/registered_users?host=localhost'

["user2","user8"]

1.

listen:
-
port: 5281
module: ejabberd_http
tls: true
request_handlers:
/api: mod_http_api

2.

curl 'https://127.0.0.1:5281/api/registered_users?host=localhost'

["user2","user8"]

3.

curl --insecure 'https://127.0.0.1:5281/api/registered_users?host=localhost'

["user2","user8"]

Simple ejabberd Rest API Configuration

- 396/450 - Copyright © 2008 - 2024 ProcessOne

Basic Authentication

Quite probably you will want to require authentication to execute API queries, either using basic auth or OAuth.

Assuming you have the simple listener:

Define an ACL with the account that you will use to authenticate:

Allow only that ACL to use the API:

If that account does not yet exist, register it:

Now, when sending an API query, provide the authentication for that account:

Example Python code:

OAuth Authentication

Before using OAuth to interact with ejabberd API, you need to configure OAuth support in ejabberd.

1.

listen:
-
port: 5281
module: ejabberd_http
ip: 127.0.0.1
request_handlers:
/api: mod_http_api

2.

acl:
apicommands:
user: john@localhost

3.

api_permissions:
"some playing":
from:
- ejabberd_ctl
- mod_http_api

who:
acl: apicommands

what: "*"

4.

ejabberdctl register john localhost somePass

5.

curl --basic --user john@localhost:somePass \
'127.0.0.1:5281/api/registered_users?host=localhost'

["user2","user8","john"]

6.

import requests

url = "http://localhost:5281/api/registered_users"
data = {

"host": "localhost"
}

res = requests.post(url, json=data, auth=("john@localhost", "somePass"))

print(res.text)

Basic Authentication

- 397/450 - Copyright © 2008 - 2024 ProcessOne

Here are example entries to check / change in your ejabberd configuration file:

Add a request handler for OAuth:

Set the oauth_access top-level option to allow token creation:

Define an ACL with the account that you will use to authenticate:

You can then configure the OAuth commands you want to expose and who can use them:

If that account does not yet exist, register it:

Request an authorization token. A quick way is using ejabberdctl:

Now, when sending an API query, provide the authentication for that account:

Or quite simply:

1.

listen:
-
Using a separate port for oauth and API to make it easy to protect it
differently than BOSH and WebSocket HTTP interface.
port: 5281
oauth and API only listen on localhost interface for security reason
You can set ip to 0.0.0.0 to open it widely, but be careful!
ip: 127.0.0.1
module: ejabberd_http
request_handlers:
/api: mod_http_api
/oauth: ejabberd_oauth

2.

oauth_access: all

3.

acl:
apicommands:
user: john@localhost

4.

api_permissions:
"admin access":
who:
oauth:
scope: "ejabberd:admin"
scope: "registered_users"
access:
allow:
acl: apicommands

what: "*"

5.

ejabberdctl register john localhost somePass

6.

ejabberdctl oauth_issue_token user123@localhost 3600 ejabberd:admin
erHymcBiT2r0QsuOpDjIrsEvnOS4grkj [<<"ejabberd:admin">>] 3600 seconds

7.

curl -H "Authorization: Bearer erHymcBiT2r0QsuOpDjIrsEvnOS4grkj" \
'127.0.0.1:5281/api/registered_users?host=localhost'

["user2","user8","john"]

curl --oauth2-bearer erHymcBiT2r0QsuOpDjIrsEvnOS4grkj \
'127.0.0.1:5281/api/registered_users?host=localhost'

["user2","user8","john"]

OAuth Authentication

- 398/450 - Copyright © 2008 - 2024 ProcessOne

API Permissions

added in 16.12

This page describes ejabberd's flexible permission mechanism.

Access to all available endpoints are configured using the api_permissions top-level option.

It allows to define multiple groups, each one with separate list of filters on who and what are allowed by rules specified inside it.

Basic rule looks like this:

It tells that group named Admin access allows all users that are accepted by ACL rule admin to execute all commands except

command stop , using the command-line tool ejabberdctl or sending a ReST query handled by mod_http_api.

Each group has associated name (that is just used in log messages), who section for rules that authentication details must match,

what section for specifying list of command, and from with list of modules that API was delivered to.

Rules inside who section

There are 3 types of rules that can be placed in who section:

acl: Name | ACLDefinition

or the short version:

Name | ACLRule

This accepts a command when the authentication provided matches rules of Name Access Control List (or inline rules from

ACLDefinition or ACLRule)

access: Name | AccessDefinition

This allows execution if the Access Rule Name or inline AccessDefinition returns allowed for command's authentication details

oauth: ListOfRules

This rule (and only this) will match for commands that were executed with OAuth authentication. Inside ListOfRules you can

use any rule described above (acl: Name , AClName , access: Name) and additionally you must include scope: ListOfScopeNames

with OAuth scope names that must match scope used to generate OAuth token used in command authentication.

who allows the command to be executed if at least one rule matches.

If you want to require several rules to match at this same time, use access (see examples below).

Missing who rule is equivalent to who: none which will stop group from accepting any command.

Examples of who rules

This accepts user admin@server.com or commands originating from localhost:

This only allows execution of a command if it's invoked by user admin@server.com and comes from localhost address. If one of

those restrictions isn't satisfied, execution will fail:

api_permissions:
"admin access":
who:
- admin

what:
- "*"
- "!stop"

from:
- ejabberd_ctl
- mod_http_api

•

•

•

who:
user: admin@server.com
ip: 127.0.0.1/8

API Permissions

- 399/450 - Copyright © 2008 - 2024 ProcessOne

Those rules match for users from muc_admin ACL both using regular authentication and OAuth:

Rules in what section

Rules in what section are constructed from "strings" literals. You can use:

"command_name" of an existing API command

command_name is same as before, but no need to provide "

"*" is a wildcard rule to match all commands

"[tag: tagname]" allows all commands that have been declared with tag tagname . You can consult the list of tags and their

commands with: ejabberdctl help tags

Additionally each rule can be prepended with ! character to change it into negative assertion rule. Command names that would

match what is after ! character will be removed from list of allowed commands.

Missing what rule is equivalent to what: "!*" which will stop group from accepting any command.

Example of what rules

This allows execution of all commands except command stop :

This allows execution of status and commands with tag session (like num_resources or status_list):

This matches no command:

Rules in from section

This section allows to specify list of allowed module names that expose API to outside world. Currently those modules are

ejabberd_xmlrpc , mod_http_api and ejabberd_ctl .

If from section is missing from group then all endpoints are accepted, if it's specified endpoint must be listed inside it to be

allowed to execute.

who:
access:
allow:
user: admin@server.com
ip: 127.0.0.1/8

who:
access:
allow:
acl: muc_admin

oauth:
scope: "ejabberd:admin"
access:
allow:
acl: muc_admin

•

•

•

•

what:
- "*"
- "!stop"

what:
- status
- "[tag:account]"

what:
- start
- "!*"

Rules in what section

- 400/450 - Copyright © 2008 - 2024 ProcessOne

Examples

Those rules allow execution of any command invoked by ejabberdctl shell command, or all command except start and stop for

users in ACL admin, with regular authentication or ejabberd:admin scoped OAuth tokens.

api_permissions:
"console commands":
from:
- ejabberd_ctl

who: all
what: "*"

"admin access":
who:
access:
allow:
- acl: admin

oauth:
scope: "ejabberd:admin"
access:
allow:
- acl: admin

what:
- "*"
- "!stop"
- "!start"

Examples

- 401/450 - Copyright © 2008 - 2024 ProcessOne

OAuth Support

added in 15.09

Introduction

ejabberd includes a full support OAuth 2.0 deep inside the ejabberd stack.

This OAuth integration makes ejabberd:

an ideal project to develop XMPP applications with Web in mind, as it exposes ejabberd features as ReST or XML-RPC HTTP

based API endpoints. OAuth makes ejabberd the ideal XMPP server to integrate in a larger Web / HTTP ecosystem.

a more secure tool that can leverage the use of oAuth token to authenticate, hiding your real password from the

client itself. As your password is never shared with client directly with our X-OAUTH2 authentication mechanism, user have

less risks of having their primary password leaked.

a tool that can be used at the core of larger platforms as oauth token can be used by users and admins to delegate rights to

subcomponents / subservices.

a tool that is friendly to other online services as users can delegate rights to others SaaS platform they are using. This will be

possible to let services access your message archive, show your offline message count or with future commands send message

to users and chatrooms on your behalf. This is done in a granular way, with a scope limited to a specific function. And the

delegation rights for a specific app / third party can always be revoked at any time as this is usually the case with OAuth

services.

You can read more on OAuth from OAuth website.

Configuration

Authentication method

An X-OAUTH2 SASL authentication mechanism is enabled by default in ejabberd.

However, if the ejabberd_oauth HTTP request handler is not enabled, there is no way to generate token from outside ejabberd. In

this case, you may want to disable X-OAUTH2 with the disable_sasl_mechanisms top-level option in ejabberd.yml file, either at

global or at virtual host level:

ejabberd listeners

To enable OAuth support in ejabberd, you need to edit your ejabberd.yml file to add the following snippets.

You first need to expose more HTTP endpoint in ejabberd_http modules:

ejabberd_oauth is the request handler that will allow generating token for third-parties (clients, services). It is usually exposed

on "/oauth" endpoint. This handler is mandatory to support OAuth.

mod_http_api request handler enables ReST API endpoint to perform delegated actions on ejabberd using an HTTP JSON API.

This handler is usually exposed on "/api" endpoint. It is optional.

ejabberd_xmlrpc listener can be set on a separate port to query commands using the XML-RPC protocol.

Here is a example of the listen section in ejabberd configuration file, focusing on HTTP handlers:

•

•

•

•

disable_sasl_mechanisms: ["X-OAUTH2"]

•

•

•

listen:
-
port: 4560
module: ejabberd_http
request_handlers:
Handle ejabberd commands using XML-RPC

OAuth Support

- 402/450 - Copyright © 2008 - 2024 ProcessOne

https://oauth.net

Module configuration

Some commands are implemented by ejabberd internals and are always available, but other commands are implemented by

optional modules. If the documentation of a command you want to use mentions a module, make sure you have enabled that

module in ejabberd.yml . For example the add_rosteritem command is implemented in the mod_admin_extra module.

By the way, ejabberd implements several commands to manage OAuth, check the oauth tag documentation.

OAuth specific parameters

OAuth is configured using those top-level options:

oauth_access

oauth_cache_life_time

oauth_cache_missed

oauth_cache_rest_failure_life_time

oauth_cache_size

oauth_client_id_check

oauth_db_type

oauth_expire

oauth_use_cache

A basic setup is to allow all accounts to create tokens, and tokens expire after an hour:

authorization_token

An easy way to generate a token is using the oauth_issue_token command with the ejabberdctl shell script:

The users can generate tokens themselves by visiting /oauth/authorization_token in a webview in your application or in a web

browser. For example, URL can be:

Note: To use the get_roster scope, enable mod_admin_extra , because the get_roster API is defined in that module. Otherwise, the

command is unknown and you will get an invalid_scope error. See Module configuration for details.

/: ejabberd_xmlrpc
-
port: 5280
module: ejabberd_http
request_handlers:
/websocket: ejabberd_http_ws
/log: mod_log_http
OAuth support:
/oauth: ejabberd_oauth
ReST API:
/api: mod_http_api

•

•

•

•

•

•

•

•

•

oauth_access: all
oauth_expire: 3600

ejabberdctl oauth_issue_token user1@localhost 3600 ejabberd:admin

r9KFladBTYJS71OggKCifo0GJwyT7oY4 [<<"ejabberd:admin">>] 3600 seconds

http://example.net:5280/oauth/authorization_token
 ?response_type=token
 &client_id=Client1
 &redirect_uri=http://client.uri
 &scope=get_roster+sasl_auth

authorization_token

- 403/450 - Copyright © 2008 - 2024 ProcessOne

Parameters are described in OAuth 2.0 specification:

response_type : Should be token .

client_id : This is the name of the application that is asking for Oauth token.

scope : This is the scope of the rights being delegated to the application. It will limit the feature the application can perform

and thus ensure the user is not giving away more right than expected by the application. As a developer, you should always

limit the scope to what you actually need.

redirect_uri : After token is generated, token is passed to the application using the redirect URI. It can obviously work for web

applications, but also for mobile applications, using a redirect URI that the mobile application have registered: Proper code for

handling the token will thus be executed directly in the mobile application.

state : State parameter is optional and use by client to pass information that will be passed as well as state parameter in the

redirect URI.

Directing the user to this URL will present an authentication form summarizing what is the app requiring the token and the

scope / rights that are going to be granted.

The user can then put their login and password to confirm that they accept granting delegating rights and confirm the token

generation. If the provided credentials are valid, the browser or webview will redirect the user to the redirect_uri, to actually let

ejabberd pass the token to the app that requested it. It can be either a Web app or `a mobile / desktop application.

redirect_uri

The redirect_uri originally passed in the authorization_token request will be called on successful validation of user credentials,

with added parameters.

For example, redirect URI called by ejabberd can be:

Parameters are described in OAuth specification:

access_token : This is the actual token that the client application can use for OAuth authentication.

token_type : ejabberd supports bearer token type.

expires_in : This is the validity duration of the token, in seconds. When the token expires, a new authorization token will need

to be generated an approved by the user.

scope : Confirms the granted scope to the requesting application. Several scopes can be passed, separated by '+'.

state : If a state parameter was passed by requesting application in authorization_token URL, it will be passed back to the

application as a parameter of the redirect_uri to help with the client workflow.

Scopes

sasl_auth : This scope is use to generate a token that can login over XMPP using SASL X-OAUTH2 mechanism.

ejabberd:admin

ejabberd:user

Scopes for each existing API command. For example, there is a scope registered_users because there is a command called

registered_users. Ensure you enable the module that defines the command that you want to use, see Module configuration for

details.

•

•

•

•

•

http://client.uri/
 ?access_token=RHIT8DoudzOctdzBhYL9bYvXz28xQ4Oj
 &token_type=bearer
 &expires_in=3600
 &scope=user_get_roster+sasl_auth
 &state=

•

•

•

•

•

•

•

•

•

redirect_uri

- 404/450 - Copyright © 2008 - 2024 ProcessOne

X-OAuth2 Authentication

You can connect to ejabberd using an X-OAUTH2 token that is valid in the scope sasl_auth . You can use an OAuth token as

generated in the previous steps instead of a password when connecting to ejabberd servers support OAuth SASL mechanism.

When enabled, X-OAUTH2 SASL mechanism is advertised in server stream features:

Authentication with X-OAUTH2 is done by modifying the SASL auth element as follow:

The content in the auth element should be the base64 encoding of a string containing a null byte, followed by the user name,

another null byte and the string representation of the user’s OAuth token. This is similar to how to authenticate with a password

using the PLAIN mechanism, except the token is added instead of the user’s password.

The response is standard for SASL XMPP authentication. For example, on success, server will reply with:

ReST Example

It is possible to use OAuth to authenticate a client when attempting to perform a ReST or XML-RPC query.

Configuring

First of all check all the required options are setup (listener, OAuth, API and ACL):

<stream:features>
<c xmlns="http://jabber.org/protocol/caps" node="http://www.process-one.net/en/ejabberd/" ver="nM19M+JK0ZBMXK7iJAvKnmDuQus=" hash="sha-1"/>
<register xmlns="http://jabber.org/features/iq-register"/>
<mechanisms xmlns="urn:ietf:params:xml:ns:xmpp-sasl">
<mechanism>PLAIN</mechanism>
<mechanism>DIGEST-MD5</mechanism>
<mechanism>X-OAUTH2</mechanism>
<mechanism>SCRAM-SHA-1</mechanism>

</mechanisms>
</stream:features>

<auth mechanism='X-OAUTH2'
xmlns='urn:ietf:params:xml:ns:xmpp-sasl'>

base64("\0" + user_name + "\0" + oauth_token)
</auth>

<success xmlns='urn:ietf:params:xml:ns:xmpp-sasl'/>

listen:
-
port: 5280
ip: "::"
module: ejabberd_http
request_handlers:
/api: mod_http_api
/oauth: ejabberd_oauth

oauth_expire: 3600
oauth_access: all

api_permissions:
"admin access":
who:
oauth:
scope: "ejabberd:admin"
access:
allow:
- acl: loopback
- acl: admin

what:
- "*"
- "!stop"
- "!start"

acl:
admin:
user:
- user1@localhost

modules:
mod_admin_extra: {}
mod_roster: {}

X-OAuth2 Authentication

- 405/450 - Copyright © 2008 - 2024 ProcessOne

Register the account with admin rights, and another one used for the queries:

Obtain bearer token

Obtain a bearer token as explained in authorization_token, either using ejabberdctl :

Or using a web browser:

visit the URL http://localhost:5280/oauth/authorization_token?response_type=token&scope=ejabberd:admin

User (jid): user1@localhost

Password: asd

and click Accept

This redirects to a new URL which contains the access_token, for example:

Passing credentials

When using ReST, the client authorization is done by using a bearer token (no need to pass the user and host parameters). For

that, include an Authorization HTTP header like:

Query examples

Let's use curl to get the list of registered_users with a HTTP GET query:

Or provide the bearer token with this option:

With a command like get_roster you can get your own roster, or act as an admin to get any user roster.

The HTTP endpoint does not take any parameter, so we can just do an HTTP POST with empty JSON structure list (see -d

option).

In this example let's use a HTTP POST query:

ejabberdctl register user1 localhost asd
ejabberdctl register user2 localhost asd
ejabberdctl add_rosteritem user2 localhost tom localhost Tom "" none

ejabberdctl oauth_issue_token user1@localhost 3600 ejabberd:admin
r9KFladBTYJS71OggKCifo0GJwyT7oY4 [<<"ejabberd:admin">>] 3600 seconds

•

•

•

•

http://localhost:5280/oauth/authorization_token
 ?access_token=r9KFladBTYJS71OggKCifo0GJwyT7oY4
 &token_type=bearer
 &expires_in=31536000
 &scope=ejabberd:admin
 &state=

Authorization: Bearer r9KFladBTYJS71OggKCifo0GJwyT7oY4

curl -X GET \
-H "Authorization: Bearer r9KFladBTYJS71OggKCifo0GJwyT7oY4" \
http://localhost:5280/api/registered_users?host=localhost

["user1","user2"]

curl -X GET \
--oauth2-bearer r9KFladBTYJS71OggKCifo0GJwyT7oY4 \
http://localhost:5280/api/registered_users?host=localhost

curl -v -X POST \
--oauth2-bearer r9KFladBTYJS71OggKCifo0GJwyT7oY4 \
http://localhost:5280/api/get_roster \
-d '{"user": "user2", "server": "localhost"}'

[{"jid":"tom@localhost","nick":"Tom","subscription":"none","ask":"none","group":""}]

ReST Example

- 406/450 - Copyright © 2008 - 2024 ProcessOne

XML-RPC Example

For XML-RPC, credentials must be passed as XML-RPC parameters, including token but also user and host parameters. This is

for legacy reason, but will likely change in a future version, making user and host implicit, thanks to bearer token.

Here is an (Erlang) XML-RPC example on how to get your own roster:

This will lead to sending this XML-RPC payload to server:

To get roster of other user using admin authorization, this erlang XML-RPC code can be used:

This is an equivalent Python 2 script:

And this is an equivalent Python 3 script:

xmlrpc:call({127, 0, 0, 1}, 4560, "/",
{call, get_roster, [
{struct, [{user, "peter"},

{server, "example.com"},
{token, "0n6LaEjyAOxVDyZChzZfoKMYxc8uUk6L"}]}]},

false, 60000, "Host: localhost\r\n", []).

<?xml version="1.0" encoding="UTF-8"?>
<methodCall>
<methodName>get_roster</methodName>
<params>
<param>
<value>
<struct>
<member>
<name>server</name>
<value>
<string>example.com</string>

</value>
</member>
<member>
<name>user</name>
<value>
<string>peter</string>

</value>
</member>
<member>
<name>token</name>
<value>
<string>0n6LaEjyAOxVDyZChzZfoKMYxc8uUk6L</string>

</value>
</member>

</struct>
</value>

</param>
</params>

</methodCall>

xmlrpc:call({127, 0, 0, 1}, 4560, "/",
{call, get_roster, [
{struct, [{user, "admin"},

{server, "example.com"},
{token, "0n6LaEjyAOxVDyZChzZfoKMYxc8uUk6L"}
{admin, true}]},

{struct, [{user, "peter"},
{server, "example.com"}]}]},

false, 60000, "Host: localhost\r\n", []).

import xmlrpclib

server_url = 'http://127.0.0.1:4560'
server = xmlrpclib.ServerProxy(server_url)

LOGIN = {'user': 'admin',
'server': 'example.com',
'token': '0n6LaEjyAOxVDyZChzZfoKMYxc8uUk6L',
'admin': True}

def calling(command, data):
fn = getattr(server, command)
return fn(LOGIN, data)

print calling('get_roster', {'user':'peter', 'server':'example.com'})

from xmlrpc import client

server_url = 'http://127.0.0.1:4560'
server = client.ServerProxy(server_url)

XML-RPC Example

- 407/450 - Copyright © 2008 - 2024 ProcessOne

Those calls would send this XML to server:

LOGIN = {'user': 'admin',
'server': 'example.com',
'token': '0n6LaEjyAOxVDyZChzZfoKMYxc8uUk6L',
'admin': True}

def calling(command, data):
fn = getattr(server, command)
return fn(LOGIN, data)

result = calling('get_roster', {'user':'peter', 'server':'example.com'})
print(result)

<?xml version="1.0" encoding="UTF-8"?>
<methodCall>
<methodName>get_roster</methodName>
<params>
<param>
<value>
<struct>
<member>
<name>admin</name>
<value>
<boolean>1</boolean>

</value>
</member>
<member>
<name>server</name>
<value>
<string>example.com</string>

</value>
</member>
<member>
<name>user</name>
<value>
<string>admin</string>

</value>
</member>
<member>
<name>token</name>
<value>
<string>0n6LaEjyAOxVDyZChzZfoKMYxc8uUk6L</string>

</value>
</member>

</struct>
</value>

</param>
<param>
<value>
<struct>
<member>
<name>user</name>
<value>
<string>peter</string>

</value>
</member>
<member>
<name>server</name>
<value>
<string>example.com</string>

</value>
</member>

</struct>
</value>

</param>
</params>

</methodCall>

XML-RPC Example

- 408/450 - Copyright © 2008 - 2024 ProcessOne

ejabberd commands

By defining command using api available through ejabberd_commands module, it's possible to add operations that would be

available to users through ejabberdctl command, XML-RPC socket or JSON based REST service.

Each command needs to provide information about required arguments and produced result by filling #ejabberd_commands record

and registering it in dispatcher by calling ejabberd_commands:register_commands([ListOfEjabberdCommandsRecords]) .

Structure of #ejabberd_commands record

Writing ejabberd commands supporting OAuth

If you have existing commands that you want to make OAuth compliant, you can make them OAuth compliant very easily.

An ejabberd command is defined by an #ejabberd_commands Erlang record. The record requires a few fields:

name: This is an atom defining the name of the command.

tags: This is a list of atoms used to group the command into consistent group of commands. This is mostly used to group

commands in ejabberdctl command-line tool. Existing categories are:

session : For commands related to user XMPP sessions.

roster : Commands related to contact list management.

desc: Description of the command for online help.

module and function: Module and function to call to execute the command logic.

args: Argument of the command. An argument is defined by a tuple of atoms of the form {argument_name, data_type} .

data_type can be one of:

binary

result: defines what the command will return.

policy: Is an optional field, containing an atom that define restriction policy of the command. It can be on of: open , admin ,

user , restricted . Default is restricted , meaning the command can be used from ejabberdctl command-line tool.

version: API version number where this command is available (see API versioning documentation for details).

To define a command that can be used by server user over ReST or XML-RPC API, you just have to define it with policy user .

Then, you have to make sure that the function will take a user binary and a host binary as first parameter of the function. They

do not have to be put in the args list in #ejabberd_commands record as the `user policy implicitly expect them.

That's all you need to have commands that can be used in a variety of ways.

Here is a example way to register commands when

•

•

•

•

•

•

•

•

•

•

•

start(_Host, _Opts) ->
ejabberd_commands:register_commands(commands()).

stop(_Host) ->
ejabberd_commands:unregister_commands(commands()).

%%%
%%% Register commands
%%%

commands() ->
[#ejabberd_commands{name = user_get_roster,

tags = [roster],
desc = "Retrieve the roster",
longdesc =

"Returns a list of the contacts in a "
"user roster.\n\nAlso returns the state "
"of the contact subscription. Subscription "
"can be either \"none\", \"from\", \"to\", "
"\"both\". Pending can be \"in\", \"out\" "
"or \"none\".",

module = ?MODULE, function = get_roster,
args = [],

ejabberd commands

- 409/450 - Copyright © 2008 - 2024 ProcessOne

policy = user,
result =

{contacts,
{list,
{contact,
{tuple,
[{jid, string},
{groups, {list, {group, string}}},
{nick, string}, {subscription, string},
{pending, string}]}}}}}

].

Writing ejabberd commands supporting OAuth

- 410/450 - Copyright © 2008 - 2024 ProcessOne

API Versioning

added in 24.02

Introduction

It is possible to support different versions of the ejabberd API. Versioning is used to ensure compatibility with third party

backend that uses the API.

When a command is modified (either its declaration or its definition, breaking compatibility), those modifications can be done in a

new version of the API, keeping the old command still available in the previous API version. An API version is an integer (sub-

versions are not supported).

If the API client does not specify the API version, ejabberd uses by default the most recent available API version.

Alternatively, the API client can specify an API version, and ejabberd will use that one to process the query, or the most recent to

the one specified. For example: if a command is defined in API versions 0, 2, 3, 7, and 9, and a client declares to support up to

API version 5, then ejabberd uses the command API version 3, which is the most recent available for the one supported by the

client.

API versioning is supported by mod_http_api ReST interface and ejabberdctl command line script. However ejabberd_xmlrpc

doesn't support API versioning, and consequently it can only use the latest API version.

Command Definition

If a command is modified, a new #ejabberd_commands record should be defined with a version attribute set to the API version (an

integer) where this command version is available. There is no need to add a new #ejabberd_commands record for commands that

are not modified in a given API version, immediate inferior version is used.

By default, all commands are in API version 0, and latest API is used if no version is specified when calling ejabberd_commands

directly without specifying a version.

API Documentation

The command documentation indicates the api version as a tag: v1 , v2 ... Commands not versioned do not have such a tag: they

are version 0.

The ejabberd Docs: API Tags page lists the most recent API versions, and what commands are included.

To know exactly what is the format expected for a command in a specific API version, use ejabberdctl specifying what API

version you want to consult and the command name, for example:

mod_http_api

The server administrator can set the default version when configuring request_handlers , by including a vN in its path, where N is

an integer corresponding to the version.

In any case, the API client can specify a version when sending the request, by appending vN to the request path.

For example, when configured like:

ejabberdctl --version 0 help get_roster

listen:
-
request_handlers:
/api/v0: mod_http_api
/v1/api: mod_http_api
/api: mod_http_api

API Versioning

- 411/450 - Copyright © 2008 - 2024 ProcessOne

See what API version will be used depending on the URL:

api/command use the latest available version

api/command/v0 use version 0

api/command/v1 use version 1

v1/api/command use version 1

v1/api/command/v0 use version 0

api/v0/command use version 0

api/v0/command/v1 use version 1

In this example, the server administrator configured the default API version to 0:

The client doesn't specify any version, so 0 is used:

This time the client requests the API version 2:

ejabberdctl

By default the latest version of a given command is used. To use a command in a specific API version, use the --version switch,

followed by the version number, and then the command name.

Example:

Use the most recent API version:

Use version 0:

•

•

•

•

•

•

•

listen:
-
request_handlers:
/api/v0: mod_http_api

$ curl -k -X POST -H "Content-type: application/json" \
-d '{}' "http://localhost:5280/api/v0/get_loglevel"

{"levelatom":"info"}

$ curl -k -X POST -H "Content-type: application/json" \
-d '{}' "http://localhost:5280/api/v0/get_loglevel/v2"

"info"

ejabberdctl --version 2 set_loglevel 4

$ ejabberdctl get_roster admin localhost
jan@localhost jan none subscribe group1,group2
tom@localhost tom none subscribe group3

$ ejabberdctl --version 0 get_roster admin localhost
jan@localhost jan none subscribe group1;group2
tom@localhost tom none subscribe group3

ejabberdctl

- 412/450 - Copyright © 2008 - 2024 ProcessOne

Archive

ChangeLog

Version 24.10

MISCELANEA

ejabberd_c2s : Optionally allow unencrypted SASL2

ejabberd_system_monitor : Handle call by gen_event:swap_handler (#4233)

ejabberd_http_ws : Remove support for old websocket connection protocol

ejabberd_stun : Omit auth_realm log message

ext_mod : Handle info message when contrib module transfers table ownership

mod_block_strangers : Add feature announcement to disco-info (#4039)

mod_mam : Advertise XEP-0424 feature in server disco-info (#3340)

mod_muc_admin : Better handling of malformed jids in send_direct_invitation command

mod_muc_rtbl : Fix call to gen_server:stop (#4260)

mod_privilege : Support "IQ permission" from XEP-0356 0.4.1 (#3889)

mod_pubsub : Don't blindly echo PEP notification

mod_pubsub : Skip non-delivery errors for local pubsub generated notifications

mod_pubsub : Fall back to default plugin options

mod_pubsub : Fix choice of node config defaults

mod_pubsub : Fix merging of default node options

mod_pubsub : Fix default node config parsing

mod_register : Support to block IPs in a vhost using append_host_config (#4038)

mod_s2s_bidi : Add support for S2S Bidirectional

mod_scram_upgrade : Add support for SCRAM upgrade tasks

mod_vcard : Return error stanza when storage doesn't support vcard update (#4266)

mod_vcard : Return explicit error stanza when user attempts to modify other's vcard

Minor improvements to support mod_tombstones (#2456)

Update fast_xml to use use_maps and remove obsolete elixir files

Update fast_tls and xmpp to improve s2s fallback for invalid direct tls connections

make-binaries : Bump dependency versions: Elixir 1.17.2, OpenSSL 3.3.2, ...

ADMINISTRATION

ejabberdctl : If ERLANG_NODE lacks host, add hostname (#4288)

ejabberd_app : At server start, log Erlang and Elixir versions

MySQL: Fix column type in the schema update of archive table in schema update

COMMANDS API

get_mam_count : New command to get number of archived messages for an account

set_presence : Return error when session not found

update : Fix command output

Add mam and offline tags to the related purge commands

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Archive

- 413/450 - Copyright © 2008 - 2024 ProcessOne

https://github.com/processone/ejabberd/issues/4233
https://github.com/processone/ejabberd/issues/4039
https://github.com/processone/ejabberd/issues/3340
https://github.com/processone/ejabberd/issues/4260
https://github.com/processone/ejabberd/issues/3889
https://github.com/processone/ejabberd/issues/4038
https://github.com/processone/ejabberd/issues/4266
https://github.com/processone/ejabberd/issues/4288

CODE QUALITY

Fix warnings about unused macro definitions reported by Erlang LS

Fix Elvis report: Fix dollar space syntax

Fix Elvis report: Remove spaces in weird places

Fix Elvis report: Don't use ignored variables

Fix Elvis report: Remove trailing whitespace characters

Define the types of options that opt_type.sh cannot derive automatically

ejabberd_http_ws : Fix dialyzer warnings

mod_matrix_gw : Remove useless option persist

mod_privilege : Replace try...catch with a clean alternative

DEVELOPMENT HELP

elvis.config : Fix file syntax, set vim mode, disable many tests

erlang_ls.config : Let it find paths, update to Erlang 26, enable crossref

hooks_deps : Hide false-positive warnings about gen_mod

Makefile : Add support for make elvis when using rebar3

.vscode/launch.json : Experimental support for debugging with Neovim

CI: Add Elvis tests

CI: Add XMPP Interop tests

Runtime: Cache hex.pm archive from rebar3 and mix

DOCUMENTATION

Add links in top-level options documentation to their Docs website sections

Document which SQL servers can really use update_sql_schema

Improve documentation of ldap_servers and ldap_backups options (#3977)

mod_register : Document behavior when access is set to none (#4078)

ELIXIR

Handle case when elixir support is enabled but not available

Start ExSync manually to ensure it's started if (and only if) Relive

mix.exs : Fix mix release error: logger being regular and included application (#4265)

mix.exs : Remove from extra_applications the apps already defined in deps (#4265)

WEBADMIN

Add links in user page to offline and roster pages

Add new "MAM Archive" page to webadmin

Improve many pages to handle when modules are disabled

mod_admin_extra : Move some webadmin pages to their modules

Version 24.07

CORE

ejabberd_options : Add trailing @ to @VERSION@ parsing

mod_http_api : Fix problem parsing tuples when using OTP 27 json library (#4242)

mod_http_api : Restore args conversion of {"k":"v"} to tuple lists

mod_matrix_gw : Add misc:json_encode_With_kv_lists and use it in matrix sign function

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Version 24.07

- 414/450 - Copyright © 2008 - 2024 ProcessOne

https://github.com/processone/ejabberd/issues/3977
https://github.com/processone/ejabberd/issues/4078
https://github.com/processone/ejabberd/issues/4265
https://github.com/processone/ejabberd/issues/4265
https://github.com/processone/ejabberd/issues/4242

mod_muc : Output muc#roominfo_avatarhash in room disco info as per updated XEP-0486 (#4234)

mod_muc : Improve cross version handling of muc retractions

node_pep : Add missing feature item-ids to node_pep

mod_register : Send welcome message as chat too (#4246)

ejabberd_hooks : Support for ejabberd hook subscribers, useful for mod_prometheus

ejabberd.app : Don't add iex to included_applications

make-installers : Fix path in scripts in regular user install (#4258)

Test: New tests for API commands

DOCUMENTATION

mod_matrix_gw : Fix matrix_id_as_jid option documentation

mod_register : Add example configuration of welcome_message option

mix.exs : Add ejabberd example config files to the hex package

Update CODE_OF_CONDUCT.md

EXT_MOD

Fetch dependencies from hex.pm when mix is available

files_to_path is deprecated, use compile_to_path

Compile all Elixir files in a library with one function call

Improve error result when problem compiling elixir file

Handle case when contrib module has no *.ex and no *.erl

mix.exs : Include Elixir's Logger in the OTP release, useful for mod_libcluster

LOGS

Print message when starting ejabberd application fails

Use error_logger when printing startup failure message

Use proper format depending on the formatter (#4256)

SQL

Add option update_sql_schema_timeout to allow schema update use longer timeouts

Add ability to specify custom timeout for sql operations

Allow to configure number of restart in sql_transaction()

Make sql query in testsuite compatible with pg9.1

In mysql.sql , fix update instructions for the archive table, origin_id column (#4259)

WEBADMIN

ejabberd.yml.example : Add api_permissions group for webadmin (#4249)

Don't use host from url in webadmin, prefer host used for authentication

Fix number of accounts shown in the online-users page

Fix crash when viewing old shared roster groups (#4245)

Support groupid with spaces when making shared roster result (#4245)

Version 24.06

CORE

econf : Add ability to use additional custom errors when parsing options

ejabberd_logger : Reloading configuration will update logger settings

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Version 24.06

- 415/450 - Copyright © 2008 - 2024 ProcessOne

https://github.com/processone/ejabberd/issues/4234
https://github.com/processone/ejabberd/issues/4246
https://github.com/processone/ejabberd-contrib/tree/master/mod_prometheus
https://github.com/processone/ejabberd/issues/4258
https://github.com/processone/ejabberd-contrib/tree/master/mod_libcluster
https://github.com/processone/ejabberd/issues/4256
https://github.com/processone/ejabberd/issues/4259
https://github.com/processone/ejabberd/issues/4249
https://github.com/processone/ejabberd/issues/4245
https://github.com/processone/ejabberd/issues/4245

gen_mod : Add support to specify a hook global, not vhost-specific

mod_configure : Retract Get User Password command to update XEP-0133 1.3.0

mod_conversejs : Simplify support for @HOST@ in default_domain option (#4167)

mod_mam : Document that XEP-0441 is implemented as well

mod_mam : Update support for XEP-0425 version 0.3.0, keep supporting 0.2.1 (#4193)

mod_matrix_gw : Fix support for @HOST@ in matrix_domain option (#4167)

mod_muc_log : Hide join/leave lines, add method to show them

mod_muc_log : Support allowpm introduced in 2bd61ab

mod_muc_room : Use ejabberd hooks instead of function calls to mod_muc_log (#4191)

mod_private): Cope with bookmark decoding errors

mod_vcard_xupdate : Send hash after avatar get set for first time

prosody2ejabberd : Handle the approved attribute. As feature isn't implemented, discard it (#4188)

SQL

update_sql_schema : Enable this option by default

CI: Don't load database schema files for mysql and pgsql

Support Unix Domain Socket with updated p1_pgsql and p1_mysql (#3716)

Fix handling of mqtt_pub table definition from mysql.sql and fix should_update_schema/1 in ejabberd_sql_schema.erl

Don't start sql connection pools for unknown hosts

Add update_primary_key command to sql schema updater

Fix crash running export2sql when MAM enabled but MUC disabled

Improve detection of types in odbc

COMMANDS API

New ban commands use private storage to keep ban information (#4201)

join_cluster_here : New command to join a remote node into our local cluster

Don't name integer and string results in API examples (#4198)

get_user_subscriptions : Fix validation of user field in that command

mod_admin_extra : Handle case when mod_private is not enabled (#4201)

mod_muc_admin : Improve validation of arguments in several commands

COMPILE

ejabberdctl : Comment ERTS_VSN variable when not used (#4194)

ejabberdctl : Fix iexlive after make prod when using Elixir

ejabberdctl : If INET_DIST_INTERFACE is IPv6, set required option (#4189)

ejabberdctl : Make native dynamic node names work when using fully qualified domain names

rebar.config.script : Support relaxed dependency version (#4192)

rebar.config : Update deps version to rebar3's relaxed versioning

rebar.lock : Track file, now that rebar3 uses loose dependency versioning

configure.ac : When using rebar3, unlock dependencies that are disabled (#4212)

configure.ac : When using rebar3 with old Erlang, unlock some dependencies (#4213)

mix:exs : Move xmpp from included_applications to applications

DEPENDENCIES

Base64url: Use only when using rebar2 and Erlang lower than 24

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Version 24.06

- 416/450 - Copyright © 2008 - 2024 ProcessOne

https://github.com/processone/ejabberd/issues/4167
https://github.com/processone/ejabberd/issues/4193
https://github.com/processone/ejabberd/issues/4167
https://github.com/processone/ejabberd/issues/4191
https://github.com/processone/ejabberd/issues/4188
https://github.com/processone/ejabberd/issues/3716
https://github.com/processone/ejabberd/issues/4201
https://github.com/processone/ejabberd/issues/4198
https://github.com/processone/ejabberd/issues/4201
https://github.com/processone/ejabberd/issues/4194
https://github.com/processone/ejabberd/issues/4189
https://github.com/processone/ejabberd/issues/4192
https://github.com/processone/ejabberd/issues/4212
https://github.com/processone/ejabberd/issues/4213

Idna: Bump from 6.0.0 to 6.1.1

Jiffy: Use Json module when Erlang/OTP 27, jiffy with older ones

Jose: Update to the new 1.11.10 for Erlang/OTP higher than 23

Luerl: Update to 1.2.0 when OTP same or higher than 20, simplifies commit a09f222

P1_acme: Update to support Jose 1.11.10 and Ipv6 support (#4170)

P1_acme: Update to use Erlang's json library instead of jiffy when OTP 27

Port_compiler: Update to 1.15.0 that supports Erlang/OTP 27.0

DEVELOPMENT HELP

.gitignore : Ignore ctags/etags files

make dialyzer : Add support to run Dialyzer with Mix

make format|indent : New targets to format and indent source code

make relive : Add Sync tool with Rebar3, ExSync with Mix

hook_deps : Use precise name: hooks are added and later deleted, not removed

hook_deps : Fix to handle FileNo as tuple {FileNumber, CharacterPosition}

Add support to test also EUnit suite

Fix code:lib_dir call to work with Erlang/OTP 27.0-rc2

Set process flags when Erlang/OTP 27 to help debugging

Test retractions in mam_tests

DOCUMENTATION

Add some XEPs support that was forgotten

Fix documentation links to new URLs generated by MkDocs

Remove ... in example configuration: it is assumed and reduces verbosity

Support for version note in modules too

Mark toplevel options, commands and modules that changed in latest version

Now modules themselves can have version annotations in note

INSTALLERS AND CONTAINER

make-binaries: Bump Erlang/OTP to 26.2.5 and Elixir 1.16.3

make-binaries: Bump OpenSSL to 3.3.1

make-binaries: Bump Linux-PAM to 1.6.1

make-binaries: Bump Expat to 2.6.2

make-binaries: Revert temporarily an OTP commit that breaks MSSQL (#4178)

CONTAINER.md: Invalid CTL_ON_CREATE usage in docker-compose example

WEBADMIN

ejabberd_ctl: Improve parsing of commas in arguments

ejabberd_ctl: Fix output of UTF-8-encoded binaries

WebAdmin: Remove webadmin_view for now, as commands allow more fine-grained permissions

WebAdmin: Unauthorized response: include some text to direct to the logs

WebAdmin: Improve home page

WebAdmin: Sort alphabetically the menu items, except the most used ones

WebAdmin: New login box in the left menu bar

WebAdmin: Add make_command functions to produce HTML command element

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Version 24.06

- 417/450 - Copyright © 2008 - 2024 ProcessOne

https://github.com/processone/ejabberd/issues/4170
https://github.com/processone/ejabberd/issues/4178

Document 'any' argument and result type, useful for internal commands

Commands with 'internal' tag: don't list and block execution by frontends

WebAdmin: Move content to commands; new pages; hook changes; new commands

Version 24.02

CORE:

Added Matrix gateway in mod_matrix_gw

Support SASL2 and Bind2

Support tls-server-end-point channel binding and sasl2 codec

Support tls-exporter channel binding

Support XEP-0474: SASL SCRAM Downgrade Protection

Fix presenting features and returning results of inline bind2 elements

disable_sasl_scram_downgrade_protection : New option to disable XEP-0474

negotiation_timeout : Increase default value from 30s to 2m

mod_carboncopy: Teach how to interact with bind2 inline requests

OTHER:

ejabberdctl: Fix startup problem when having set EJABBERD_OPTS and logger options

ejabberdctl: Set EJABBERD_OPTS back to "" , and use previous flags as example

eldap: Change logic for eldap tls_verify=soft and false

eldap: Don't set fail_if_no_peer_cert for eldap ssl client connections

Ignore hints when checking for chat states

mod_mam: Support XEP-0424 Message Retraction

mod_mam: Fix XEP-0425: Message Moderation with SQL storage

mod_ping: Support XEP-0198 pings when stream management is enabled

mod_pubsub: Normalize pubsub max_items node options on read

mod_pubsub: PEP nodetree: Fix reversed logic in node fixup function

mod_pubsub: Only care about PEP bookmarks options when creating node from scratch

SQL:

MySQL: Support sha256_password auth plugin

ejabberd_sql_schema: Use the first unique index as a primary key

Update SQL schema files for MAM's XEP-0424

New option sql_flags : right now only useful to enable mysql_alternative_upsert

INSTALLERS AND CONTAINER:

Container: Add ability to ignore failures in execution of CTL_ON_* commands

Container: Update to Erlang/OTP 26.2, Elixir 1.16.1 and Alpine 3.19

Container: Update this custom ejabberdctl to match the main one

make-binaries: Bump OpenSSL 3.2.1, Erlang/OTP 26.2.2, Elixir 1.16.1

make-binaries: Bump many dependency versions

COMMANDS API:

print_sql_schema : New command available in ejabberdctl command-line script

ejabberdctl: Rework temporary node name generation

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Version 24.02

- 418/450 - Copyright © 2008 - 2024 ProcessOne

https://docs.ejabberd.im/admin/configuration/toplevel/#sql-flags
https://docs.ejabberd.im/admin/configuration/toplevel/#sql-flags

ejabberdctl: Print argument description, examples and note in help

ejabberdctl: Document exclusive ejabberdctl commands like all the others

Commands: Add a new muc_sub tag to all the relevant commands

Commands: Improve syntax of many commands documentation

Commands: Use list arguments in many commands that used separators

Commands: set_presence : switch priority argument from string to integer

ejabberd_commands: Add the command API version as a tag vX

ejabberd_ctl: Add support for list and tuple arguments

ejabberd_xmlrpc: Fix support for restuple error response

mod_http_api: When no specific API version is requested, use the latest

COMPILATION WITH REBAR3/ELIXIR/MIX:

Fix compilation with Erlang/OTP 27: don't use the reserved word 'maybe'

configure: Fix explanation of --enable-group option (#4135)

Add observer and runtime_tools in releases when --enable-tools

Update "make translations" to reduce build requirements

Use Luerl 1.0 for Erlang 20, 1.1.1 for 21-26, and temporary fork for 27

Makefile: Add install-rel and uninstall-rel

Makefile: Rename make rel to make prod

Makefile: Update make edoc to use ExDoc, requires mix

Makefile: No need to use escript to run rebar|rebar3|mix

configure: If --with-rebar=rebar3 but rebar3 not system-installed, use local one

configure: Use Mix or Rebar3 by default instead of Rebar2 to compile ejabberd

ejabberdctl: Detect problem running iex or etop and show explanation

Rebar3: Include Elixir files when making a release

Rebar3: Workaround to fix protocol consolidation

Rebar3: Add support to compile Elixir dependencies

Rebar3: Compile explicitly our Elixir files when --enable-elixir

Rebar3: Provide proper path to iex

Rebar/Rebar3: Update binaries to work with Erlang/OTP 24-27

Rebar/Rebar3: Remove Elixir as a rebar dependency

Rebar3/Mix: If dev profile/environment, enable tools automatically

Elixir: Fix compiling ejabberd as a dependency (#4128)

Elixir: Fix ejabberdctl start/live when installed

Elixir: Fix: FORMATTER ERROR: bad return value (#4087)

Elixir: Fix: Couldn't find file Elixir Hex API

Mix: Enable stun by default when vars.config not found

Mix: New option vars_config_path to set path to vars.config (#4128)

Mix: Fix ejabberdctl iexlive problem locating iex in an OTP release

Version 23.10

COMPILATION:

Erlang/OTP: Raise the requirement to Erlang/OTP 20.0 as a minimum

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Version 23.10

- 419/450 - Copyright © 2008 - 2024 ProcessOne

https://docs.ejabberd.im/developer/ejabberd-api/admin-tags/#v1
https://docs.ejabberd.im/developer/ejabberd-api/admin-tags/#v1
https://github.com/processone/ejabberd/issues/4135
https://github.com/processone/ejabberd/issues/4128
https://github.com/processone/ejabberd/issues/4087
https://github.com/processone/ejabberd/issues/4128

CI: Update tests to Erlang/OTP 26 and recent Elixir

Move Xref and Dialyzer options from workflows to rebar.config

Add sections to rebar.config to organize its content

Dialyzer dirty workarounds because re:mp() is not an exported type

When installing module already configured, keep config as example

Elixir 1.15 removed support for --app

Elixir: Improve support to stop external modules written in Elixir

Elixir: Update syntax of function calls as recommended by Elixir compiler

Elixir: When building OTP release with mix, keep ERLANG_NODE=ejabberd@localhost

ejabberdctl : Pass ERLANG_OPTS when calling erl to parse the INET_DIST_INTERFACE (#4066

COMMANDS:

create_room_with_opts : Fix typo and move examples to args_example (#4080)

etop : Let ejabberdctl etop work in a release (if observer application is available)

get_roster : Command now returns groups in a list instead of newlines (#4088)

halt : New command to halt ejabberd abruptly with an error status code

ejabberdctl : Fix calling ejabberdctl command with wrong number of arguments with Erlang 26

ejabberdctl : Improve printing lists in results

ejabberdctl : Support policy=user in the help and return proper arguments

ejabberdctl : Document how to stop a debug shell: control+g

CONTAINER:

Dockerfile: Add missing dependency for mssql databases

Dockerfile: Reorder stages and steps for consistency

Dockerfile: Use Alpine as base for METHOD=package

Dockerfile: Rename packages to improve compatibility

Dockerfile: Provide specific OTP and elixir vsn for direct compilation

Halt ejabberd if a command in CTL_ON_ fails during ejabberd startup

CORE:

auth_external_user_exists_check : New option (#3377)

gen_mod : Extend gen_mod API to simplify hooks and IQ handlers registration

gen_mod : Add shorter forms for gen_mod hook/ iq_handler API

gen_mod : Update modules to the new gen_mod API

install_contrib_modules : New option to define contrib modules to install automatically

unix_socket : New listener option, useful when setting unix socket files (#4059)

ejabberd_systemd : Add a few debug messages

ejabberd_systemd : Avoid using gen_server timeout (#4054)(#4058)

ejabberd_listener : Increase default listen queue backlog value to 128, which is the default value on both Linux and FreeBSD

(#4025)

OAuth: Handle badpass error message

When sending message on behalf of user, trigger user_send_packet (#3990)

Web Admin: In roster page move the AddJID textbox to top (#4067)

Web Admin: Show a warning when visiting webadmin with non-privileged account (#4089)

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Version 23.10

- 420/450 - Copyright © 2008 - 2024 ProcessOne

https://github.com/processone/ejabberd/issues/#4066
https://github.com/processone/ejabberd/issues/#4080
https://github.com/processone/ejabberd/issues/#4088
https://github.com/processone/ejabberd/issues/#3377
https://github.com/processone/ejabberd/issues/#4059
https://github.com/processone/ejabberd/issues/#4054
https://github.com/processone/ejabberd/issues/#4058
https://github.com/processone/ejabberd/issues/#4025
https://github.com/processone/ejabberd/issues/#3990
https://github.com/processone/ejabberd/issues/#4067
https://github.com/processone/ejabberd/issues/#4089

DOCS:

Example configuration: clarify 5223 tls options; specify s2s shaper

Make sure that policy=user commands have host instead of server arg in docs

Improve syntax of many command descriptions for the Docs site

Move example Perl extauth script from ejabberd git to Docs site

Remove obsolete example files, and add link in Docs to the archived copies

INSTALLERS (MAKE-BINARIES):

Bump Erlang/OTP version to 26.1.1, and other dependencies

Remove outdated workaround

Don't build Linux-PAM examples

Fix check for current Expat version

Apply minor simplifications

Don't duplicate config entries

Don't hard-code musl version

Omit unnecessary glibc setting

Set kernel version for all builds

Let curl fail on HTTP errors

MODULES:

mod_muc_log : Add trailing backslash to URLs shown in disco info

mod_muc_occupantid : New module with support for XEP-0421 Occupant Id (#3397)

mod_muc_rtbl : Better error handling in (#4050)

mod_private : Add support for XEP-0402 PEP Native Bookmarks

mod_privilege : Don't fail to edit roster (#3942)

mod_pubsub : Fix usage of plugins option, which produced default_node_config ignore (#4070)

mod_pubsub : Add pubsub_delete_item hook

mod_pubsub : Report support of config-node-max in pep

mod_pubsub : Relay pubsub iq queries to muc members without using bare jid (#4093)

mod_pubsub : Allow pubsub node owner to overwrite items published by other persons

mod_push_keepalive : Delay wake_on_start

mod_push_keepalive : Don't let hook crash

mod_push : Add notify_on option

mod_push : Set last-message-sender to bare JID

mod_register_web : Make redirect to page that end with / (#3177)

mod_shared_roster_ldap : Don't crash in get_member_jid on empty output (#3614)

MUC:

Add support to register nick in a room (#3455)

Convert allow_private_message MUC room option to allowpm (#3736)

Update xmpp version to send roomconfig_changesubject in disco#info (#4085)

Fix crash when loading room from DB older than ffa07c6, 23.04

Fix support to retract a MUC room message

Don't always store messages passed through muc_filter_message (#4083)

Pass also MUC room retract messages over the muc_filter_message (#3397)

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Version 23.10

- 421/450 - Copyright © 2008 - 2024 ProcessOne

https://github.com/processone/ejabberd/issues/#3397
https://github.com/processone/ejabberd/issues/#4050
https://github.com/processone/ejabberd/issues/#3942
https://github.com/processone/ejabberd/issues/#4070
https://github.com/processone/ejabberd/issues/#4093
https://github.com/processone/ejabberd/issues/#3177
https://github.com/processone/ejabberd/issues/#3614
https://github.com/processone/ejabberd/issues/#3455
https://github.com/processone/ejabberd/issues/#3736
https://github.com/processone/ejabberd/issues/#4085
https://github.com/processone/ejabberd/issues/#4083
https://github.com/processone/ejabberd/issues/#3397

Pass MUC room private messages over the muc_filter_message too (#3397)

Store the subject author JID, and run muc_filter_message when sending subject (#3397)

Remove existing role information for users that are kicked from room (#4035)

Expand rule "mucsub subscribers are members in members only rooms" to more places

SQL:

Add ability to force alternative upsert implementation in mysql

Properly parse mysql version even if it doesn't have type tag

Use prepared statement with mysql

Add alternate version of mysql upsert

ejabberd_auth_sql : Reset scram fields when setting plain password

mod_privacy_sql : Fix return values from calculate_diff

mod_privacy_sql : Optimize set_list

mod_privacy_sql : Use more efficient way to calculate changes in set_privacy_list

Version 23.04

GENERAL:

New s2s_out_bounce_packet hook

Re-allow anonymous connection for connection without client certificates (#3985)

Stop ejabberd_system_monitor before stopping node

captcha_url option now accepts auto value, and it's the default

mod_mam : Add support for XEP-0425: Message Moderation

mod_mam_sql : Fix problem with results of mam queries using rsm with max and before

mod_muc_rtbl : New module for Real-Time Block List for MUC rooms (#4017)

mod_roster : Set roster name from XEP-0172, or the stored one (#1611)

mod_roster : Preliminary support to store extra elements in subscription request (#840)

mod_pubsub : Pubsub xdata fields max_item/item_expira/children_max use max not infinity

mod_vcard_xupdate : Invalidate vcard_xupdate cache on all nodes when vcard is updated

ADMIN:

ext_mod : Improve support for loading *.so files from ext_mod dependencies

Improve output in gen_html_doc_for_commands command

Fix ejabberdctl output formatting (#3979)

Log HTTP handler exceptions

MUC:

New command get_room_history

Persist none role for outcasts

Try to populate room history from mam when unhibernating

Make mod_muc_room:set_opts process persistent flag first

Allow passing affiliations and subscribers to create_room_with_opts command

Store state in db in mod_muc:create_room()

Make subscribers members by default

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Version 23.04

- 422/450 - Copyright © 2008 - 2024 ProcessOne

https://github.com/processone/ejabberd/issues/#3397
https://github.com/processone/ejabberd/issues/#3397
https://github.com/processone/ejabberd/issues/#4035
https://github.com/processone/ejabberd/issues/3985
https://github.com/processone/ejabberd/issues/4017
https://github.com/processone/ejabberd/issues/1611
https://github.com/processone/ejabberd/issues/840
https://github.com/processone/ejabberd/issues/3979

SQL SCHEMAS:

Fix a long standing bug in new schema migration

update_sql command: Many improvements in new schema migration

update_sql command: Add support to migrate MySQL too

Change PostgreSQL SERIAL to BIGSERIAL columns

Fix minor SQL schema inconsistencies

Remove unnecessary indexes

New SQL schema migrate fix

MS SQL:

MS SQL schema fixes

Add new schema for MS SQL

Add MS SQL support for new schema migration

Minor MS SQL improvements

Fix MS SQL error caused by ORDER BY in subquery

SQL TESTS:

Add support for running tests on MS SQL

Add ability to run tests on upgraded DB

Un-deprecate ejabberd_config:set_option/2

Use python3 to run extauth.py for tests

Correct README for creating test docker MS SQL DB

Fix TSQLlint warnings in MSSQL test script

TESTING:

Fix Shellcheck warnings in shell scripts

Fix Remark-lint warnings

Fix Prospector and Pylint warnings in test extauth.py

Stop testing ejabberd with Erlang/OTP 19.3, as Github Actions no longer supports ubuntu-18.04

Test only with oldest OTP supported (20.0), newest stable (25.3) and bleeding edge (26.0-rc2)

Upload Common Test logs as artifact in case of failure

ECS CONTAINER IMAGE:

Update Alpine to 3.17 to get Erlang/OTP 25 and Elixir 1.14

Add tini as runtime init

Set ERLANG_NODE fixed to ejabberd@localhost

Upload images as artifacts to Github Actions

Publish tag images automatically to ghcr.io

EJABBERD CONTAINER IMAGE:

Update Alpine to 3.17 to get Erlang/OTP 25 and Elixir 1.14

Add METHOD to build container using packages (#3983)

Add tini as runtime init

Detect runtime dependencies automatically

Remove unused Mix stuff: ejabberd script and static COOKIE

Copy captcha scripts to /opt/ejabberd-*/lib like the installers

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Version 23.04

- 423/450 - Copyright © 2008 - 2024 ProcessOne

https://github.com/processone/ejabberd/issues/3983

Expose only HOME volume, it contains all the required subdirs

ejabberdctl: Don't use .../releases/COOKIE , it's no longer included

INSTALLERS:

make-binaries: Bump versions, e.g. erlang/otp to 25.3

make-binaries: Fix building with erlang/otp v25.x

make-packages: Fix for installers workflow, which didn't find lynx

Version 23.01

GENERAL:

Add misc:uri_parse/2 to allow declaring default ports for protocols

CAPTCHA: Add support to define module instead of path to script

Clustering: Handle mnesia_system_event mnesia_up when other node joins this (#3842)

ConverseJS: Don't set i18n option because Converse enforces it instead of browser lang (#3951)

ConverseJS: Try to redirect access to files mod_conversejs to CDN when there is no local copies

ext_mod: compile C files and install them in ejabberd's priv

ext_mod: Support to get module status from Elixir modules

make-binaries: reduce log output

make-binaries: Bump zlib version to 1.2.13

MUC: Don't store mucsub presence events in offline storage

MUC: hibernation_time is not an option worth storing in room state (#3946)

Multicast: Jid format when multicastc was cached (#3950)

mysql: Pass ssl options to mysql driver

pgsql: Do not set standard_conforming_strings to off (#3944)

OAuth: Accept jid as a HTTP URL query argument

OAuth: Handle when client is not identified

PubSub: Expose the pubsub#type field in disco#info query to the node (#3914)

Translations: Update German translation

ADMIN:

api_permissions : Fix option crash when doesn't have who: section

log_modules_fully : New option to list modules that will log everything

outgoing_s2s_families : Changed option's default to IPv6, and fall back to IPv4

Fix bash completion when using Relive or other install methods

Fix portability issue with some shells (#3970)

Allow admin command to subscribe new users to members_only rooms

Use alternative split/2 function that works with Erlang/OTP as old as 19.3

Silent warning in OTP24 about not specified cacerts in SQL connections

Fix compilation warnings with Elixir 1.14

DOAP:

Support extended -protocol erlang attribute

Add extended RFCs and XEP details to some protocol attributes

tools/generate-doap.sh : New script to generate DOAP file, add make doap (#3915)

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Version 23.01

- 424/450 - Copyright © 2008 - 2024 ProcessOne

https://github.com/processone/ejabberd/issues/3842
https://github.com/processone/ejabberd/issues/3951
https://github.com/processone/ejabberd/issues/3946
https://github.com/processone/ejabberd/issues/3950
https://github.com/processone/ejabberd/issues/3944
https://github.com/processone/ejabberd/issues/3914
https://github.com/processone/ejabberd/issues/3970
https://github.com/processone/ejabberd/issues/3915

ejabberd.doap : New DOAP file describing ejabberd supported protocols

MQTT:

Add MQTT bridge module

Add support for certificate authentication in MQTT bridge

Implement reload in MQTT bridge

Add support for websockets to MQTT bridge

Recognize ws5/wss5 urls in MQTT bridge

mqtt_publish : New hook for MQTT publish event

mqtt_(un)subscribe : New hooks for MQTT subscribe & unsubscribe events

VSCODE:

Improve .devcontainer to use use devcontainer image and .vscode

Add .vscode files to instruct VSCode how to run ejabberd

Add Erlang LS default configuration

Add Elvis default configuration

Version 22.10

CORE:

Add log_burst_limit_* options (#3865)

Support ERL_DIST_PORT option to work without epmd

Auth JWT: Catch all errors from jose_jwt:verify and log debugging details (#3890)

CAPTCHA: Support @VERSION@ and @SEMVER@ in captcha_cmd option (#3835)

HTTP: Fix unix socket support (#3894)

HTTP: Handle invalid values in X-Forwarded-For header more gracefuly

Listeners: Let module take over socket

Listeners: Don't register listeners that failed to start in config reload

mod_admin_extra : Handle empty roster group names

mod_conversejs : Fix crash when mod_register not enabled (#3824)

mod_host_meta : Complain at start if listener is not encrypted

mod_ping : Fix regression on stop_ping in clustering context (#3817)

mod_pubsub : Don't crash on command failures

mod_shared_roster : Fix cache invalidation

mod_shared_roster_ldap : Update roster_get hook to use #roster_item{}

prosody2ejabberd : Fix parsing of scram password from prosody

MIX:

Fix MIX's filter_nodes

Return user jid on join

mod_mix_pam : Add new MIX namespaces to disco features

mod_mix_pam : Add handling of IQs with newer MIX namespaces

mod_mix_pam : Do roster pushes on join/leave

mod_mix_pam : Parse sub elements of the mix join remote result

mod_mix_pam : Provide MIX channels as roster entries via hook

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Version 22.10

- 425/450 - Copyright © 2008 - 2024 ProcessOne

https://github.com/processone/ejabberd/issues/3865
https://github.com/processone/ejabberd/issues/3890
https://github.com/processone/ejabberd/issues/3835
https://github.com/processone/ejabberd/issues/3894
https://github.com/processone/ejabberd/issues/3824
https://github.com/processone/ejabberd/issues/3817

mod_mix_pam : Display joined channels on webadmin page

mod_mix_pam : Adapt to renaming of participant-id from mix_roster_channel record

mod_roster : Change hook type from #roster{} to #roster_item{}

mod_roster : Respect MIX <annotate/> setting

mod_roster : Adapt to change of mix_annotate type to boolean in roster_query

mod_shared_roster : Fix wrong hook type #roster{} (now #roster_item{})

MUC:

Store role, and use it when joining a moderated room (#3330)

Don't persist none role (#3330)

Allow MUC service admins to bypass max_user_conferences limitation

Show allow_query_users room option in disco info (#3830)

mod_muc_room: Don't set affiliation to none if it's already none in process_item_change/3

Fix mucsub unsubscribe notification payload to have muc_unsubcribe in it

Allow muc_{un}subscribe hooks to modify sent packets

Pass room state to muc_{un}subscribed hook

The archive_msg export fun requires MUC Service for room archives

Export mod_muc_admin:get_room_pid/2

Export function for getting room diagnostics

SQL:

Handle errors reported from begin/commit inside transaction

Make connection close errors bubble up from inside sql transaction

Make first sql reconnect wait shorter time

React to sql driver process exit earlier

Skip connection exit message when we triggered reconnection

Add syntax_tools to applications, required when using ejabberd_sql_pt (#3869)

Fix mam delete_old_messages_batch for sql backend

Use INSERT ... ON DUPLICATE KEY UPDATE for upsert on mysql

Update mysql library

Catch mysql connection being close earlier

BUILD:

make all : Generate start scripts here, not in make install (#3821)

make clean : Improve this and "distclean"

make deps : Ensure deps configuration is ran when getting deps (#3823)

make help : Update with recent changes

make install : Don't leak DESTDIR in files copied by 'make install'

make options : Fix error reporting on OTP24+

make update : configure also in this case, similarly to make deps

Add definition to detect OTP older than 25, used by ejabberd_auth_http

Configure eimp with mix to detect image convert properly (#3823)

Remove unused macro definitions detected by rebar3_hank

Remove unused header files which content is already in xmpp library

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Version 22.10

- 426/450 - Copyright © 2008 - 2024 ProcessOne

https://github.com/processone/ejabberd/issues/3330
https://github.com/processone/ejabberd/issues/3330
https://github.com/processone/ejabberd/issues/3830
https://github.com/processone/ejabberd/issues/3869
https://github.com/processone/ejabberd/issues/3821
https://github.com/processone/ejabberd/issues/3823
https://github.com/processone/ejabberd/issues/3823

CONTAINER:

Get ejabberd-contrib sources to include them

Copy .ejabberd-modules directory if available

Do not clone repo inside container build

Use make deps , which performs additional steps (#3823)

Support ERL_DIST_PORT option to work without epmd

Copy ejabberd-docker-install.bat from docker-ejabberd git and rename it

Set a less frequent healthcheck to reduce CPU usage (#3826)

Fix build instructions, add more podman examples

INSTALLERS:

make-binaries: Include CAPTCHA script with release

make-binaries: Edit rebar.config more carefully

make-binaries: Fix linking of EIMP dependencies

make-binaries: Fix GitHub release version checks

make-binaries: Adjust Mnesia spool directory path

make-binaries: Bump Erlang/OTP version to 24.3.4.5

make-binaries: Bump Expat and libpng versions

make-packages: Include systemd unit with RPM

make-packages: Fix permissions on RPM systems

make-installers: Support non-root installation

make-installers: Override code on upgrade

make-installers: Apply cosmetic changes

EXTERNAL MODULES:

ext_mod: Support managing remote nodes in the cluster

ext_mod: Handle correctly when COMMIT.json not found

Don't bother with COMMIT.json user-friendly feature in automated user case

Handle not found COMMIT.json, for example in GH Actions

Add WebAdmin page for managing external modules

WORKFLOWS ACTIONS:

Update workflows to Erlang 25

Update workflows: Ubuntu 18 is deprecated and 22 is added

CI: Remove syntax_tools from applications, as fast_xml fails Dialyzer

Runtime: Add Xref options to be as strict as CI

Version 22.05

CORE

C2S: Don't expect that socket will be available in c2s_terminated hook

Event handling process hook tracing

Guard against erlang:system_info(logical_processors) not always returning a number

domain_balancing : Allow for specifying type only, without specifying component_number

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Version 22.05

- 427/450 - Copyright © 2008 - 2024 ProcessOne

https://github.com/processone/ejabberd/issues/3823
https://github.com/processone/ejabberd/issues/3826

MQTT

Add TLS certificate authentication for MQTT connections

Fix login when generating client id, keep connection record (#3593)

Pass property name as expected in mqtt_codec (fixes login using MQTT 5)

Support MQTT subscriptions spread over the cluster (#3750)

MUC

Attach meta field with real jid to mucsub subscription events

Handle user removal

Stop empty MUC rooms 30 seconds after creation

default_room_options : Update options configurable

subscribe_room_many_max_users : New option in mod_muc_admin

MOD_CONVERSEJS

Improved options to support @HOST@ and auto values

Set auth and register options based on ejabberd configuration

conversejs_options : New option

conversejs_resources : New option

PUBSUB

mod_pubsub : Allow for limiting item_expire value

mod_pubsub : Unsubscribe JID on whitelist removal

node_pep : Add config-node and multi-items features (#3714)

SQL

Improve compatibility with various db engine versions

Sync old-to-new schema script with reality (#3790)

Slight improvement in MSSQL testing support, but not yet complete

OTHER MODULES

auth_jwt : Checking if an user is active in SM for a JWT authenticated user (#3795)

mod_configure : Implement Get List of Registered/Online Users from XEP-0133

mod_host_meta : New module to serve host-meta files, see XEP-0156

mod_mam : Store all mucsub notifications not only message notifications

mod_ping : Delete ping timer if resource is gone after the ping has been sent

mod_ping : Don't send ping if resource is gone

mod_push : Fix notifications for pending sessions (XEP-0198)

mod_push : Keep push session ID on session resume

mod_shared_roster : Adjust special group cache size

mod_shared_roster : Normalize JID on unset_presence (#3752)

mod_stun_disco : Fix parsing of IPv6 listeners

DEPENDENCIES

autoconf: Supported from 2.59 to the new 2.71

fast_tls: Update to 1.1.14 to support OpenSSL 3

jiffy: Update to 1.1.1 to support Erlang/OTP 25.0-rc1

luerl: Update to 1.0.0, now available in hex.pm

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Version 22.05

- 428/450 - Copyright © 2008 - 2024 ProcessOne

lager: This dependency is used only when Erlang is older than 22

rebar2: Updated binary to work from Erlang/OTP 22 to 25

rebar3: Updated binary to work from Erlang/OTP 22 to 25

make update : Fix when used with rebar 3.18

COMPILE

mix release : Copy include/ files for ejabberd, deps and otp, in mix.exs

rebar3 release : Fix ERTS path in ejabberdctl

configure.ac : Set default ejabberd version number when not using git

mix.exs : Move some dependencies as optional

mix.exs : No need to use Distillery, Elixir has built-in support for OTP releases (#3788)

tools/make-binaries : New script for building Linux binaries

tools/make-installers : New script for building command line installers

START

New make relive similar to ejabberdctl live without installing

ejabberdctl : Fix some warnings detected by ShellCheck

ejabberdctl : Mention in the help: etop , ping and started / stopped

make rel : Switch to paths: conf/ , database/ , logs/

mix.exs : Add -boot and -boot_var in ejabberdctl instead of adding vm.args

tools/captcha.sh : Fix some warnings detected by ShellCheck

COMMANDS

Accept more types of ejabberdctl commands arguments as JSON-encoded

delete_old_mam_messages_batch : New command with rate limit

delete_old_messages_batch : New command with rate limit

get_room_occupants_number : Don't request the whole MUC room state (#3684, #1964)

get_vcard : Add support for MUC room vCard

oauth_revoke_token : Add support to work with all backends

room_unused_* : Optimize commands in SQL by reusing created_at

rooms_unused_... : Let get_all_rooms handle global argument (#3726)

stop|restart : Terminate ejabberd_sm before everything else to ensure sessions closing (#3641)

subscribe_room_many : New command

TRANSLATIONS

Updated Catalan

Updated French

Updated German

Updated Portuguese

Updated Portuguese (Brazil)

Updated Spanish

WORKFLOWS

CI: Publish CT logs and Cover on failure to an external GH Pages repo

CI: Test shell scripts using ShellCheck (#3738)

Container: New workflow to build and publish containers

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Version 22.05

- 429/450 - Copyright © 2008 - 2024 ProcessOne

Installers: Add job to create draft release

Installers: New workflow to build binary packages

Runtime: New workflow to test compilation, rel, starting and ejabberdctl

Version 21.12

COMMANDS

create_room_with_opts : Fixed when using SQL storage

change_room_option : Add missing fields from config inside mod_muc_admin:change_options

piefxis: Fixed arguments of all commands

MODULES

mod_caps: Don't forget caps on XEP-0198 resumption

mod_conversejs: New module to serve a simple page for Converse.js

mod_http_upload_quota: Avoid max_days race

mod_muc: Support MUC hats (XEP-0317, conversejs/prosody compatible)

mod_muc: Optimize MucSub processing

mod_muc: Fix exception in mucsub {un}subscription events multicast handler

mod_multicast: Improve and optimize multicast routing code

mod_offline: Allow storing non-composing x:events in offline

mod_ping: Send ping from server, not bare user JID

mod_push: Fix handling of MUC/Sub messages

mod_register: New allow_modules option to restrict registration modules

mod_register_web: Handle unknown host gracefully

mod_register_web: Use mod_register configured restrictions

PUBSUB

Add delete_expired_pubsub_items command

Add delete_old_pubsub_items command

Optimize publishing on large nodes (SQL)

Support unlimited number of items

Support max_items=max node configuration

Bump default value for max_items limit from 10 to 1000

Use configured max_items by default

node_flat: Avoid catch-all clauses for RSM

node_flat_sql: Avoid catch-all clauses for RSM

SQL

Use INSERT ... ON CONFLICT in SQL_UPSERT for PostgreSQL >= 9.5

mod_mam export: assign MUC entries to the MUC service

MySQL: Fix typo when creating index

PgSQL: Add SASL auth support, PostgreSQL 14

PgSQL: Add missing SQL migration for table push_session

PgSQL: Fix vcard_search definition in pgsql new schema

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Version 21.12

- 430/450 - Copyright © 2008 - 2024 ProcessOne

OTHER

captcha-ng.sh : "sort -R" command not POSIX, added "shuf" and "cat" as fallback

Make s2s connection table cleanup more robust

Update export/import of scram password to XEP-0227 1.1

Update Jose to 1.11.1 (the last in hex.pm correctly versioned)

Version 21.07

COMPILATION

Add rebar3 3.15.2 binary

Add support for mix to: ./configure --enable-rebar=mix

Improved make rel to work with rebar3 and mix

Add make dev to build a development release with rebar3 or mix

Hex: Add sql/ and vars.config to Hex package files

Hex: Update mix applications list to fix error p1_utils is listed as both...

There are so many targets in Makefile... add make help

Fix extauth.py failure in test suite with Python 3

Added experimental support for GitHub Codespaces

Switch test service from TravisCI to GitHub Actions

COMMANDS:

Display extended error message in ejabberdctl

Remove SMP option from ejabberdctl.cfg, -smp was removed in OTP 21

create_room : After creating room, store in DB if it's persistent

help : Major changes in its usage and output

srg_create : Update to use label parameter instead of name

MODULES:

ejabberd_listener: New send_timeout option

mod_mix: Improvements to update to 0.14.1

mod_muc_room: Don't leak owner JIDs

mod_multicast: Routing for more MUC packets

mod_multicast: Correctly strip only other bcc addresses

mod_mqtt: Allow shared roster group placeholder in mqtt topic

mod_pubsub: Several fixes when using PubSub with RSM

mod_push: Handle MUC/Sub events correctly

mod_shared_roster: Delete cache after performing change to be sure that in cache will be up to date data

mod_shared_roster: Improve database and caching

mod_shared_roster: Reconfigure cache when options change

mod_vcard: Fix invalid_encoding error when using extended plane characters in vcard

mod_vcard: Update econf:vcard() to generate correct vcard_temp record

WebAdmin: New simple pages to view mnesia tables information and content

WebSocket: Fix typos

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Version 21.07

- 431/450 - Copyright © 2008 - 2024 ProcessOne

SQL:

MySQL Backend Patch for scram-sha512

SQLite: When exporting for SQLite, use its specific escape options

SQLite: Minor fixes for new_sql_schema support

mod_privacy: Cast as boolean when exporting privacy_list_data to PostgreSQL

mod_mqtt: Add mqtt_pub table definition for MSSQL

mod_shared_roster: Add missing indexes to sr_group tables in all SQL databases

Version 21.04

API COMMANDS:

add_rosteritem/... : Add argument guards to roster commands

get_user_subscriptions : New command for MUC/Sub

remove_mam_for_user_with_peer : Fix when removing room archive

send_message : Fix bug introduced in ejabberd 21.01

set_vcard : Return modules errors

BUILD AND SETUP:

Allow ejabberd to be compatible as a dependency for an Erlang project using rebar3

CAPTCHA: New question/answer-based CAPTCHA script

--enable-lua : new configure option for luerl instead of --enable-tools

Remove support for HiPE, it was experimental and Erlang/OTP 24 removes it

Update sql_query record to handle the Erlang/OTP 24 compiler reports

Updated dependencies to fix Dialyzer warnings

MISCELLANEOUS:

CAPTCHA: Update FORM_TYPE from captcha to register

LDAP: fix eldap certificate verification

MySQL: Fix for "specified key was too long"

Translations: updated the Esperanto, Greek, and Japanese translations

Websocket: Fix PONG responses

MODULES:

mod_block_strangers : If stanza is type error, allow it passing

mod_caps : Don't request roster when not needed

mod_caps : Skip reading roster in one more case

mod_mam : Remove queryid from MAM fin element

mod_mqtt : When deregistering XMPP account, close its MQTT sessions

mod_muc : Take in account subscriber's affiliation when checking access to moderated room

mod_muc : Use monitors to track online and hard-killed rooms

mod_muc : When occupant is banned, remove his subscriptions too

mod_privacy : Make fetching roster lazy

mod_pubsub : Don't fail on PEP unsubscribe

mod_pubsub : Fix gen_pubsub_node:get_state return value

mod_vcard : Obtain and provide photo type in vCard LDAP

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Version 21.04

- 432/450 - Copyright © 2008 - 2024 ProcessOne

Version 21.01

MISCELLANEOUS CHANGES:

log_rotate_size option: Fix handling of ‘infinity’ value

mod_time : Fix invalid timezone

Auth JWT: New check_decoded_jwt hook runs the default JWT verifier

MUC: Allow non-occupant non-subscribed service admin send private MUC message

MUC: New max_password and max_captcha_whitelist options

OAuth: New oauth_cache_rest_failure_life_time option

PEP: Skip reading pep nodes that we know won’t be requested due to caps

SQL: Add sql script to migrate mysql from old schema to new

SQL: Don’t use REPLACE for upsert when there are “-” fields.

Shared Rosters LDAP: Add multi-domain support (and flexibility)

Sqlite3: Fix dependency version

Stun: Block loopback addresses by default

Several documentation fixes and clarifications

COMMANDS:

decide_room : Use better fallback value for room activity time when skipping room

delete_old_message : Fix when using sqlite spool table

module_install : Make ext_mod compile module with debug_info flags

room_unused_* : Don’t fetch subscribers list

send_message : Don’t include empty in messages

set_room_affiliation : Validate affiliations

RUNNING:

Docker: New Dockerfile and devcontainer.json

New ejabberdctl foreground-quiet

Systemd: Allow for listening on privileged ports

Systemd: Integrate nicely with systemd

TRANSLATIONS:

Moved gettext PO files to a new ejabberd-po repository

Improved several translations: Catalan, Chinese, German, Greek, Indonesian, Norwegian, Portuguese (Brazil), Spanish.

Version 20.12

Add support for SCRAM-SHA-{256,512}-{PLUS} authentication

Don't use same value in cache for user don't exist and wrong password

outgoing_s2s_ipv*_address : New options to set ipv4/ipv6 outbound s2s out interface

s2s_send_packet: this hook now filters outgoing s2s stanzas

start_room: new hook runs when a room process is started

check_decoded_jwt: new hook to check decoded JWT after success authentication

ADMIN

Docker: Fix DB initialization

New sql_odbc_driver option: choose the mssql ODBC driver

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Version 21.01

- 433/450 - Copyright © 2008 - 2024 ProcessOne

Rebar3: Fully supported. Enable with ./configure --with-rebar=/path/to/rebar3

systemd: start ejabberd in foreground

MODULES:

MAM: Make sure that jid used as base in mam xml_compress is bare

MAM: Support for MAM Flipped Pages

MUC: Always show MucSub subscribers nicks

MUC: Don't forget not-persistent rooms in load_permanent_rooms

MUC Admin: Better error reporting

MUC Admin: Fix commands with hibernated rooms

MUC Admin: Many improvements in rooms_unused_list/destroy

MUC Admin: create_room_with_opts Store options only if room starts

Pubsub: Remove 'dag' node plugin documentation

Push: Fix API call return type on error

Push: Support cache config changes on reload

Register: Allow for account-removal-only setup again

Roster: Make roster subscriptions work better with invalid roster state in db

Vcard: Fix vCard search by User when using Mnesia

WebAdmin: Allow vhost admins to view WebAdmin menus

WebAdmin: Don't do double utf-8 conversion on translated strings

WebAdmin: Mark dangerous buttons with CSS

WebSocket: Make websocket send put back pressure on c2s process

Version 20.07

CHANGES IN THIS VERSION

Add support for using unix sockets in listeners.

Make this version compatible with erlang R23

Make room permissions checks more strict for subscribers

Fix problem with muc rooms crashing when using muc logger with some locales

Limit stat calls that logger module issues

Don't throw errors when using user_regexp acl rule and having non-matching host

Fix problem with leaving old data when updating shared rosters

Fix edge case that caused failure of resuming old sessions with stream management.

Fix crash when room that was started with logging enabled was later changed to logging disabled

Increase default shaper limits (this should help with delays for clients that are using jingle)

Fix couple compatibility problems which prevented working on erlang R19

Fix sending presence unavailable when session terminates for clients that only send directed presences (helps with sometimes

not leaving muc rooms on disconnect).

Prevent supervisor errors for sockets that were closed before they were passed to handler modules

Make stun module work better with ipv6 addresses

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Version 20.07

- 434/450 - Copyright © 2008 - 2024 ProcessOne

Version 20.03

CHANGES IN THIS VERSION

Add support of ssl connection when connection to mysql database (configured with sql_ssl: true option)

Experimental support for cockroachdb when configured with postgres connector

Add cache and optimize queries issued by mod_shared_roster , this should greatly improve performance of this module when

used with sql backend

Fix problem with accessing webadmin

Make webadmin work even when url is missing trailing slash

When compiling external modules with ext_mod, use flags that were detected during compilation of ejabberd

Make config changed to ldap options be updated when issued reload_config command

Fix room_empty_destory command

Fix reporting errors in send_stanza command when xml passed to it couldn't be passed correctly

Version 20.02

CHANGES IN THIS VERSION

Fix problems when trying to use string format with unicode values directly in xmpp nodes

Add missing oauth_client table declaration in lite.new.sql

Improve compatibility with CocroachDB

Fix importing of piefxis files that did use scram passwords

Fix importing of piefxis files that had multiple includes in them

Update jiffy dependency

Allow storage of emojis when using mssql database (Thanks to Christoph Scholz)

Make ejabberd_auth_http be able to use auth_opts

Make custom_headers options in http modules correctly override built-in values

Fix return value of reload_config and dump_config commands

Version 20.01

NEW FEATURES

Implement OAUTH authentication in mqtt

Make logging infrastructure use new logger introduced in Erlang (requires OTP22)

New configuration parser/validator

Initial work on being able to use CockroachDB as database backend

Add gc command

Add option to disable using prepared statements on Postgresql

Implement routine for converting password to SCRAM format for all backends not only SQL

Add infrastructure for having module documentation directly in individual module source code

Generate man page automatically

Implement copy feature in mod_carboncopy

FIXES

Make webadmin work with configurable paths

Fix handling of result in xmlrpc module

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Version 20.03

- 435/450 - Copyright © 2008 - 2024 ProcessOne

Make webadmin work even when accessed through not declared domain

Better error reporting in xmlrpc

Limit amount of results returned by disco queries to pubsub nodes

Improve validation of configured JWT keys

Fix race condition in Redis/SQL startup

Fix loading order of third party modules

Fix reloading of ACL rules

Make account removal requests properly route response

Improve handling of malformed inputs in send_message command

Omit push notification if storing message in offline storage failed

Fix crash in stream management when timeout was not set

Version 19.09

ADMIN

The minimum required Erlang/OTP version is now 19.3

Fix API call using OAuth (#2982)

Rename MUC command arguments from Host to Service (#2976)

WEBADMIN

Don't treat 'Host' header as a virtual XMPP host (#2989)

Fix some links to Guide in WebAdmin and add new ones (#3003)

Use select fields to input host in WebAdmin Backup (#3000)

Check account auth provided in WebAdmin is a local host (#3000)

ACME

Improve ACME implementation

Fix IDA support in ACME requests

Fix unicode formatting in ACME module

Log an error message on IDNA failure

Support IDN hostnames in ACME requests

Don't attempt to create ACME directory on ejabberd startup

Don't allow requesting certificates for localhost or IP-like domains

Don't auto request certificate for localhost and IP-like domains

Add listener for ACME challenge in example config

AUTHENTICATION

JWT-only authentication for some users (#3012)

MUC

Apply default role after revoking admin affiliation (#3023)

Custom exit message is not broadcast (#3004)

Revert "Affiliations other than admin and owner cannot invite to members_only rooms" (#2987)

When join new room with password, set pass and password_protected (#2668)

Improve rooms_* commands to accept 'global' as MUC service argument (#2976)

Rename MUC command arguments from Host to Service (#2976)

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Version 19.09

- 436/450 - Copyright © 2008 - 2024 ProcessOne

SQL

Fix transactions for Microsoft SQL Server (#2978)

Spawn SQL connections on demand only

MISC

Add support for XEP-0328: JID Prep

Added gsfonts for captcha

Log Mnesia table type on creation

Replicate Mnesia 'bosh' table when nodes are joined

Fix certificate selection for s2s (#3015)

Provide meaningful error when adding non-local users to shared roster (#3000)

Websocket: don't treat 'Host' header as a virtual XMPP host (#2989)

Fix sm ack related c2s error (#2984)

Don't hide the reason why c2s connection has failed

Unicode support

Correctly handle unicode in log messages

Fix unicode processing in ejabberd.yml

Version 19.08

ADMINISTRATION

Improve ejabberd halting procedure

Process unexpected erlang messages uniformly: logging a warning

mod_configure: Remove modules management

CONFIGURATION

Use new configuration validator

ejabberd_http: Use correct virtual host when consulting trusted_proxies

Fix Elixir modules detection in the configuration file

Make option 'validate_stream' global

Allow multiple definitions of host_config and append_host_config

Introduce option 'captcha_url'

mod_stream_mgmt: Allow flexible timeout format

mod_mqtt: Allow flexible timeout format in session_expiry option

MISC

Fix SQL connections leakage

New authentication method using JWT tokens

extauth: Add 'certauth' command

Improve SQL pool logic

Add and improve type specs

Improve extraction of translated strings

Improve error handling/reporting when loading language translations

Improve hooks validator and fix bugs related to hooks registration

Gracefully close inbound s2s connections

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Version 19.08

- 437/450 - Copyright © 2008 - 2024 ProcessOne

mod_mqtt: Fix usage of TLS

mod_offline: Make count_offline_messages cache work when using mam for storage

mod_privacy: Don't attempt to query 'undefined' active list

mod_privacy: Fix race condition

MUC

Add code for hibernating inactive muc_room processes

Improve handling of unexpected iq in mod_muc_room

Attach mod_muc_room processes to a supervisor

Restore room when receiving message or generic iq for not started room

Distribute routing of MUC messages across all CPU cores

PUBSUB

Fix pending nodes retrieval for SQL backend

Check access_model when publishing PEP

Remove deprecated pubsub plugins

Expose access_model and publish_model in pubsub#metadata

Version 19.05

ADMIN

The minimum required Erlang/OTP version is now 19.1

Provide a suggestion when unknown command, module, option or request handler is detected

Deprecate some listening options: captcha, register, web_admin, http_bind and xmlrpc

Add commands to get Mnesia info: mnesia_info and mnesia_table_info

Fix Register command to respect mod_register's Access option

Fixes in Prosody import: privacy and rooms

Remove TLS options from the example config

Improve request_handlers validator

Fix syntax in example Elixir config file

AUTH

Correctly support cache tags in ejabberd_auth

Don't process failed EXTERNAL authentication by mod_fail2ban

Don't call to mod_register when it's not loaded

Make anonymous auth don't {de}register user when there are other resources

DEVELOPER

Rename listening callback from start/2 to start/3

New hook called when room gets destroyed: room_destroyed

New hooks for tracking mucsub subscriptions changes: muc_subscribed, muc_unsubscribed

Make static hooks analyzer working again

MUC

Service admins are allowed to recreate room even if archive is nonempty

New option user_mucsub_from_muc_archive

Avoid late arrival of get_disco_item response

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Version 19.05

- 438/450 - Copyright © 2008 - 2024 ProcessOne

Handle get_subscribed_rooms call from mod_muc_room pid

Fix room state cleanup from db on change of persistent option change

Make get_subscribed_rooms work even for non-persistant rooms

Allow non-moderator subscribers to get list of room subscribers

OFFLINE

New option bounce_groupchat: make it not bounce mucsub/groupchat messages

New option use_mam_for_storage: fetch data from mam instead of spool table

When applying limit of max msgs in spool check only spool size

Do not store mucsub wrapped messages with no-store hint in offline storage

Always store ActivityMarker messages

Don't issue count/message fetch queries for offline from mam when not needed

Properly handle infinity as max number of message in mam offline storage

Sort messages by stanza_id when using mam storage in mod_offline

Return correct value from count_offline_messages with mam storage option

Make mod_offline put msg ignored by mam in spool when mam storage is on

SQL:

Add SQL schemas for MQTT tables

Report better errors on SQL terms decode failure

Fix PostgreSQL compatibility in mod_offline_sql:remove_old_messages

Fix handling of list arguments on pgsql

Preliminary support for SQL in process_rosteritems command

TESTS

Add tests for user mucsub mam from muc mam

Add tests for offline with mam storage

Add tests for offline use_mam_for_storage

Initial Docker environment to run ejabberd test suite

Test offline:use_mam_for_storage, mam:user_mucsub_from_muc_archive used together

WEBSOCKET

Add WebSockets support to mod_mqtt

Return "Bad request" error when origin in websocket connection doesn't match

Fix RFC6454 violation on websocket connection when validating Origin header

Origin header validation on websocket connection

OTHER MODULES

mod_adhoc: Use xml:lang from stanza when it's missing in element

mod_announce: Add 'sessionid' attribute when required

mod_bosh: Don't put duplicate polling attribute in bosh payload

mod_http_api: Improve argument error messages and log messages

mod_http_upload: Feed whole image to eimp:identify/1

mod_http_upload: Log nicer warning on unknown host

mod_http_upload: Case-insensitive host comparison

mod_mqtt: Support other socket modules

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Version 19.05

- 439/450 - Copyright © 2008 - 2024 ProcessOne

mod_push: Check for payload in encrypted messages

Version 19.02

ADMIN

Fix in configure.ac the Erlang/OTP version: from 17.5 to 19.0

reload_config command: Fix crash when sql_pool_size option is used

reload_config command: Fix crash when SQL is not configured

rooms_empty_destroy command: Several fixes to behave more conservative

Fix serverhost->host parameter name for muc_(un)register_nick API

CONFIGURATION

Allow specifying tag for listener for api_permission purposes

Change default ciphers to intermediate

Define default ciphers/protocol_option in example config

Don't crash on malformed 'modules' section

mod_mam: New option clear_archive_on_room_destroy to prevent archive removal on room destroy

mod_mam: New option access_preferences to restrict who can modify the MAM preferences

mod_muc: New option access_mam to restrict who can modify that room option

mod_offline: New option store_groupchat to allow storing group chat messages

CORE

Add MQTT protocol support

Fix (un)setting of priority

Use OTP application startup infrastructure for starting dependencies

Improve starting order of several dependencies

MAM

mod_mam_mnesia/sql: Improve check for empty archive

disallow room creation if archive not empty and clear_archive_on_room_destroy is false

allow check if archive is empty for or user or room

Additional checks for database failures

MUC

Make sure that room_destroyed is called even when some code throws in terminate

Update muc room state after adding extra access field to it

MUC/Sub: Send mucsub subscriber notification events with from set to room jid

SHARED ROSTER

Don't perform roster push for non-local contacts

Handle versioning result when shared roster group has remote account

Fix SQL queries

MISCELANEA

CAPTCHA: Add no-store hint to CAPTCHA challenge stanzas

HTTP: Reject http_api request with malformed Authentication header

mod_carboncopy: Don't lose carbons on presence change or session resumption

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Version 19.02

- 440/450 - Copyright © 2008 - 2024 ProcessOne

mod_mix: Fix submission-id and channel resource

mod_ping: Fix ping IQ reply/timeout processing (17.x regression)

mod_private: Hardcode item ID for PEP bookmarks

mod_push: Improve notification error handling

PIEFXIS: Fix user export when password is scrammed

Prosody: Improve import of roster items, rooms and attributes

Translations: fixed "make translations"

WebAdmin: Fix support to restart module with new options

Version 18.12

MAM data store compression

Proxy protocol support

MUC Self-Ping optimization (XEP-0410)

Bookmarks conversion (XEP-0411)

•

•

•

•

•

•

•

•

•

•

•

•

Version 18.12

- 441/450 - Copyright © 2008 - 2024 ProcessOne

Roadmap

ejabberd Roadmap

In the Works

Planned

Remove support for Rebar2

ejabberd includes many tweaks to support rebar3 and rebar2. By removing support for rebar2, we could simplify rebar.config

and other files a lot. But more importantly, dependencies would not need to be updated just because other dependencies are

updated: Rebar2 requires exact version numbers to be provided, Rebar3 doesn't require that, and neither does Mix.

Released

2024

24.10

New module mod_s2s_bidi

New module mod_scram_upgrade

IQ permission in privileged entities

PubSub varied fixes

WebAdmin improvements

24.07

Bugfixes and minor improvements

24.06

Reworked the ejabberd Docs and moved to MkDocs+Material

Automatic SQL schema is now enabled by default

Improved the ejabberd WebAdmin with support to use API commands

Support for UNIX Socket Domain in MySQL and PostgreSQL

Support Elixir 1.17 and Erlang/OTP 27.0

24.02

Matrix gateway

RFC 9266 Channel Bindings for TLS 1.3

XEP-0386: Bind 2

XEP-0388: Extensible SASL Profile (SASL2)

XEP-0424: Message Retraction

XEP-0440: SASL Channel-Binding Type Capability

XEP-0474: SASL SCRAM Downgrade Protection

XEP-0480: SASL Upgrade Tasks

Automatic SQL schema creation and update

Commands API versioning

Support Elixir 1.16 and Erlang/OTP 27.0-rc1

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Roadmap

- 442/450 - Copyright © 2008 - 2024 ProcessOne

https://rebar3.org/docs/configuration/dependencies/#dependency-version-handling
https://hexdocs.pm/elixir/Version.html#module-requirements
https://www.process-one.net/blog/ejabberd-24-10/
https://www.process-one.net/blog/ejabberd-24-07/
https://www.process-one.net/blog/ejabberd-24-06/
https://docs.ejabberd.im/
https://www.process-one.net/blog/automatic-schema-update-in-ejabberd/
https://www.process-one.net/blog/ejabberd-24-02/
https://www.rfc-editor.org/rfc/rfc9266
https://xmpp.org/extensions/xep-0386.html
https://xmpp.org/extensions/xep-0388.html
https://xmpp.org/extensions/xep-0424.html
https://xmpp.org/extensions/xep-0440.html
https://xmpp.org/extensions/xep-0474.html
https://xmpp.org/extensions/xep-0480.html
https://www.process-one.net/blog/automatic-schema-update-in-ejabberd/
https://github.com/processone/ejabberd/pull/4118

2023

23.10

Support for XEP-0402: PEP Native Bookmarks

Support for XEP-0421: Occupant Id

MySQL Performance enhancements

23.04

mod_mam support for XEP-0425: Message Moderation

New mod_muc_rtbl : Real-Time Block List for MUC rooms

Binaries use Erlang/OTP 25.3, and changes in containers

23.01

New mod_mqtt_bridge : MQTT bridge

2022

22.10

Improved MIX support

Improved SQL reconnection Mechanism

Better burst traffix handling

22.05

Improved MQTT, MUC and ConverseJS integration

New installers and container image

Support for Erlang/OTP 25

2021

21.12

New mod_conversejs : built-in ConverseJS web client

Support for MUC Hats extension

PubSub, MucSub and Multicast improvements

21.07

Improved database and caching for shared rosters

Broader multicast support for MUC

Improved rebar3 and Elixir support

21.04

Full support for Erlang/OTP 24 and rebar3

New API commands

New CAPTCHA script

21.01

Systemd watchdog support

STUN improvements

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Released

- 443/450 - Copyright © 2008 - 2024 ProcessOne

https://www.process-one.net/blog/ejabberd-23-10/
https://xmpp.org/extensions/xep-0402.html
https://xmpp.org/extensions/xep-0421.html
https://www.process-one.net/blog/ejabberd-23-04/
https://xmpp.org/extensions/xep-0425.html
https://xmppbl.org/
https://www.erlang.org/
https://www.process-one.net/blog/ejabberd-23-01/
https://www.process-one.net/blog/ejabberd-22-10/
https://xmpp.org/extensions/xep-0369.html
https://www.process-one.net/blog/ejabberd-22-05/
https://conversejs.org/
https://www.erlang.org/
https://www.process-one.net/blog/ejabberd-21-12/
https://conversejs.org/
https://xmpp.org/extensions/xep-0317.html
https://xmpp.org/extensions/xep-0033.html
https://www.process-one.net/blog/ejabberd-21-07/
https://www.process-one.net/blog/ejabberd-21-04/
https://www.erlang.org/
https://www.process-one.net/blog/ejabberd-21-01/

2020

20.12

Extended SCRAM-SHA support

Microsoft ODBC Driver support

20.07

Support for Unix Domain Sockets

Erlang/OTP 23 compatibility

20.04

New mod_stun_disco : support XEP-0215 including Audio/Video calls

Improved MS SQL support

20.03

SSL connection to MySQL

Improved performance of mod_shared_roster

20.02

Improved compatibility with CockroachDB

Emoji storage in MSSQL

20.01

OAuth support for ejabberd's MQTT

New OTP 22 event logger

New config parser & validator

2019

19.09

Significant improvements in ACME support: ACME v2

Erlang/OTP 19.3 is required

19.08

New JWT (JSON Web Token) authentication

New configuration validator, yconf

Improved MUC scalability

Removed Riak support

19.05

MQTT over WebSocket

Improved MucSub

Erlang/OTP 19.1 is required

19.02

MQTT Support

MIX improvements

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Released

- 444/450 - Copyright © 2008 - 2024 ProcessOne

https://www.process-one.net/blog/ejabberd-20-12/
https://www.process-one.net/blog/ejabberd-20-07/
https://www.erlang.org/
https://www.process-one.net/blog/ejabberd-20-04/
https://xmpp.org/extensions/xep-0215.html
https://www.process-one.net/blog/ejabberd-20-03/
https://www.process-one.net/blog/ejabberd-20-02/
https://www.process-one.net/blog/ejabberd-20-01/
https://www.process-one.net/blog/ejabberd-19-09/
https://www.process-one.net/blog/ejabberd-19-08/
https://www.process-one.net/blog/ejabberd-19-05/
https://www.process-one.net/blog/ejabberd-19-02/

2018

18.12

XML Compression in message archive storage

PROXY protocol support versions 1 and 2

MUC Self-Ping server optimisation (XEP-0410)

Bookmarks Conversion (XEP-0411)

18.09

Default configuration file simplification

Improved logging

OpenSSL 1.1.1 support

Modular ejabberd core

18.06

Stop ejabberd initialization on invalid/unknown options

Support SASL PLAIN

Drop support of mod_irc

18.04

18.03

New SQL schemas with server_host

18.01

2017

17.12

SNI (Server Name Indication) for inbound connections

Rewrite ejabberd system monitor

Support PubSub v1.14 and OMEMO

17.11

ACME Support

Introduce ‘certfiles’ global option

PubSub improved, and SQL storage

17.09

New mod_avatar

SRV for XMPP over TLS

17.08

XEP-0357: Push Notifications

Modular cluster with cluster_backend

17.07

17.06

New Caching system

Extended Riak support

Certificate manager

17.04

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Released

- 445/450 - Copyright © 2008 - 2024 ProcessOne

https://www.process-one.net/blog/ejabberd-18-12/
https://www.process-one.net/blog/ejabberd-18-09/
https://www.process-one.net/blog/ejabberd-18-06/
https://www.process-one.net/blog/ejabberd-18-04/
https://www.process-one.net/blog/ejabberd-18-03/
https://www.process-one.net/blog/ejabberd-18-01/
https://www.process-one.net/blog/ejabberd-17-12/
https://www.process-one.net/blog/ejabberd-17-11/
https://www.process-one.net/blog/ejabberd-17-09/
https://www.process-one.net/blog/ejabberd-17-08/
https://www.process-one.net/blog/ejabberd-17-07/
https://www.process-one.net/blog/ejabberd-17-06/
https://www.process-one.net/blog/ejabberd-17-04/

17.03

Modular code

Dynamic configuration reload

mod_blockstrangers for spam protection

S2S dialback

17.01

PostgreSQL SSL support

2016

16.12

New BOSH module

New Commands API permissions framework

XMPP packet handling using dedicated xmpp erlang library

New ejaberd/mix Docker container

16.09

Support for Elixir configuration file

XEP-0355 Namespace Delegation

XEP-0356 Privileged Entity

16.08

New MUC/Sub

Improved Elixir support

Major clean-up and improvement on OAuth ReST API

16.06

New ACL (Access Control List) infrastructure

16.04

16.03

Experimental support for MIX (Mediated Information eXchange)

Erlang/OTP 17.5 required

16.02

XEP-0013 Flexible Offline Message Retrieval

Improved Message Archive Management (MAM)

Published ejabberd on hex.pm

Faster and more memory efficient XML parsing and TLS encryption.

Stream compression after SASL

Migration script from Prosody

16.01

2015

15.11

Improved join_cluster and leave_cluster

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Released

- 446/450 - Copyright © 2008 - 2024 ProcessOne

https://www.process-one.net/blog/ejabberd-17-03/
https://www.process-one.net/blog/ejabberd-17-01/
https://www.process-one.net/blog/ejabberd-16-12/
https://www.process-one.net/blog/ejabberd-development-with-docker/
https://www.process-one.net/blog/ejabberd-16-09/
https://www.process-one.net/blog/ejabberd-16-08/
https://www.process-one.net/blog/xmpp-mobile-groupchat-introducing-muc-subscription/
https://www.process-one.net/blog/ejabberd-16-06/
https://www.process-one.net/blog/ejabberd-16-04/
https://www.process-one.net/blog/ejabberd-16-03/
https://www.process-one.net/blog/experimental-mix-support-for-group-conversations-added-to-ejabberd/
https://www.process-one.net/blog/ejabberd-16-02/
https://hex.pm/packages/ejabberd
https://www.process-one.net/blog/ejabberd-16-01/
https://www.process-one.net/blog/ejabberd-15-11/

15.10

New mod_http_upload with support for XEP-0363 HTTP File Upload

Added support for Grapherl

15.09

OAuth 2.0 delegation framework

Preliminary OAuth and HTTP based ejabberd API

X-AUTH2 authentication mechanism

15.07

15.06

New mod_mam with XEP-0313 Message Archive Management

Configuration checking on launch

Added Windows 7/8 installers, RPM and DEB packages

Document protocol support and version inside each module

15.04

Added mod_admin_extra and mod_muc_admin

Added XEP-0033 Extended Stanza Addressing

Support to embed ejabberd in an Elixir app

Erlang/OTP R16B03-1 is required

15.03

Added support for WebSocket

Customizable session backends

SCRAM support for SQL authentication backend

Documentation was converted from LaTeX to Markdown and published in docs.ejabberd.im/

15.02

Added Elixir support

New command to reload configuration withour restart

Bug tracker moves from JIRA to GitHub Issues

Revamped ejabberd website, new logo, new development process and bugtracking migrated from JIRA to GitHub

2014

14.12

New mod_client_state with XEP-0352: Client State Indication

New mod_fail2ban

14.07

SIP Outbound (RFC 5626)

14.05

RFC-3261 SIP proxy/registrar

RFC-5766 TURN: Traversal Using Relays around NAT

XEP-0198 Stream Management

XEP-0321 Remote Roster Management

Several improvements regarding encryption

New Bash completion script for ejabberdctl

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Released

- 447/450 - Copyright © 2008 - 2024 ProcessOne

https://www.process-one.net/blog/ejabberd-15-10/
https://xmpp.org/extensions/xep-0363.html
https://www.process-one.net/blog/grapherl-google-summer-of-code-metrics-for-ejabberd/
https://www.process-one.net/blog/ejabberd-15-09/
https://www.process-one.net/blog/ejabberd-15-07/
https://www.process-one.net/blog/ejabberd-15-06/
https://xmpp.org/extensions/xep-0313.html
https://www.process-one.net/blog/ejabberd-15-04/
https://www.process-one.net/blog/embedding-ejabberd-into-an-elixir-phoenix-web-application/
https://www.process-one.net/blog/ejabberd-15-03/
https://www.process-one.net/blog/ejabberd-new-documentation-site-a-community-effort/
https://docs.ejabberd.im/
https://www.process-one.net/blog/ejabberd-community-15-02/
https://www.process-one.net/blog/ejabberd-joins-the-elixir-revolution/
https://www.process-one.net/blog/revamped-ejabberd-im-website-logo/
https://www.process-one.net/blog/revamped-ejabberd-im-website-logo/
https://www.process-one.net/blog/ejabberd-community-14-12/
https://www.process-one.net/blog/ejabberd-community-14-07/
https://www.process-one.net/blog/ejabberd-community-14-05/

2013

13.12

New OpenSSL ciphers option in c2s, s2s and s2s_out

ejabberd_xmlrpc included

13.10

ejabberd configuration file in YAML format

Log files are created using Lager

Rebar2 is used to manage dependencies

Erlang/OTP R15 is required

13.03-beta1 (announcement)

Binarize and indent code

New versioning scheme

2012

2.1.11

Added ODBC support for several modules

2011

2.1.10

2.1.9

New SASL SCRAM-SHA-1 authentication mechanism

2010

2.1.6

mod_register: New captcha_protected option to require CAPTCHA

Support PostgreSQL 9.0

October: the source code repository and the bug tracker were finally moved to GitHub

2.1.5

2.1.4

Full support for XEP-0115 Entity Capabilities v1.5

2.1.2

2009

2.1.1

2.1.0

LDAPS support

STUN server

New XEPs supported: XMPP Ping, Roster Versioning, Import/Export Format

Erlang/OTP R13 is supported

2.0.5 (announcement)

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Released

- 448/450 - Copyright © 2008 - 2024 ProcessOne

https://www.process-one.net/blog/ejabberd-community-13-12/
https://www.process-one.net/blog/ejabberd-community-13-10/
https://www.process-one.net/blog/switch-ejabberd-configuration-to-yaml/
https://www.process-one.net/blog/ejabberd-community-server-13-03-is-launched-in-beta/
http://lists.jabber.ru/pipermail/ejabberd/2013-March/007974.html
https://www.process-one.net/blog/ann-bugfix-release-ejabberd-2-1-11/
https://www.process-one.net/blog/new_releases_ejabberd_2110_and_exmpp_099/
https://www.process-one.net/blog/new_releases_ejabberd_219_300-alpha-4_and_exmpp_098/
https://www.process-one.net/blog/ejabberd_216_release/
https://www.process-one.net/blog/ejabberd_215_and_exmpp_095_bugfix_releases/
https://www.process-one.net/blog/ejabberd_214_and_exmpp_094_bugfix_releases/
https://www.process-one.net/blog/ann_ejabberd_212_bugfix_release/
https://www.process-one.net/blog/ann_ejabberd_211_bugfix_release/
https://www.process-one.net/blog/ejabberd_210_finally_released/
https://www.process-one.net/blog/ejabberd_migration_kit/
https://web.archive.org/web/20131101194253/https://www.process-one.net/en/ejabberd/release_notes/release_note_ejabberd_2.0.5/
https://www.process-one.net/blog/ejabberd_205_has_been_released/

2.0.4 (announcement)

2.0.3 (announcement)

2008

2.0.2 (announcement)

2.0.1 (announcement)

2.0.0 (announcement)

New front-end and back-end cluster architecture

Complete rewrite of the PubSub module

New Proxy65 file transfer proxy

BOSH support

Many more improvements

2007

1.1.4

1.1.3

2006

1.1.2 (announcement)

LDAP improvements

Microsoft SQL supported

New Windows installer

1.1.1 (announcement)

Erlang/OTP R9C-2 required

1.1.0 (announcement)

JEP-0050: Ad-Hoc Commands

JEP-0138: Stream Compression

JEP-0175: SASL anonymous

Native MySQL support

MUC improvement: Chatroom logging

2005

1.0.0 (announcement)

S2S encryption: STARTTLS + SASL_EXTERNAL and STARTTLS + Dialback

Different certificates can be defined for each virtual host.

Support for vCard storage in ODBC

New tool to convert Mnesia to ODBC

Native PostgreSQL support

0.9.8 (announcement)

Enhanced virtual hosting

Enhanced PubSub

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Released

- 449/450 - Copyright © 2008 - 2024 ProcessOne

https://web.archive.org/web/20131101194253/https://www.process-one.net/en/ejabberd/release_notes/release_note_ejabberd_2.0.4/
https://www.process-one.net/blog/ejabberd_204_has_been_released/
https://web.archive.org/web/20131101194253/https://www.process-one.net/en/ejabberd/release_notes/release_note_ejabberd_2.0.3/
https://www.process-one.net/blog/ejabberd_203_has_been_released/
https://web.archive.org/web/20131101194253/https://www.process-one.net/en/ejabberd/release_notes/release_note_ejabberd_202/
https://www.process-one.net/blog/ejabberd_202/
http://www.process-one.net/en/ejabberd/release_notes/release_note_ejabberd_201
https://www.process-one.net/blog/ejabberd_201/
https://web.archive.org/web/20131101194253/https://www.process-one.net/en/ejabberd/release_notes/release_note_ejabberd_200/
https://www.process-one.net/blog/ejabberd_200/
https://www.process-one.net/blog/ejabberd_114_released/
https://web.archive.org/web/20220124230040/http://lists.jabber.ru/pipermail/ejabberd/2007-February/002440.html
https://web.archive.org/web/20061206003138/http://www.process-one.net/en/projects/ejabberd/releases/release_1.1.2.html
https://web.archive.org/web/20220124221010/http://lists.jabber.ru/pipermail/ejabberd/2006-September/002209.html
https://web.archive.org/web/20060617072935/http://ejabberd.jabber.ru/ejabberd-1.1.1
https://web.archive.org/web/20220127211621/http://lists.jabber.ru/pipermail/ejabberd/2006-April/001751.html
https://web.archive.org/web/20060624222148/http://www.process-one.net/en/projects/ejabberd/releases/release_1.1.0.html
https://web.archive.org/web/20220127203655/http://lists.jabber.ru/pipermail/ejabberd/2006-April/001726.html
https://web.archive.org/web/20060613001514/http://www.process-one.net/en/projects/ejabberd/releases/release_1.0.0.html
https://web.archive.org/web/20220120011006/http://lists.jabber.ru/pipermail/ejabberd/2005-December/001481.html
https://web.archive.org/web/20060706014203/http://www.process-one.net/en/projects/ejabberd/releases/release_0.9.8.html
https://web.archive.org/web/20220118153712/http://lists.jabber.ru/pipermail/ejabberd/2005-August/001278.html

0.9.1 (announcement)

0.9 (announcement)

Added support for virtual hosts

New mod_shared_roster

Added PostgreSQL support

February: source code moved from SVN to Git, and the bug tracker from Bugzilla to JIRA

Beginning of 2005, source code moved from JabberStudio CVS to ProcessOne SVN

2004

October: website moved from JabberStudio to ejabberd.jabber.ru, and the bug tracker to Jabber.ru’s Bugzilla

0.7.5

Support for STARTTLS with C2S connections

Support for authentification via external script

Added module which implement JUD and vCard services using LDAP

Improvements in web-based administration interface (user creation/removal, roster and offline queue management)

Support for message expiration (JEP-0023)

Support for HTTPS in web interface

0.7

Support for LDAP authentification

Support for HTTP Polling

Support for web-based administration interface

Added command-line administration utility "ejabberdctl"

Support for history management in MUC rooms

2003

16th November, 0.5

First release

January, initial documentation in LaTeX: Ejabberd Installation and Operation Guide

2002

18th November, first commit to CVS

16th November, first erlang modules written

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Released

- 450/450 - Copyright © 2008 - 2024 ProcessOne

https://web.archive.org/web/20060706014255/http://www.process-one.net/en/projects/ejabberd/releases/release_0.9.1.html
https://web.archive.org/web/20220116215413/http://lists.jabber.ru/pipermail/ejabberd/2005-May/001101.html
https://web.archive.org/web/20060613001412/http://www.process-one.net/en/projects/ejabberd/releases/release_0.9.html
https://web.archive.org/web/20220125230349/http://lists.jabber.ru/pipermail/ejabberd/2005-April/000987.html
https://www.process-one.net/blog/ejabberd_bug_tracker_open_for_registration/
https://web.archive.org/web/20050730000817/http://ejabberd.jabber.ru/
https://web.archive.org/web/20220128023940/http://lists.jabber.ru/pipermail/ejabberd/2004-October/000337.html
https://web.archive.org/web/20220122152308/http://lists.jabber.ru/pipermail/ejabberd/2004-July/000129.html
https://web.archive.org/web/20211208160408/http://lists.jabber.ru/pipermail/ejabberd/2003-November/000052.html
https://web.archive.org/web/20030409163941/http://ejabberd.jabberstudio.org/guide.html
https://github.com/processone/ejabberd/commit/e0b348319ad6902ffcbb663e81c29b229c551b61

	ejabberd Docs
	Overview
	Getting started 👋
	Meet ejabberd, your superpowerful messaging framework
	Overview
	Options to use ejabberd
	Architecture of an ejabberd service
	Deploying and managing an ejabberd service
	ejabberd is more than XMPP
	Helping us in the development process

	Features
	Key Features
	Additional Features

	Frequently Asked Questions
	Development process
	Why is there a commercial version of ejabberd?
	Does ProcessOne voluntarily hold some code in ejabberd community to push toward the business edition?

	Performance
	Is ejabberd the most scalable version?
	What are the tips to optimize performance?

	Erlang support
	Is ejabberd conforming to the best Erlang practices?

	ejabberd Use Cases
	ejabberd
	Mobile messaging
	Gaming
	Voice and video messaging
	Internet of Things
	Telecom / Hosting
	Customer chat / CRM
	Media
	Social media
	Sport
	Education
	Push alerts
	Dating
	Community sites

	XMPP Use Cases
	Realtime web

	GNU GENERAL PUBLIC LICENSE
	Preamble
	TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
	How to Apply These Terms to Your New Programs

	Readme
	Installation
	Documentation
	Development
	Community
	License

	Install
	Installation
	Self-hosted
	Container Images
	Binary Installers
	Linux and *BSD
	MacOS
	Source Code

	On-Premise (eBE)
	Cloud Hosting (Fluux)

	Install ejabberd using a Container Image
	ejabberd Container Image
	ecs Container Image

	ejabberd Container Image
	Start ejabberd
	With default configuration
	Start with Erlang console attached
	Start with your configuration and database

	Next steps
	Register the administrator account
	Check ejabberd log files
	Inspect the container files
	Open ejabberd debug console
	CAPTCHA

	Advanced Container Configuration
	Ports
	Volumes
	Commands on start
	Clustering

	Build a Container Image
	Direct build
	Podman build
	Package build for arm64

	Composer Examples
	Minimal Example
	Customized Example
	Clustering Example

	ecs Container Image
	Start ejabberd
	With default configuration
	Start with Erlang console attached
	Start with your configuration and database

	Next steps
	Register the administrator account
	Check ejabberd log files
	Inspect the container files
	Open ejabberd debug console
	CAPTCHA
	Use ejabberdapi

	Advanced container configuration
	Ports
	Volumes
	Commands on start
	Clustering
	Change Mnesia Node Name
	Setup Old Container
	Change Mnesia Node
	Create Temporary Container

	Generating ejabberd release
	Configuration

	Composer Examples
	Minimal Example
	Customized Example
	Clustering Example

	Binary Installers
	Linux RUN Installer
	Linux DEB and RPM Installers

	Operating System Packages
	Install ejabberd from Source Code
	Requirements
	Download
	Compile
	./configure
	make

	Install
	System Install
	Production Release
	Development Release

	Specific notes
	asdf
	BSD
	macOS
	rebar with old Erlang

	Start

	Install ejabberd on macOS
	Homebrew

	Installing ejabberd development environment on OSX
	Before you start
	Homebrew
	Installation
	Running ejabberd
	Registering a user
	Adium
	Command line

	Domains
	Get chatting

	Next Steps
	Starting ejabberd
	Autostart on Linux
	Administration Account
	Configuring ejabberd

	Configure
	Configuring ejabberd
	File format
	Yaml File Format
	Reload at Runtime
	Legacy Configuration File
	Include Additional Files
	Macros in Configuration File

	Basic Configuration
	XMPP Domains
	Host Names
	Virtual Hosting

	Logging
	Default Language
	CAPTCHA
	ACME
	Setting up ACME
	ACME implementation details

	Access Rights
	ACL
	Access Rules
	Shaper Rules
	Limiting Opened Sessions
	Connections to Remote Server

	Shapers

	Authentication
	Supported Methods
	General Options
	Internal
	External Script
	Anonymous Login and SASL Anonymous
	PAM Authentication
	JWT Authentication
	SCRAM
	Internal storage
	SQL Database
	Foreign authentication

	Database Configuration
	Supported storages
	Virtual Hosting
	Default database
	Database Schema
	Default and New Schemas
	SQL Options
	SQL with SSL Connection
	SQL Authentication
	SQL Storage
	Microsoft SQL Server
	Redis

	LDAP Configuration
	Supported storages
	LDAP
	LDAP Connection
	LDAP Authentication
	LDAP Examples
	Common example
	Active Directory

	Shared Roster in LDAP
	Filters
	Control parameters
	Retrieving the roster
	Multi-Domain
	Configuration examples
	Flat DIT
	Deep DIT

	vCard in LDAP

	Listen Modules
	Listen Options
	ejabberd_c2s
	ejabberd_s2s_in
	ejabberd_service
	mod_mqtt
	ejabberd_stun
	ejabberd_sip
	ejabberd_http
	ejabberd_http_ws
	WebSocket Config
	WebSocket Discovery
	Testing WebSocket

	ejabberd_xmlrpc

	Examples

	Listen Options
	access
	allow_unencrypted_sasl2
	backlog
	cafile
	certfile
	check_from
	ciphers
	custom_headers
	default_host
	dhfile
	global_routes
	hosts
	max_fsm_queue
	max_payload_size
	max_stanza_size
	password
	port
	protocol_options
	request_handlers
	send_timeout
	shaper
	shaper_rule
	starttls
	starttls_required
	tag
	timeout
	tls
	tls_compression
	tls_verify
	use_proxy_protocol
	zlib

	Top-Level Options
	access_rules
	acl
	acme
	allow_contrib_modules
	allow_multiple_connections
	anonymous_protocol
	api_permissions
	append_host_config
	auth_cache_life_time
	auth_cache_missed
	auth_cache_size
	auth_external_user_exists_check
	auth_method
	auth_opts
	auth_password_format
	auth_scram_hash
	auth_use_cache
	c2s_cafile
	c2s_ciphers
	c2s_dhfile
	c2s_protocol_options
	c2s_tls_compression
	ca_file
	cache_life_time
	cache_missed
	cache_size
	captcha_cmd
	captcha_host
	captcha_limit
	captcha_url
	certfiles
	cluster_backend
	cluster_nodes
	default_db
	default_ram_db
	define_macro
	disable_sasl_mechanisms
	disable_sasl_scram_downgrade_protection
	domain_balancing
	ext_api_headers
	ext_api_http_pool_size
	ext_api_path_oauth
	ext_api_url
	extauth_pool_name
	extauth_pool_size
	extauth_program
	fqdn
	hide_sensitive_log_data
	host_config
	hosts
	include_config_file
	install_contrib_modules
	jwt_auth_only_rule
	jwt_jid_field
	jwt_key
	language
	ldap_backups
	ldap_base
	ldap_deref_aliases
	ldap_dn_filter
	ldap_encrypt
	ldap_filter
	ldap_password
	ldap_port
	ldap_rootdn
	ldap_servers
	ldap_tls_cacertfile
	ldap_tls_certfile
	ldap_tls_depth
	ldap_tls_verify
	ldap_uids
	listen
	log_burst_limit_count
	log_burst_limit_window_time
	log_modules_fully
	log_rotate_count
	log_rotate_size
	loglevel
	max_fsm_queue
	modules
	negotiation_timeout
	net_ticktime
	new_sql_schema
	oauth_access
	oauth_cache_life_time
	oauth_cache_missed
	oauth_cache_rest_failure_life_time
	oauth_cache_size
	oauth_client_id_check
	oauth_db_type
	oauth_expire
	oauth_use_cache
	oom_killer
	oom_queue
	oom_watermark
	outgoing_s2s_families
	outgoing_s2s_ipv4_address
	outgoing_s2s_ipv6_address
	outgoing_s2s_port
	outgoing_s2s_timeout
	pam_service
	pam_userinfotype
	pgsql_users_number_estimate
	queue_dir
	queue_type
	redis_connect_timeout
	redis_db
	redis_password
	redis_pool_size
	redis_port
	redis_queue_type
	redis_server
	registration_timeout
	resource_conflict
	router_cache_life_time
	router_cache_missed
	router_cache_size
	router_db_type
	router_use_cache
	rpc_timeout
	s2s_access
	s2s_cafile
	s2s_ciphers
	s2s_dhfile
	s2s_dns_retries
	s2s_dns_timeout
	s2s_max_retry_delay
	s2s_protocol_options
	s2s_queue_type
	s2s_timeout
	s2s_tls_compression
	s2s_use_starttls
	s2s_zlib
	shaper
	shaper_rules
	sm_cache_life_time
	sm_cache_missed
	sm_cache_size
	sm_db_type
	sm_use_cache
	sql_connect_timeout
	sql_database
	sql_flags
	sql_keepalive_interval
	sql_odbc_driver
	sql_password
	sql_pool_size
	sql_port
	sql_prepared_statements
	sql_query_timeout
	sql_queue_type
	sql_server
	sql_ssl
	sql_ssl_cafile
	sql_ssl_certfile
	sql_ssl_verify
	sql_start_interval
	sql_type
	sql_username
	trusted_proxies
	update_sql_schema
	update_sql_schema_timeout
	use_cache
	validate_stream
	version
	websocket_origin
	websocket_ping_interval
	websocket_timeout

	Modules Options
	mod_adhoc
	mod_admin_extra
	mod_admin_update_sql
	mod_announce
	mod_avatar
	mod_block_strangers
	mod_blocking
	mod_bosh
	mod_caps
	mod_carboncopy
	mod_client_state
	mod_configure
	mod_conversejs
	mod_delegation
	mod_disco
	mod_fail2ban
	mod_host_meta
	mod_http_api
	mod_http_fileserver
	mod_http_upload
	mod_http_upload_quota
	mod_jidprep
	mod_last
	mod_legacy_auth
	mod_mam
	mod_matrix_gw
	mod_metrics
	mod_mix
	mod_mix_pam
	mod_mqtt
	mod_mqtt_bridge
	mod_muc
	mod_muc_admin
	mod_muc_log
	mod_muc_occupantid
	mod_muc_rtbl
	mod_multicast
	mod_offline
	mod_ping
	mod_pres_counter
	mod_privacy
	mod_private
	mod_privilege 🟤
	mod_proxy65
	mod_pubsub
	mod_push
	mod_push_keepalive
	mod_register
	mod_register_web
	mod_roster
	mod_s2s_bidi 🟤
	mod_s2s_dialback
	mod_scram_upgrade 🟤
	mod_service_log
	mod_shared_roster
	mod_shared_roster_ldap
	mod_sic
	mod_sip
	mod_stats
	mod_stream_mgmt
	mod_stun_disco
	mod_time
	mod_vcard
	mod_vcard_xupdate
	mod_version

	Advanced
	Advanced ejabberd Administration
	Architecture
	Overview
	Typical large scale deployments
	Virtual hosting

	Clustering
	Purpose
	How it Works
	Router
	Local Router
	Session Manager
	s2s Manager

	Before you get started
	Clustering Setup
	Adding a node to a cluster
	Removing a node from the cluster
	Restarting cluster nodes

	Service Load-Balancing
	Domain Load-Balancing Algorithm
	Load-Balancing Buckets

	Managing an ejabberd server
	ejabberdctl
	Bash Completion
	ejabberdctl Commands

	ejabberd Commands
	Erlang Runtime System
	Web Admin
	Basic Setup
	Additional Security
	Vhost permissions
	Commands permissions
	Developer: Add Pages
	Developer: Use Commands

	Ad-hoc Commands
	Change Computer Hostname

	Add More Modules
	ejabberd-modules
	ejabberd-contrib
	Modules Management
	List Modules
	Install Module
	Uninstall Module
	Dependencies in container

	Securing ejabberd
	Firewall Settings
	epmd
	Erlang Cookie
	Erlang Node Name
	Securing Sensitive Files

	Troubleshooting ejabberd
	Log Files
	Debug Console
	Too many db tables

	Upgrade Procedure for ejabberd
	Generic upgrade process
	Soft upgrade process
	Module update process
	Note on database schema upgrade
	Specific version upgrade notes

	ejabberd and XMPP tutorials
	Text tutorials
	Architecture
	XMPP on mobile devices (smartphones)
	XMPP for the Web
	Multi-User Chat
	Developer tools and techniques
	ejabberd and XMPP server-side implementation

	Getting started with MIX
	Configuration
	Usage
	Creating a MIX Channel
	Joining a MIX Channel
	Setting a nick
	Sending and receiving messages
	Querying participants list

	Caveats
	Conclusion

	MQTT Support
	Benefits
	Basic Setup
	Test Setup
	Access Control
	Encryption
	Self-Signed Certificate
	Configure Encryption
	Test Encryption

	WebSocket
	Setup WS
	Test WS
	Encrypted WS

	Setting vCards / Avatars for MUC rooms
	How does it work?
	Setting up MUC vCard
	Retrieving a MUC room vCard

	Using ejabberd with MySQL
	ejabberd installation
	MySQL installation
	Requirements
	MySQL on Linux
	Amazon RDS compliance
	MySQL on OSX with Homebrew
	MySQL on Windows with Bash

	MySQL database creation
	Create ejabberd user and database
	Decide which SQL schema to use
	Use automatic schema update
	Load database schema manually

	ejabberd configuration
	Setup MySQL connection
	Authentication use MySQL
	Modules use MySQL

	Migrating data from internal to MySQL
	Converting database from default to new schema
	Getting further

	Development
	ejabberd for Developers
	Getting started
	Source code
	Development Environment

	Customizing ejabberd

	ejabberd Developer Guide
	Introduction
	Coding style convention
	Start-up procedure
	Core
	Network Layer
	XMPP Stream Layer
	ejabberd_c2s, ejabberd_s2s_in and ejabberd_service

	Routing Layer
	ejabberd_router
	ejabberd_local
	ejabberd_sm
	route-registered processes
	ejabberd_s2s and ejabberd_s2s_out

	Adding new functionality
	IQ Handlers
	Hooks

	Modules
	gen_mod behaviour
	Stateful modules
	gen_mod module

	Configuration
	Validation
	Fetching options

	Using XMPP library
	xmpp module
	XMPP codec
	Getting sub-elements
	Setting and removing sub-elements
	from and to
	Metadata
	Text elements
	Generating errors
	Namespaces

	jid module

	External Authentication
	Extauth Interface
	Perl Example Script
	Python Example Script

	PubSub overview
	History
	Implementation
	Nodetree plugins
	Node plugins
	NODE_FLAT
	node_hometree
	node_pep
	node_dag

	Plugin design
	Create Node
	Delete Node
	Subscribe
	Unsubscribe
	Publish item
	Delete item
	Purge Node
	Get item

	Available backends
	Customisation
	Clustering

	Roster versioning
	Example

	ejabberd Stanza Routing
	Message Routing

	ejabberd SQL Database Schema
	Authentication
	Table users

	Rosters
	Table rosterusers
	Table rostergroups
	Table sr_group
	Table sr_user

	Messages
	Table spool
	Table privacy_list_data

	Multiuser Chat Rooms
	Table muc_room
	Table muc_registered
	Table room_history
	Table muc_online_room
	Table muc_online_users
	Table muc_room_subscribers

	VCard
	Table vcard
	Table vcard_search

	Others
	Table last
	Table caps_features
	Table private_storage

	External authentication
	Main contribution repository
	ejabberd API libraries
	Old / obsolete contributions
	Contributing to ejabberd
	Code of Conduct
	Questions, Bugs, Features
	Got a Question or Problem?
	Found an Issue or Bug?
	Missing a Feature?

	Issue Submission Guidelines
	Pull Request Submission Guidelines
	Signing the Contributor License Agreement (CLA)

	Contributor Covenant Code of Conduct
	Our Pledge
	Our Standards
	Guidelines for Respectful and Efficient Communication on Issues, Discussions, and PRs
	Our Responsibilities
	Scope
	Enforcement
	Attribution

	Contributors
	Understanding ejabberd and its dependencies
	ejabberd dependencies
	Required dependencies
	Optional dependencies

	ejabberd contributions

	ejabberd Docs Source Code
	Installation
	pip
	Debian

	Building
	Testing
	Updating content
	Markdown Shorthands

	ejabberd for Elixir Developers
	Building ejabberd with Mix
	Embed ejabberd in an elixir app
	Call elixir code in erlang code
	Use elixir library in erlang code
	Write ejabberd module in elixir
	Elixir module in ejabberd-contrib
	Record definition
	mod_qrcode.ex
	mod_webadmin_pid.ex

	The ejabberd Developer Livebook
	Setup ejabberd inside livebook
	Execute some Erlang code
	Execute some Elixir code
	Run API commands
	Draw process structure
	Connect Livebook to your ejabberd node
	Get erlang node name
	Setup ejabberd node
	Get erlang cookie
	Connect this livebook to your ejabberd node
	Test the connection

	Stop ejabberd

	Internationalization and Localization
	ejabberd Modules Development
	Introduction
	What is a module ?
	How to write a custom module ?
	The gen_mod behaviour
	mod_hello_world
	Add module to ejabberd-modules
	Your module in ejabberd-modules with ejabberd container
	Next steps

	MucSub: Multi-User Chat Subscriptions
	Motivation
	General principle
	Discovering support
	Discovering support on MUC service
	Discovering support on a specific MUC

	Option MUC room support for subscriptions
	Subscriber role
	Subscribing to MUC/Sub events
	Unsubscribing from a MUC Room
	Subscriber actions
	Sending a message
	Joining a MUC Room

	Receiving events
	Getting List of subscribed rooms
	Getting list of subscribers of a room
	Compliance with existing MUC clients
	Synchronization of MUC messages: Leveraging MAM support
	Push support compliance

	ejabberd Test Suites
	XMPP end-to-end protocol test suite
	Running ejabberd test suite
	Test suite conventions

	Dependency tests
	Build test status

	Developing ejabberd with VSCode
	Visual Studio Code
	VSCodium
	Coder's code-server
	GitHub Codespaces
	Basic Usage

	Getting Started with XMPPFramework
	Introduction
	XMPPFramework

	API
	ejabberd Rest API
	Introduction
	Understanding ejabberd "commands"
	The role of ejabberd API
	Learning the basics
	Next steps

	API Reference
	abort_delete_old_mam_messages
	abort_delete_old_messages
	add_rosteritem
	backup
	ban_account
	bookmarks_to_pep
	change_password
	change_room_option
	check_account
	check_password
	check_password_hash
	clear_cache
	compile
	connected_users
	connected_users_info
	connected_users_number
	connected_users_vhost
	convert_to_scram
	convert_to_yaml
	create_room
	create_room_with_opts
	create_rooms_file
	delete_expired_messages
	delete_expired_pubsub_items
	delete_mnesia
	delete_old_mam_messages
	delete_old_mam_messages_batch
	delete_old_mam_messages_status
	delete_old_messages
	delete_old_messages_batch
	delete_old_messages_status
	delete_old_pubsub_items
	delete_old_push_sessions
	delete_old_users
	delete_old_users_vhost
	delete_rosteritem
	destroy_room
	destroy_rooms_file
	dump
	dump_config
	dump_table
	export2sql
	export_piefxis
	export_piefxis_host
	gc
	gen_html_doc_for_commands
	gen_markdown_doc_for_commands
	gen_markdown_doc_for_tags
	get_ban_details
	get_cookie
	get_last
	get_loglevel
	get_mam_count 🟤
	get_master
	get_offline_count
	get_presence
	get_room_affiliation
	get_room_affiliations
	get_room_history
	get_room_occupants
	get_room_occupants_number
	get_room_options
	get_roster
	get_roster_count
	get_subscribers
	get_user_rooms
	get_user_subscriptions
	get_vcard
	get_vcard2
	get_vcard2_multi
	halt
	help
	import_dir
	import_file
	import_piefxis
	import_prosody
	incoming_s2s_number
	install_fallback
	join_cluster
	join_cluster_here
	kick_session
	kick_user
	leave_cluster
	list_certificates
	list_cluster
	list_cluster_detailed
	load
	man
	mnesia_change_nodename
	mnesia_info
	mnesia_info_ctl
	mnesia_table_info
	module_check
	module_install
	module_uninstall
	module_upgrade
	modules_available
	modules_installed
	modules_update_specs
	muc_online_rooms
	muc_online_rooms_by_regex
	muc_register_nick
	muc_unregister_nick
	num_resources
	oauth_add_client_implicit
	oauth_add_client_password
	oauth_issue_token
	oauth_list_tokens
	oauth_remove_client
	oauth_revoke_token
	outgoing_s2s_number
	print_sql_schema
	privacy_set
	private_get
	private_set
	process_rosteritems
	push_alltoall
	push_roster
	push_roster_all
	register
	registered_users
	registered_vhosts
	reload_config
	remove_mam_for_user
	remove_mam_for_user_with_peer
	reopen_log
	request_certificate
	resource_num
	restart
	restart_module
	restore
	revoke_certificate
	rooms_empty_destroy
	rooms_empty_list
	rooms_unused_destroy
	rooms_unused_list
	rotate_log
	send_direct_invitation
	send_message
	send_stanza
	send_stanza_c2s
	set_last
	set_loglevel
	set_master
	set_nickname
	set_presence
	set_room_affiliation
	set_vcard
	set_vcard2
	set_vcard2_multi
	srg_add
	srg_add_displayed
	srg_create
	srg_del_displayed
	srg_delete
	srg_get_displayed
	srg_get_info
	srg_get_members
	srg_list
	srg_set_info
	srg_user_add
	srg_user_del
	stats
	stats_host
	status
	status_list
	status_list_host
	status_num
	status_num_host
	stop
	stop_kindly
	stop_s2s_connections
	subscribe_room
	subscribe_room_many
	unban_account
	unban_ip
	unregister
	unsubscribe_room
	update 🟤
	update_list
	user_resources
	user_sessions_info

	API Tags
	accounts
	acme
	cluster
	config
	documentation
	ejabberdctl
	erlang
	last
	logs
	mam
	mnesia
	modules
	muc
	muc_room
	muc_sub
	oauth
	offline
	private
	purge
	roster
	s2s
	server
	session
	shared_roster_group
	sql
	stanza
	statistics
	v1
	v2
	vcard

	Simple ejabberd Rest API Configuration
	Restrict to Local network
	Encryption
	Basic Authentication
	OAuth Authentication

	API Permissions
	Rules inside who section
	Examples of who rules

	Rules in what section
	Example of what rules

	Rules in from section
	Examples

	OAuth Support
	Introduction
	Configuration
	Authentication method
	ejabberd listeners
	Module configuration
	OAuth specific parameters

	authorization_token
	redirect_uri
	Scopes
	X-OAuth2 Authentication
	ReST Example
	Configuring
	Obtain bearer token
	Passing credentials
	Query examples

	XML-RPC Example

	ejabberd commands
	Structure of #ejabberd_commands record
	Writing ejabberd commands supporting OAuth

	API Versioning
	Introduction
	Command Definition
	API Documentation
	mod_http_api
	ejabberdctl

	Archive
	ChangeLog
	Version 24.10
	Miscelanea
	Administration
	Commands API
	Code Quality
	Development Help
	Documentation
	Elixir
	WebAdmin

	Version 24.07
	Core
	Documentation
	ext_mod
	Logs
	SQL
	WebAdmin

	Version 24.06
	Core
	SQL
	Commands API
	Compile
	Dependencies
	Development Help
	Documentation
	Installers and Container
	WebAdmin

	Version 24.02
	Core:
	Other:
	SQL:
	Installers and Container:
	Commands API:
	Compilation with Rebar3/Elixir/Mix:

	Version 23.10
	Compilation:
	Commands:
	Container:
	Core:
	Docs:
	Installers (MAKE-BINARIES):
	Modules:
	MUC:
	SQL:

	Version 23.04
	General:
	Admin:
	MUC:
	SQL schemas:
	MS SQL:
	SQL Tests:
	Testing:
	ECS container image:
	EJABBERD container image:
	Installers:

	Version 23.01
	General:
	Admin:
	DOAP:
	MQTT:
	VSCode:

	Version 22.10
	Core:
	MIX:
	MUC:
	SQL:
	Build:
	Container:
	Installers:
	External modules:
	Workflows Actions:

	Version 22.05
	Core
	MQTT
	MUC
	mod_conversejs
	PubSub
	SQL
	Other Modules
	Dependencies
	Compile
	Start
	Commands
	Translations
	Workflows

	Version 21.12
	Commands
	Modules
	PubSub
	SQL
	Other

	Version 21.07
	Compilation
	Commands:
	Modules:
	SQL:

	Version 21.04
	API Commands:
	Build and setup:
	Miscellaneous:
	Modules:

	Version 21.01
	Miscellaneous changes:
	Commands:
	Running:
	Translations:

	Version 20.12
	Admin
	Modules:

	Version 20.07
	Changes in this version

	Version 20.03
	Changes in this version

	Version 20.02
	Changes in this version

	Version 20.01
	New features
	Fixes

	Version 19.09
	Admin
	Webadmin
	ACME
	Authentication
	MUC
	SQL
	Misc

	Version 19.08
	Administration
	Configuration
	Misc
	MUC
	PubSub

	Version 19.05
	Admin
	Auth
	Developer
	MUC
	Offline
	SQL:
	Tests
	Websocket
	Other modules

	Version 19.02
	Admin
	Configuration
	Core
	MAM
	MUC
	Shared Roster
	Miscelanea

	Version 18.12

	Roadmap
	ejabberd Roadmap
	In the Works
	Planned
	Released
	2024
	2023
	2022
	2021
	2020
	2019
	2018
	2017
	2016
	2015
	2014
	2013
	2012
	2011
	2010
	2009
	2008
	2007
	2006
	2005
	2004
	2003
	2002

